SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Fonseca Ja) "

Search: WFRF:(Fonseca Ja)

  • Result 1-25 of 61
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  • Campbell, PJ, et al. (author)
  • Pan-cancer analysis of whole genomes
  • 2020
  • In: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 578:7793, s. 82-
  • Journal article (peer-reviewed)abstract
    • Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale1–3. Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4–5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter4; identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation5,6; analyses timings and patterns of tumour evolution7; describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity8,9; and evaluates a range of more-specialized features of cancer genomes8,10–18.
  •  
4.
  • 2021
  • swepub:Mat__t
  •  
5.
  •  
6.
  • Bousquet, J, et al. (author)
  • Nrf2-interacting nutrients and COVID-19: time for research to develop adaptation strategies
  • 2020
  • In: Clinical and translational allergy. - : Wiley. - 2045-7022. ; 10:1, s. 58-
  • Journal article (peer-reviewed)abstract
    • There are large between- and within-country variations in COVID-19 death rates. Some very low death rate settings such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating large quantities of fermented foods whose intake is associated with the activation of the Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor. There are many Nrf2-interacting nutrients (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, sulforaphane) that all act similarly to reduce insulin resistance, endothelial damage, lung injury and cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of rapamycin, PPARγ:Peroxisome proliferator-activated receptor, NFκB: Nuclear factor kappa B, ERK: Extracellular signal-regulated kinases and eIF2α:Elongation initiation factor 2α). They may as a result be important in mitigating the severity of COVID-19, acting through the endoplasmic reticulum stress or ACE-Angiotensin-II-AT1R axis (AT1R) pathway. Many Nrf2-interacting nutrients are also interacting with TRPA1 and/or TRPV1. Interestingly, geographical areas with very low COVID-19 mortality are those with the lowest prevalence of obesity (Sub-Saharan Africa and Asia). It is tempting to propose that Nrf2-interacting foods and nutrients can re-balance insulin resistance and have a significant effect on COVID-19 severity. It is therefore possible that the intake of these foods may restore an optimal natural balance for the Nrf2 pathway and may be of interest in the mitigation of COVID-19 severity.
  •  
7.
  •  
8.
  • Menditto, Enrica, et al. (author)
  • Adherence to treatment in allergic rhinitis using mobile technology : The MASK Study
  • 2019
  • In: Clinical and Experimental Allergy. - : WILEY. - 0954-7894 .- 1365-2222. ; 49:4, s. 442-460
  • Journal article (peer-reviewed)abstract
    • Background: Mobile technology may help to better understand the adherence to treatment. MASK-rhinitis (Mobile Airways Sentinel NetworK for allergic rhinitis) is a patient-centred ICT system. A mobile phone app (the Allergy Diary) central to MASK is available in 22 countries. Objectives: To assess the adherence to treatment in allergic rhinitis patients using the Allergy Diary App. Methods: An observational cross-sectional study was carried out on all users who filled in the Allergy Diary from 1 January 2016 to 1 August 2017. Secondary adherence was assessed by using the modified Medication Possession Ratio (MPR) and the Proportion of days covered (PDC) approach. Results: A total of 12143 users were registered. A total of 6949 users reported at least one VAS data recording. Among them, 1887 users reported >= 7 VAS data. About 1195 subjects were included in the analysis of adherence. One hundred and thirty-six (11.28%) users were adherent (MPR >= 70% and PDC <= 1.25), 51 (4.23%) were partly adherent (MPR >= 70% and PDC = 1.50) and 176 (14.60%) were switchers. On the other hand, 832 (69.05%) users were non-adherent to medications (MPR <70%). Of those, the largest group was non-adherent to medications and the time interval was increased in 442 (36.68%) users. Conclusion and clinical relevance: Adherence to treatment is low. The relative efficacy of continuous vs on-demand treatment for allergic rhinitis symptoms is still a matter of debate. This study shows an approach for measuring retrospective adherence based on a mobile app. This also represents a novel approach for analysing medication-taking behaviour in a real-world setting.
  •  
9.
  •  
10.
  • Glasbey, JC, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
11.
  •  
12.
  • 2021
  • swepub:Mat__t
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  • Bousquet, J, et al. (author)
  • Potential Interplay between Nrf2, TRPA1, and TRPV1 in Nutrients for the Control of COVID-19
  • 2021
  • In: International archives of allergy and immunology. - : S. Karger AG. - 1423-0097 .- 1018-2438. ; 182:4, s. 324-338
  • Journal article (peer-reviewed)abstract
    • In this article, we propose that differences in COVID-19 morbidity may be associated with transient receptor potential ankyrin 1 (TRPA1) and/or transient receptor potential vanilloid 1 (TRPV1) activation as well as desensitization. TRPA1 and TRPV1 induce inflammation and play a key role in the physiology of almost all organs. They may augment sensory or vagal nerve discharges to evoke pain and several symptoms of COVID-19, including cough, nasal obstruction, vomiting, diarrhea, and, at least partly, sudden and severe loss of smell and taste. TRPA1 can be activated by reactive oxygen species and may therefore be up-regulated in COVID-19. TRPA1 and TRPV1 channels can be activated by pungent compounds including many nuclear factor (erythroid-derived 2) (Nrf2)-interacting foods leading to channel desensitization. Interactions between Nrf2-associated nutrients and TRPA1/TRPV1 may be partly responsible for the severity of some of the COVID-19 symptoms. The regulation by Nrf2 of TRPA1/TRPV1 is still unclear, but suggested from very limited clinical evidence. In COVID-19, it is proposed that rapid desensitization of TRAP1/TRPV1 by some ingredients in foods could reduce symptom severity and provide new therapeutic strategies.
  •  
17.
  • Bousquet, J, et al. (author)
  • Spices to Control COVID-19 Symptoms: Yes, but Not Only…
  • 2021
  • In: International archives of allergy and immunology. - : S. Karger AG. - 1423-0097 .- 1018-2438. ; 182:6, s. 489-495
  • Journal article (peer-reviewed)abstract
    • There are large country variations in COVID-19 death rates that may be partly explained by diet. Many countries with low COVID-19 death rates have a common feature of eating large quantities of fermented vegetables such as cabbage and, in some continents, various spices. Fermented vegetables and spices are agonists of the antioxidant transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2), and spices are transient receptor potential ankyrin 1 and vanillin 1 (TRPA1/V1) agonists. These mechanisms may explain many COVID-19 symptoms and severity. It appears that there is a synergy between Nrf2 and TRPA1/V1 foods that may explain the role of diet in COVID-19. One of the mechanisms of COVID-19 appears to be an oxygen species (ROS)-mediated process in synergy with TRP channels, modulated by Nrf2 pathways. Spicy foods are likely to desensitize TRP channels and act in synergy with exogenous antioxidants that activate the Nrf2 pathway.
  •  
18.
  •  
19.
  •  
20.
  • Lopez-Isac, E, et al. (author)
  • GWAS for systemic sclerosis identifies multiple risk loci and highlights fibrotic and vasculopathy pathways
  • 2019
  • In: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1, s. 4955-
  • Journal article (peer-reviewed)abstract
    • Systemic sclerosis (SSc) is an autoimmune disease that shows one of the highest mortality rates among rheumatic diseases. We perform a large genome-wide association study (GWAS), and meta-analysis with previous GWASs, in 26,679 individuals and identify 27 independent genome-wide associated signals, including 13 new risk loci. The novel associations nearly double the number of genome-wide hits reported for SSc thus far. We define 95% credible sets of less than 5 likely causal variants in 12 loci. Additionally, we identify specific SSc subtype-associated signals. Functional analysis of high-priority variants shows the potential function of SSc signals, with the identification of 43 robust target genes through HiChIP. Our results point towards molecular pathways potentially involved in vasculopathy and fibrosis, two main hallmarks in SSc, and highlight the spectrum of critical cell types for the disease. This work supports a better understanding of the genetic basis of SSc and provides directions for future functional experiments.
  •  
21.
  •  
22.
  •  
23.
  •  
24.
  •  
25.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 61

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view