SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Filipovic M.) "

Search: WFRF:(Filipovic M.)

  • Result 1-25 of 43
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Niemi, MEK, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
2.
  •  
3.
  • Acero, F., et al. (author)
  • Prospects for Cherenkov Telescope Array Observations of the Young Supernova Remnant RX J1713.7-3946
  • 2017
  • In: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 840:2
  • Journal article (peer-reviewed)abstract
    • We perform simulations for future Cherenkov Telescope Array (CTA) observations of RX J1713.7-3946, a young supernova remnant (SNR) and one of the brightest sources ever discovered in very high energy (VHE) gamma rays. Special attention is paid to exploring possible spatial (anti) correlations of gamma rays with emission at other wavelengths, in particular X-rays and CO/H I emission. We present a series of simulated images of RX J1713.7-3946 for CTA based on a set of observationally motivated models for the gamma-ray emission. In these models, VHE gamma rays produced by high-energy electrons are assumed to trace the nonthermal X-ray emission observed by XMM-Newton, whereas those originating from relativistic protons delineate the local gas distributions. The local atomic and molecular gas distributions are deduced by the NANTEN team from CO and H I observations. Our primary goal is to show how one can distinguish the emission mechanism(s) of the gamma rays (i.e., hadronic versus leptonic, or a mixture of the two) through information provided by their spatial distribution, spectra, and time variation. This work is the first attempt to quantitatively evaluate the capabilities of CTA to achieve various proposed scientific goals by observing this important cosmic particle accelerator.
  •  
4.
  • Acharyya, A., et al. (author)
  • Monte Carlo studies for the optimisation of the Cherenkov Telescope Array layout
  • 2019
  • In: Astroparticle physics. - : Elsevier. - 0927-6505 .- 1873-2852. ; 111, s. 35-53
  • Journal article (peer-reviewed)abstract
    • The Cherenkov Telescope Array (CTA) is the major next-generation observatory for ground-based veryhigh-energy gamma-ray astronomy. It will improve the sensitivity of current ground-based instruments by a factor of five to twenty, depending on the energy, greatly improving both their angular and energy resolutions over four decades in energy (from 20 GeV to 300 TeV). This achievement will be possible by using tens of imaging Cherenkov telescopes of three successive sizes. They will be arranged into two arrays, one per hemisphere, located on the La Palma island (Spain) and in Paranal (Chile). We present here the optimised and final telescope arrays for both CTA sites, as well as their foreseen performance, resulting from the analysis of three different large-scale Monte Carlo productions.
  •  
5.
  • Abdalla, H., et al. (author)
  • HESS and MAGIC observations of a sudden cessation of a very-high-energy gamma-ray flare in PKS 1510-089 in May 2016
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 648
  • Journal article (peer-reviewed)abstract
    • The flat spectrum radio quasar (FSRQ) PKS 1510-089 is known for its complex multiwavelength behaviour and it is one of only a few FSRQs detected in very-high-energy (VHE, E>100 GeV) gamma rays. The VHE gamma -ray observations with H.E.S.S. and MAGIC in late May and early June 2016 resulted in the detection of an unprecedented flare, which revealed, for the first time, VHE gamma -ray intranight variability for this source. While a common variability timescale of 1.5 h has been found, there is a significant deviation near the end of the flare, with a timescale of similar to 20 min marking the cessation of the event. The peak flux is nearly two orders of magnitude above the low-level emission. For the first time, a curvature was detected in the VHE gamma -ray spectrum of PKS 1510-089, which can be fully explained by the absorption on the part of the extragalactic background light. Optical R-band observations with ATOM revealed a counterpart of the gamma -ray flare, even though the detailed flux evolution differs from the VHE gamma -ray light curve. Interestingly, a steep flux decrease was observed at the same time as the cessation of the VHE gamma -ray flare. In the high-energy (HE, E> 100 MeV) gamma -ray band, only a moderate flux increase was observed with Fermi-LAT, while the HE gamma -ray spectrum significantly hardens up to a photon index of 1.6. A search for broad-line region (BLR) absorption features in the gamma -ray spectrum indicates that the emission region is located outside of the BLR. Radio very-long-baseline interferometry observations reveal a fast-moving knot interacting with a standing jet feature around the time of the flare. As the standing feature is located similar to 50 pc from the black hole, the emission region of the flare may have been located at a significant distance from the black hole. If this is indeed a true correlation, the VHE gamma rays must have been produced far down in the jet, where turbulent plasma crosses a standing shock.
  •  
6.
  • Acharyya, A., et al. (author)
  • Multiwavelength Observations of the Blazar PKS 0735+178 in Spatial and Temporal Coincidence with an Astrophysical Neutrino Candidate IceCube-211208A
  • 2023
  • In: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 954:1
  • Journal article (peer-reviewed)abstract
    • We report on multiwavelength target-of-opportunity observations of the blazar PKS 0735+178, located 2 degrees .2 away from the best -fit position of the IceCube neutrino event IceCube-211208A detected on 2021 December 8. The source was in a high -flux state in the optical, ultraviolet, X-ray, and GeV ?-ray bands around the time of the neutrino event, exhibiting daily variability in the soft X-ray flux. The X-ray data from Swift-XRT and NuSTAR characterize the transition between the low-energy and high-energy components of the broadband spectral energy distribution (SED), and the ?-ray data from Fermi-LAT, VERITAS, and H.E.S.S. require a spectral cutoff near 100 GeV. Both the X-ray and ?-ray measurements provide strong constraints on the leptonic and hadronic models. We analytically explore a synchrotron self-Compton model, an external Compton model, and a lepto-hadronic model. Models that are entirely based on internal photon fields face serious difficulties in matching the observed SED. The existence of an external photon field in the source would instead explain the observed ?-ray spectral cutoff in both the leptonic and lepto-hadronic models and allow a proton jet power that marginally agrees with the Eddington limit in the lepto-hadronic model. We show a numerical lepto-hadronic model with external target photons that reproduces the observed SED and is reasonably consistent with the neutrino event despite requiring a high jet power.
  •  
7.
  • Ackermann, M., et al. (author)
  • Periodic Emission from the Gamma-Ray Binary 1FGL J1018.6-5856
  • 2012
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 335:6065, s. 189-193
  • Journal article (peer-reviewed)abstract
    • Gamma-ray binaries are stellar systems containing a neutron star or black hole, with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy. A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that 1FGL J1018.6-5856 exhibits intensity and spectral modulation with a 16.6-day period. We identified a variable x-ray counterpart, which shows a sharp maximum coinciding with maximum gamma-ray emission, as well as an O6V((f)) star optical counterpart and a radio counterpart that is also apparently modulated on the orbital period. 1FGL J1018.6-5856 is thus a gamma-ray binary, and its detection suggests the presence of other fainter binaries in the Galaxy.
  •  
8.
  • Aharonian, F., et al. (author)
  • A deep spectromorphological study of the ϒ-ray emission surrounding the young massive stellar cluster Westerlund 1
  • 2022
  • In: Astronomy and Astrophysics. - : EPD Sciences. - 0004-6361 .- 1432-0746. ; 666
  • Journal article (peer-reviewed)abstract
    • Context. Young massive stellar clusters are extreme environments and potentially provide the means for efficient particle acceleration. Indeed, they are increasingly considered as being responsible for a significant fraction of cosmic rays (CRs) that are accelerated within the Milky Way. Westerlund 1, the most massive known young stellar cluster in our Galaxy, is a prime candidate for studying this hypothesis. While the very-high-energy gamma-ray source HESS J1646-458 has been detected in the vicinity of Westerlund 1 in the past, its association could not be firmly identified. Aims. We aim to identify the physical processes responsible for the gamma-ray emission around Westerlund 1 and thus to understand the role of massive stellar clusters in the acceleration of Galactic CRs better. Methods. Using 164 h of data recorded with the High Energy Stereoscopic System (H.E.S.S.), we carried out a deep spectromorphological study of the gamma-ray emission of HESS J1646-458. We furthermore employed H I and CO observations of the region to infer the presence of gas that could serve as target material for interactions of accelerated CRs. Results. We detected large-scale (similar to 2 degrees diameter) gamma-ray emission with a complex morphology, exhibiting a shell-like structure and showing no significant variation with gamma-ray energy. The combined energy spectrum of the emission extends to several tens of TeV, and it is uniform across the entire source region. We did not find a clear correlation of the gamma-ray emission with gas clouds as identified through H I and CO observations. Conclusions. We conclude that, of the known objects within the region, only Westerlund 1 can explain the majority of the gamma-ray emission. Several CR acceleration sites and mechanisms are conceivable and discussed in detail. While it seems clear that Westerlund 1 acts as a powerful particle accelerator, no firm conclusions on the contribution of massive stellar clusters to the flux of Galactic CRs in general can be drawn at this point.
  •  
9.
  • Aharonian, F., et al. (author)
  • Detection of extended gamma-ray emission around the Geminga pulsar with HESS
  • 2023
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 673
  • Journal article (peer-reviewed)abstract
    • Geminga is an enigmatic radio-quiet gamma-ray pulsar located at a mere 250 pc distance from Earth. Extended very-high-energy gamma-ray emission around the pulsar was discovered by Milagro and later confirmed by HAWC, which are both water Cherenkov detector-based experiments. However, evidence for the Geminga pulsar wind nebula in gamma rays has long evaded detection by imaging atmospheric Cherenkov telescopes (IACTs) despite targeted observations. The detection of gamma-ray emission on angular scales greater than or similar to 2 degrees poses a considerable challenge for the background estimation in IACT data analysis. With recent developments in understanding the complementary background estimation techniques of water Cherenkov and atmospheric Cherenkov instruments, the H.E.S.S. IACT array can now confirm the detection of highly extended gamma-ray emission around the Geminga pulsar with a radius of at least 3 degrees in the energy range 0.5-40 TeV. We find no indications for statistically significant asymmetries or energy-dependent morphology. A flux normalisation of (2.8 +/- 0.7) x 10-12 cm-2 s-1 TeV-1 at 1 TeV is obtained within a 1 degrees radius region around the pulsar. To investigate the particle transport within the halo of energetic leptons around the pulsar, we fitted an electron diffusion model to the data. The normalisation of the diffusion coefficient obtained of D-0 = 7.6-1.2+1.5 x 1027 cm2 s-1, at an electron energy of 100 TeV, is compatible with values previously reported for the pulsar halo around Geminga, which is considerably below the Galactic average.
  •  
10.
  • Aharonian, F., et al. (author)
  • HESS Follow-up Observations of GRB 221009A
  • 2023
  • In: Astrophysical Journal Letters. - : Institute of Physics Publishing (IOPP). - 2041-8205 .- 2041-8213. ; 946:1
  • Journal article (peer-reviewed)abstract
    • GRB 221009A is the brightest gamma-ray burst (GRB) ever detected. To probe the very-high-energy (VHE; >100 GeV) emission, the High Energy Stereoscopic System (H.E.S.S.) began observations 53 hr after the triggering event, when the brightness of the moonlight no longer precluded observations. We derive differential and integral upper limits using H.E.S.S. data from the third, fourth, and ninth nights after the initial GRB detection, after applying atmospheric corrections. The combined observations yield an integral energy flux upper limit of f(UL)(95%)=9.7x10(-12)ergcm(-2)s(-1) E-thr = 650 GeV. The constraints derived from the H.E.S.S. observations complement the available multiwavelength data. The radio to X-ray data are consistent with synchrotron emission from a single electron population, with the peak in the spectral energy distribution occurring above the X-ray band. Compared to the VHE-bright GRB 190829A, the upper limits for GRB 221009A imply a smaller gamma-ray to X-ray flux ratio in the afterglow. Even in the absence of a detection, the H.E.S.S. upper limits thus contribute to the multiwavelength picture of GRB 221009A, effectively ruling out an IC-dominated scenario.
  •  
11.
  • Aharonian, F., et al. (author)
  • HESS J1809-193 : A halo of escaped electrons around a pulsar wind nebula?
  • 2023
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 672
  • Journal article (peer-reviewed)abstract
    • Context. HESS J1809-193 is an unassociated very-high-energy gamma-ray source located on the Galactic plane. While it has been connected to the nebula of the energetic pulsar PSR J1809-1917, supernova remnants and molecular clouds present in the vicinity also constitute possible associations. Recently, the detection of gamma-ray emission up to energies of similar to 100 TeV with the HAWC observatory has led to renewed interest in HESS J1809-193.Aims. We aim to understand the origin of the gamma-ray emission of HESS J1809-193.Methods. We analysed 93.2 h of data taken on HESS J1809-193 above 0.27 TeV with the High Energy Stereoscopic System (H.E.S.S.), using a multi-component, three-dimensional likelihood analysis. In addition, we provide a new analysis of 12.5 yr of Fermi-LAT data above 1 GeV within the region of HESS J1809-193. The obtained results are interpreted in a time-dependent modelling framework.Results. For the first time, we were able to resolve the emission detected with H.E.S.S. into two components: an extended component (modelled as an elongated Gaussian with a 1-sigma semi-major and semi-minor axis of similar to 0.62 degrees and similar to 0.35 degrees, respectively) that exhibits a spectral cutoff at similar to 13 TeV, and a compact component (modelled as a symmetric Gaussian with a 1-sigma radius of similar to 0.1 degrees) that is located close to PSR J1809-1917 and shows no clear spectral cutoff. The Fermi-LAT analysis also revealed extended gamma-ray emission, on scales similar to that of the extended H.E.S.S. component.Conclusions. Our modelling indicates that based on its spectrum and spatial extent, the extended H.E.S.S. component is likely caused by inverse Compton emission from old electrons that form a halo around the pulsar wind nebula. The compact component could be connected to either the pulsar wind nebula or the supernova remnant and molecular clouds. Due to its comparatively steep spectrum, modelling the Fermi-LAT emission together with the H.E.S.S. components is not straightforward.
  •  
12.
  • Aharonian, F., et al. (author)
  • Constraining the cosmic-ray pressure in the inner Virgo Cluster using HESS observations of M 87
  • 2023
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 675
  • Journal article (peer-reviewed)abstract
    • The origin of the gamma-ray emission from M 87 is currently a matter of debate. This work aims to localize the very high-energy (VHE; 100 GeV - 100 TeV) gamma-ray emission from M 87 and probe a potential extended hadronic emission component in the inner Virgo Cluster. The search for a steady and extended gamma-ray signal around M 87 can constrain the cosmic-ray energy density and the pressure exerted by the cosmic rays onto the intracluster medium and allow us to investigate the role of cosmic rays in the active galactic nucleus feedback as a heating mechanism in the Virgo Cluster. The High Energy Stereoscopic System (H.E.S.S.) telescopes are sensitive to VHE gamma rays and have been used to observe M 87 since 2004. We utilized a Bayesian block analysis to identify M 87 emission states with H.E.S.S. observations from 2004 to 2021, dividing them into low, intermediate, and high states. Because of the causality argument, an extended (≳1 kpc) signal is allowed only in steady emission states. Hence, we fitted the morphology of the 120 h low-state data and find no significant gamma-ray extension. Therefore, we derive for the low state an upper limit of 58″(corresponding to ≈4.6 kpc) in the extension of a single-component morphological model described by a rotationally symmetric 2D Gaussian model at the 99.7% confidence level. Our results exclude the radio lobes (≈30 kpc) as the principal component of the VHE gamma-ray emission from the low state of M 87. The gamma-ray emission is compatible with a single emission region at the radio core of M 87. These results, with the help of two multiple-component models, constrain the maximum cosmic-ray to thermal pressure ratio to XCR, max. ≲ 0.32 and the total energy in cosmic-ray protons to UCR  ≲  5  ×  1058 erg in the inner 20 kpc of the Virgo Cluster for an assumed cosmic-ray proton power-law distribution in momentum with spectral index αp = 2.1
  •  
13.
  • Aharonian, F., et al. (author)
  • Constraints on the Intergalactic Magnetic Field Using Fermi-LAT and HESS Blazar Observations
  • 2023
  • In: Astrophysical Journal Letters. - : Institute of Physics Publishing (IOPP). - 2041-8205 .- 2041-8213. ; 950:2
  • Journal article (peer-reviewed)abstract
    • Magnetic fields in galaxies and galaxy clusters are believed to be the result of the amplification of intergalactic seed fields during the formation of large-scale structures in the universe. However, the origin, strength, and morphology of this intergalactic magnetic field (IGMF) remain unknown. Lower limits on (or indirect detection of) the IGMF can be obtained from observations of high-energy gamma rays from distant blazars. Gamma rays interact with the extragalactic background light to produce electron-positron pairs, which can subsequently initiate electromagnetic cascades. The gamma-ray signature of the cascade depends on the IGMF since it deflects the pairs. Here we report on a new search for this cascade emission using a combined data set from the Fermi Large Area Telescope and the High Energy Stereoscopic System. Using state-of-the-art Monte Carlo predictions for the cascade signal, our results place a lower limit on the IGMF of B > 7.1 x 10(-16) G for a coherence length of 1 Mpc even when blazar duty cycles as short as 10 yr are assumed. This improves on previous lower limits by a factor of 2. For longer duty cycles of 10(4) (10(7)) yr, IGMF strengths below 1.8 x 10(-14) G (3.9 x 10(-14) G) are excluded, which rules out specific models for IGMF generation in the early universe.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  • Patterson, Nick, et al. (author)
  • Large-scale migration into Britain during the Middle to Late Bronze Age
  • 2022
  • In: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; , s. 588-594
  • Journal article (peer-reviewed)abstract
    • Present-day people from England and Wales harbour more ancestry derived from Early European Farmers (EEF) than people of the Early Bronze Age1. To understand this, we generated genome-wide data from 793 individuals, increasing data from the Middle to Late Bronze and Iron Age in Britain by 12-fold, and Western and Central Europe by 3.5-fold. Between 1000 and 875 BC, EEF ancestry increased in southern Britain (England and Wales) but not northern Britain (Scotland) due to incorporation of migrants who arrived at this time and over previous centuries, and who were genetically most similar to ancient individuals from France. These migrants contributed about half the ancestry of Iron Age people of England and Wales, thereby creating a plausible vector for the spread of early Celtic languages into Britain. These patterns are part of a broader trend of EEF ancestry becoming more similar across central and western Europe in the Middle to Late Bronze Age, coincident with archaeological evidence of intensified cultural exchange2-6. There was comparatively less gene flow from continental Europe during the Iron Age, and Britain's independent genetic trajectory is also reflected in the rise of the allele conferring lactase persistence to ~50% by this time compared to ~7% in central Europe where it rose rapidly in frequency only a millennium later. This suggests that dairy products were used in qualitatively different ways in Britain and in central Europe over this period.
  •  
19.
  •  
20.
  •  
21.
  • Babes, Alexandru, et al. (author)
  • Photosensitization in porphyrias and photodynamic therapy involves TRPA1 and TRPV1
  • 2016
  • In: The Journal of Neuroscience. - 0270-6474. ; 36:19, s. 5264-5278
  • Journal article (peer-reviewed)abstract
    • Photosensitization, an exaggerated sensitivity to harmless light, occurs genetically in rare diseases, such as porphyrias, and in photodynamic therapy where short-term toxicity is intended. A common feature is the experience of pain from bright light. In human subjects, skin exposure to 405 nm light induced moderate pain, which was intensified by pretreatment with aminolevulinic acid. In heterologous expression systems and cultured sensory neurons, exposure to blue light activated TRPA1 and, to a lesser extent, TRPV1 channels in the absence of additional photosensitization. Pretreatment with aminolevulinic acid or with protoporphyrin IX dramatically increased the light sensitivity of both TRPA1 and TRPV1 via generation of reactive oxygen species. Artificial lipid bilayers equipped with purified human TRPA1 showed substantial single-channel activity only in the presence of protoporphyrin IX and blue light. Photosensitivity and photosensitization could be demonstrated in freshly isolated mouse tissues and led to TRP channel-dependent release of proinflammatory neuropeptides upon illumination. With antagonists in clinical development, these findings may help to alleviate pain during photodynamic therapy and also allow for disease modification in porphyria patients.
  •  
22.
  • Chomiuk, Laura, et al. (author)
  • Classical Novae at Radio Wavelengths
  • 2021
  • In: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 257:2
  • Journal article (peer-reviewed)abstract
    • We present radio observations (1-40 GHz) for 36 classical novae, representing data from over five decades compiled from the literature, telescope archives, and our own programs. Our targets display a striking diversity in their optical parameters (e.g., spanning optical fading timescales, t (2) = 1-263 days), and we find a similar diversity in the radio light curves. Using a brightness temperature analysis, we find that radio emission from novae is a mixture of thermal and synchrotron emission, with nonthermal emission observed at earlier times. We identify high brightness temperature emission (T ( B ) > 5 x 10(4) K) as an indication of synchrotron emission in at least nine (25%) of the novae. We find a class of synchrotron-dominated novae with mildly evolved companions, exemplified by V5589 Sgr and V392 Per, that appear to be a bridge between classical novae with dwarf companions and symbiotic binaries with giant companions. Four of the novae in our sample have two distinct radio maxima (the first dominated by synchrotron and the later by thermal emission), and in four cases the early synchrotron peak is temporally coincident with a dramatic dip in the optical light curve, hinting at a common site for particle acceleration and dust formation. We publish the light curves in a machine-readable table and encourage the use of these data by the broader community in multiwavelength studies and modeling efforts.
  •  
23.
  •  
24.
  •  
25.
  • Strunz, B., et al. (author)
  • Continuous human uterine NK cell differentiation in response to endometrial regeneration and pregnancy
  • 2021
  • In: Science Immunology. - : American Association for the Advancement of Science (AAAS). - 2470-9468. ; 6:56
  • Journal article (peer-reviewed)abstract
    • Immune cell differentiation is critical for adequate tissue-specific immune responses to occur. Here, we studied differentiation of human uterine natural killer cells (uNK cells). These cells reside in a tissue undergoing constant regeneration and represent the major leukocyte population at the maternal-fetal interface. However, their physiological response during the menstrual cycle and in pregnancy remains elusive. By surface proteome and transcriptome analysis as well as using humanized mice, we identify a differentiation pathway of uNK cells in vitro and in vivo with sequential acquisition of killer cell immunoglobulin-like receptors and CD39. uNK cell differentiation occurred continuously in response to the endometrial regeneration and was driven by interleukin-15. Differentiated uNK cells displayed reduced proliferative capacity and immunomodulatory function including enhanced angiogenic capacity. By studying human uterus transplantation and monozygotic twins, we found that the uNK cell niche could be replenished from circulation and that it was under genetic control. Together, our study uncovers a continuous differentiation pathway of human NK cells in the uterus that is coupled to profound functional changes in response to local tissue regeneration and pregnancy.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 43

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view