SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(German Dmitry A.) "

Sökning: WFRF:(German Dmitry A.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Zuntini, Alexandre R., et al. (författare)
  • Phylogenomics and the rise of the angiosperms
  • 2024
  • Ingår i: NATURE. - 0028-0836 .- 1476-4687. ; 629, s. 843-850
  • Tidskriftsartikel (refereegranskat)abstract
    • Angiosperms are the cornerstone of most terrestrial ecosystems and human livelihoods(1,2). A robust understanding of angiosperm evolution is required to explain their rise to ecological dominance. So far, the angiosperm tree of life has been determined primarily by means of analyses of the plastid genome(3,4). Many studies have drawn on this foundational work, such as classification and first insights into angiosperm diversification since their Mesozoic origins(5-7). However, the limited and biased sampling of both taxa and genomes undermines confidence in the tree and its implications. Here, we build the tree of life for almost 8,000 (about 60%) angiosperm genera using a standardized set of 353 nuclear genes(8). This 15-fold increase in genus-level sampling relative to comparable nuclear studies(9) provides a critical test of earlier results and brings notable change to key groups, especially in rosids, while substantiating many previously predicted relationships. Scaling this tree to time using 200 fossils, we discovered that early angiosperm evolution was characterized by high gene tree conflict and explosive diversification, giving rise to more than 80% of extant angiosperm orders. Steady diversification ensued through the remaining Mesozoic Era until rates resurged in the Cenozoic Era, concurrent with decreasing global temperatures and tightly linked with gene tree conflict. Taken together, our extensive sampling combined with advanced phylogenomic methods shows the deep history and full complexity in the evolution of a megadiverse clade.
  •  
3.
  • Hendriks, Kasper P., et al. (författare)
  • Global Brassicaceae phylogeny based on filtering of 1,000-gene dataset
  • 2023
  • Ingår i: Current Biology. - : Elsevier. - 0960-9822 .- 1879-0445. ; 33:19, s. 4052-4068
  • Tidskriftsartikel (refereegranskat)abstract
    • The mustard family (Brassicaceae) is a scientifically and economically important family, containing the model plant Arabidopsis thaliana and numerous crop species that feed billions worldwide. Despite its relevance, most phylogenetic trees of the family are incompletely sampled and often contain poorly supported branches. Here, we present the most complete Brassicaceae genus-level family phylogenies to date (Bras-sicaceae Tree of Life or BrassiToL) based on nuclear (1,081 genes, 319 of the 349 genera; 57 of the 58 tribes) and plastome (60 genes, 265 genera; all tribes) data. We found cytonuclear discordance between the two, which is likely a result of rampant hybridization among closely and more distantly related lineages. To eval-uate the impact of such hybridization on the nuclear phylogeny reconstruction, we performed five different gene sampling routines, which increasingly removed putatively paralog genes. Our cleaned subset of 297 genes revealed high support for the tribes, whereas support for the main lineages (supertribes) was moder-ate. Calibration based on the 20 most clock-like nuclear genes suggests a late Eocene to late Oligocene origin of the family. Finally, our results strongly support a recently published new family classification, dividing the family into two subfamilies (one with five supertribes), together representing 58 tribes. This includes five recently described or re-established tribes, including Arabidopsideae, a monogeneric tribe accommodating Arabidopsis without any close relatives. With a worldwide community of thousands of researchers working on Brassicaceae and its diverse members, our new genus-level family phylogeny will be an indispensable tool for studies on biodiversity and plant biology.
  •  
4.
  • Wang, Xiao-Juan, et al. (författare)
  • Demographic expansion and genetic load of the halophyte model plant Eutrema salsugineum
  • 2018
  • Ingår i: Molecular Ecology. - : WILEY. - 0962-1083 .- 1365-294X. ; 27:14, s. 2943-2955
  • Tidskriftsartikel (refereegranskat)abstract
    • The halophyte model plant Eutrema salsugineum (Brassicaceae) disjunctly occurs in temperate to subarctic Asia and North America. This vast, yet extremely discontinuous distribution constitutes an ideal system to examine long-distance dispersal and the ensuing accumulation of deleterious mutations as expected in expanding populations of selfing plants. In this study, we resequenced individuals from 23 populations across the range of E.salsugineum. Our population genomic data indicate that E.salsugineum migrated "out of the Altai region" at least three times to colonize northern China, northeast Russia and western China. It then expanded its distribution into North America independently from northeast Russia and northern China, respectively. The species colonized northern China around 33.7 thousand years ago (kya) and underwent a considerable expansion in range size approximately 7-8 kya. The western China lineage is likely a hybrid derivative of the northern China and Altai lineages, originating approximately 25-30 kya. Deleterious alleles accumulated in a stepwise manner from (a) Altai to northern China and North America and (b) Altai to northeast Russia and North America. In summary, E.salsugineum dispersed from Asia to North America and deleterious mutations accumulated in a stepwise manner during the expansion of the species' distribution.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy