SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Etzelmuller E.) "

Search: WFRF:(Etzelmuller E.)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Singh, B. P., et al. (author)
  • Experimental access to Transition Distribution Amplitudes with the PANDA experiment at FAIR
  • 2015
  • In: European Physical Journal A. Hadrons and Nuclei. - : Springer Science and Business Media LLC. - 1434-6001 .- 1434-601X. ; 51:8
  • Journal article (peer-reviewed)abstract
    • Baryon-to-meson Transition Distribution Amplitudes (TDAs) encoding valuable new information on hadron structure appear as building blocks in the collinear factorized description for several types of hard exclusive reactions. In this paper, we address the possibility of accessing nucleon-to-pion (pi N) TDAs from (p) over barp -> e(+)e(-)pi(0) reaction with the future PANDA detector at the FAIR facility. At high center-of-mass energy and high invariant mass squared of the lepton pair q(2), the amplitude of the signal channel (p) over barp -> e(+)e(-)pi(0) admits a QCD factorized description in terms of pi N TDAs and nucleon Distribution Amplitudes (DAs) in the forward aid backward kinematic regimes. Assuming the validity of this factorized description, we perform feasibility studies for measuring (p) over barp -> e(+)e(-)pi(0) with the PANDA detector. Detailed simulations on signal reconstruction efficiency as well as on rejection of the most severe background channel, i.e. (p) over barp -> pi(+)pi(-)pi(0) were performed for the center-of-mass energy squared s = 5 GeV2 and s = 10 GeV2, in the kinematic regions 3.0 < q(2) < 4.3 GeV2 and 5 < q(2) < 9 GeV2, respectively, with a neutral pion scattered in the forward or backward cone vertical bar cos theta(pi 0)vertical bar > 0.5 in the proton-antiproton center-of-mass frame. Results of the simulation show that the particle identification capabilities of the PANDA detector will allow to achieve a background rejection factor of 5 . 10(7) (1 . 10(7)) at low (high) q(2) for s = 5 GeV2, and of 1 . 10(8) (6 . 10(6)) at low (high) q(2) for s = 10 GeV2, while keeping the signal reconstruction efficiency at around 40%. At both energies, a clean lepton signal can be reconstructed with the expected statistics corresponding to 2 of integrated luminosity. The cross sections obtained from the simulations are used to show that a test of QCD collinear factorization can be done at the lowest order by measuring scaling laws and angular distributions. The future measurement of the signal channel cross section with PANDA will provide a new test of the perturbative QCD description of a novel class of hard exclusive reactions and will open the possibility of experimentally accessing pi N TDAs.
  •  
2.
  • Collaboration, The PANDA, et al. (author)
  • Feasibility studies of time-like proton electromagnetic form factors at PANDA at FAIR
  • 2016
  • In: European Physical Journal A. - : Springer Publishing Company. - 1434-6001 .- 1434-601X. ; 52:10
  • Journal article (peer-reviewed)abstract
    • Simulation results for future measurements of electromagnetic proton form factors at P ¯ ANDA (FAIR) within the PandaRoot software framework are reported. The statistical precision with which the proton form factors can be determined is estimated. The signal channel p¯ p→ e+e- is studied on the basis of two different but consistent procedures. The suppression of the main background channel, i.e.p¯ p→ π+π-, is studied. Furthermore, the background versus signal efficiency, statistical and systematical uncertainties on the extracted proton form factors are evaluated using two different procedures. The results are consistent with those of a previous simulation study using an older, simplified framework. However, a slightly better precision is achieved in the PandaRoot study in a large range of momentum transfer, assuming the nominal beam conditions and detector performance.
  •  
3.
  • Kjellman, Sofia E., et al. (author)
  • Holocene development of subarctic permafrost peatlands in Finnmark, northern Norway
  • 2018
  • In: The Holocene. - : SAGE Publications. - 0959-6836 .- 1477-0911. ; 28:12, s. 1855-1869
  • Journal article (peer-reviewed)abstract
    • Subarctic permafrost peatlands are important soil organic carbon pools, and improved knowledge about peat properties and peatland sensitivity to past climate change is essential when predicting future response to a warmer climate and associated feedback mechanisms. In this study, Holocene peatland development and permafrost dynamics of four subarctic peat plateaus in Finnmark, northern Norway have been investigated through detailed analyses of plant macrofossils and geochemical properties. Peatland inception occurred around 9800 cal. yr BP and 9200 cal. yr BP at the two continental sites Suossjavri and Iskoras. Younger basal peat ages were found at the two coastal locations Lakselv and Karlebotn, at least partly caused by the time lag between deglaciation and emergence of land by isostatic uplift. Here, peatland development started around 6150 cal. yr BP and 5150 cal. yr BP, respectively. All four peatlands developed as wet fens throughout most of the Holocene. Permafrost aggradation, causing frost heave and a shift in the vegetation assemblage from wet fen to dry bog species, probably did not occur until during the last millennium, ca. 950 cal. yr BP in Karlebotn and ca. 800 cal. yr BP in Iskoras, and before ca. 150 cal. yr BP in Lakselv and ca. 100 cal. yr BP in Suossjavri. In Karlebotn, there are indications of a possible earlier permafrost phase around 2200 cal. yr BP due to climatic cooling at the late Subboreal to early Subatlantic transition. The mean long-term Holocene carbon accumulation rate at all four sites was 12.3 +/- 4.1 gC m(-2) yr(-1) (+/- SD) and the mean soil organic carbon storage was 97 +/- 46 kgC m(-2).
  •  
4.
  • Biskaborn, Boris K., et al. (author)
  • Permafrost is warming at a global scale
  • 2019
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1
  • Journal article (peer-reviewed)abstract
    • Permafrost warming has the potential to amplify global climate change, because when frozen sediments thaw it unlocks soil organic carbon. Yet to date, no globally consistent assessment of permafrost temperature change has been compiled. Here we use a global data set of permafrost temperature time series from the Global Terrestrial Network for Permafrost to evaluate temperature change across permafrost regions for the period since the International Polar Year (2007–2009). During the reference decade between 2007 and 2016, ground temperature near the depth of zero annual amplitude in the continuous permafrost zone increased by 0.39 ± 0.15 °C. Over the same period, discontinuous permafrost warmed by 0.20 ± 0.10 °C. Permafrost in mountains warmed by 0.19 ± 0.05 °C and in Antarctica by 0.37 ± 0.10 °C. Globally, permafrost temperature increased by 0.29 ± 0.12 °C. The observed trend follows the Arctic amplification of air temperature increase in the Northern Hemisphere. In the discontinuous zone, however, ground warming occurred due to increased snow thickness while air temperature remained statistically unchanged.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view