SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Glass Christopher K.) "

Search: WFRF:(Glass Christopher K.)

  • Result 1-17 of 17
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Elsik, Christine G., et al. (author)
  • The Genome Sequence of Taurine Cattle : A Window to Ruminant Biology and Evolution
  • 2009
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 324:5926, s. 522-528
  • Journal article (peer-reviewed)abstract
    • To understand the biology and evolution of ruminants, the cattle genome was sequenced to about sevenfold coverage. The cattle genome contains a minimum of 22,000 genes, with a core set of 14,345 orthologs shared among seven mammalian species of which 1217 are absent or undetected in noneutherian (marsupial or monotreme) genomes. Cattle-specific evolutionary breakpoint regions in chromosomes have a higher density of segmental duplications, enrichment of repetitive elements, and species-specific variations in genes associated with lactation and immune responsiveness. Genes involved in metabolism are generally highly conserved, although five metabolic genes are deleted or extensively diverged from their human orthologs. The cattle genome sequence thus provides a resource for understanding mammalian evolution and accelerating livestock genetic improvement for milk and meat production.
  •  
2.
  • Birney, Ewan, et al. (author)
  • Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project
  • 2007
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 447:7146, s. 799-816
  • Journal article (peer-reviewed)abstract
    • We report the generation and analysis of functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project. These data have been further integrated and augmented by a number of evolutionary and computational analyses. Together, our results advance the collective knowledge about human genome function in several major areas. First, our studies provide convincing evidence that the genome is pervasively transcribed, such that the majority of its bases can be found in primary transcripts, including non-protein-coding transcripts, and those that extensively overlap one another. Second, systematic examination of transcriptional regulation has yielded new understanding about transcription start sites, including their relationship to specific regulatory sequences and features of chromatin accessibility and histone modification. Third, a more sophisticated view of chromatin structure has emerged, including its inter-relationship with DNA replication and transcriptional regulation. Finally, integration of these new sources of information, in particular with respect to mammalian evolution based on inter- and intra-species sequence comparisons, has yielded new mechanistic and evolutionary insights concerning the functional landscape of the human genome. Together, these studies are defining a path for pursuit of a more comprehensive characterization of human genome function.
  •  
3.
  • C. Lin, Yin, et al. (author)
  • A global network of transcription factors, involving E2A, EBF1 and Foxo1, that orchestrates B cell fate
  • 2010
  • In: Nature Immunology. - : Nature Publishing Group. - 1529-2908 .- 1529-2916. ; 11:7, s. 635-U109
  • Journal article (peer-reviewed)abstract
    • It is now established that the transcription factors E2A, EBF1 and Foxo1 have critical roles in B cell development. Here we show that E2A and EBF1 bound regulatory elements present in the Foxo1 locus. E2A and EBF1, as well as E2A and Foxo1, in turn, were wired together by a vast spectrum of cis-regulatory sequences. These associations were dynamic during developmental progression. Occupancy by the E2A isoform E47 directly resulted in greater abundance, as well as a pattern of monomethylation of histone H3 at lysine 4 (H3K4) across putative enhancer regions. Finally, we divided the pro-B cell epigenome into clusters of loci with occupancy by E2A, EBF and Foxo1. From this analysis we constructed a global network consisting of transcriptional regulators, signaling and survival factors that we propose orchestrates B cell fate.
  •  
4.
  • Fonseca, Gregory J, et al. (author)
  • Diverse motif ensembles specify non-redundant DNA binding activities of AP-1 family members in macrophages.
  • 2019
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1
  • Journal article (peer-reviewed)abstract
    • Mechanisms by which members of the AP-1 family of transcription factors play non-redundant biological roles despite recognizing the same DNA sequence remain poorly understood. To address this question, here we investigate the molecular functions and genome-wide DNA binding patterns of AP-1 family members in primary and immortalized mouse macrophages. ChIP-sequencing shows overlapping and distinct binding profiles for each factor that were remodeled following TLR4 ligation. Development of a machine learning approach that jointly weighs hundreds of DNA recognition elements yields dozens of motifs predicted to drive factor-specific binding profiles. Machine learning-based predictions are confirmed by analysis of the effects of mutations in genetically diverse mice and by loss of function experiments. These findings provide evidence that non-redundant genomic locations of different AP-1 family members in macrophages largely result from collaborative interactions with diverse, locus-specific ensembles of transcription factors and suggest a general mechanism for encoding functional specificities of their common recognition motif.
  •  
5.
  • Mansson, Robert, et al. (author)
  • Positive intergenic feedback circuitry, involving EBF1 and FOXO1, orchestrates B-cell fate
  • 2012
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 109:51, s. 21028-21033
  • Journal article (peer-reviewed)abstract
    • Recent studies have identified a number of transcriptional regulators, including E2A, early B-cell factor 1 (EBF1), FOXO1, and paired box gene 5 (PAX5), that promote early B-cell development. However, how this ensemble of regulators mechanistically promotes B-cell fate remains poorly understood. Here we demonstrate that B-cell development in FOXO1-deficient mice is arrested in the common lymphoid progenitor (CLP) LY6D(+) cell stage. We demonstrate that this phenotype closely resembles the arrest in B-cell development observed in EBF1-deficient mice. Consistent with these observations, we find that the transcription signatures of FOXO1- and EBF1-deficient LY6D(+) progenitors are strikingly similar, indicating a common set of target genes. Furthermore, we found that depletion of EBF1 expression in LY6D(+) CLPs severely affects FOXO1 mRNA abundance, whereas depletion of FOXO1 activity in LY6D(+) CLPs ablates EBF1 transcript levels. We generated a global regulatory network from EBF1 and FOXO1 genome-wide transcription factor occupancy and transcription signatures derived from EBF1- and FOXO1-deficient CLPs. This analysis reveals that EBF1 and FOXO1 act in a positive feedback circuitry to promote and stabilize specification to the B-cell lineage.
  •  
6.
  • Mercer, Elinore M, et al. (author)
  • Multilineage Priming of Enhancer Repertoires Precedes Commitment to the B and Myeloid Cell Lineages in Hematopoietic Progenitors
  • 2011
  • In: Immunity. - : Elsevier (Cell Press). - 1074-7613 .- 1097-4180. ; 35:3, s. 413-425
  • Journal article (peer-reviewed)abstract
    • Recent studies have documented genome-wide binding patterns of transcriptional regulators and their associated epigenetic marks in hematopoietic cell lineages. In order to determine how epigenetic marks are established and maintained during developmental progression, we have generated long-term cultures of hematopoietic progenitors by enforcing the expression of the E-protein antagonist Id2. Hematopoietic progenitors that express Id2 are multipotent and readily differentiate upon withdrawal of Id2 expression into committed B lineage cells, thus indicating a causative role for E2A (Tcf3) in promoting the B cell fate. Genome-wide analyses revealed that a substantial fraction of lymphoid and myeloid enhancers are premarked by the poised or active enhancer mark H3K4me1 in multipotent progenitors. Thus, in hematopoietic progenitors, multilineage priming of enhancer elements precedes commitment to the lymphoid or myeloid cell lineages.
  •  
7.
  • Nicolas, Aude, et al. (author)
  • Genome-wide Analyses Identify KIF5A as a Novel ALS Gene
  • 2018
  • In: Neuron. - : Cell Press. - 0896-6273 .- 1097-4199. ; 97:6, s. 1268-1283.e6
  • Journal article (peer-reviewed)abstract
    • To identify novel genes associated with ALS, we undertook two lines of investigation. We carried out a genome-wide association study comparing 20,806 ALS cases and 59,804 controls. Independently, we performed a rare variant burden analysis comparing 1,138 index familial ALS cases and 19,494 controls. Through both approaches, we identified kinesin family member 5A (KIF5A) as a novel gene associated with ALS. Interestingly, mutations predominantly in the N-terminal motor domain of KIF5A are causative for two neurodegenerative diseases: hereditary spastic paraplegia (SPG10) and Charcot-Marie-Tooth type 2 (CMT2). In contrast, ALS-associated mutations are primarily located at the C-terminal cargo-binding tail domain and patients harboring loss-of-function mutations displayed an extended survival relative to typical ALS cases. Taken together, these results broaden the phenotype spectrum resulting from mutations in KIF5A and strengthen the role of cytoskeletal defects in the pathogenesis of ALS.
  •  
8.
  • Wang, Li-San, et al. (author)
  • Rarity of the Alzheimer Disease-Protective APP A673T Variant in the United States.
  • 2015
  • In: JAMA neurology. - : American Medical Association (AMA). - 2168-6157 .- 2168-6149. ; 72:2
  • Journal article (peer-reviewed)abstract
    • Recently, a rare variant in the amyloid precursor protein gene (APP) was described in a population from Iceland. This variant, in which alanine is replaced by threonine at position 673 (A673T), appears to protect against late-onset Alzheimer disease (AD). We evaluated the frequency of this variant in AD cases and cognitively normal controls to determine whether this variant will significantly contribute to risk assessment in individuals in the United States.
  •  
9.
  • Dewan, Ramita, et al. (author)
  • Pathogenic Huntingtin Repeat Expansions in Patients with Frontotemporal Dementia and Amyotrophic Lateral Sclerosis.
  • 2021
  • In: Neuron. - : Elsevier BV. - 1097-4199 .- 0896-6273. ; 109:3
  • Journal article (peer-reviewed)abstract
    • We examined the role of repeat expansions in the pathogenesis of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) by analyzing whole-genome sequence data from 2,442 FTD/ALS patients, 2,599 Lewy body dementia (LBD) patients, and 3,158 neurologically healthy subjects. Pathogenic expansions (range, 40-64 CAG repeats) in the huntingtin (HTT) gene were found in three (0.12%) patients diagnosed with pure FTD/ALS syndromes but were not present in the LBD or healthy cohorts. We replicated our findings in an independent collection of 3,674 FTD/ALS patients. Postmortem evaluations of two patients revealed the classical TDP-43 pathology of FTD/ALS, as well as huntingtin-positive, ubiquitin-positive aggregates in the frontal cortex. The neostriatal atrophy that pathologically defines Huntington's disease was absent in both cases. Our findings reveal an etiological relationship between HTT repeat expansions and FTD/ALS syndromes and indicate that genetic screening of FTD/ALS patients for HTT repeat expansions should be considered.
  •  
10.
  • Grundberg, Elin, et al. (author)
  • Mapping cis- and trans-regulatory effects across multiple tissues in twins.
  • 2012
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 44:10
  • Journal article (peer-reviewed)abstract
    • Sequence-based variation in gene expression is a key driver of disease risk. Common variants regulating expression in cis have been mapped in many expression quantitative trait locus (eQTL) studies, typically in single tissues from unrelated individuals. Here, we present a comprehensive analysis of gene expression across multiple tissues conducted in a large set of mono- and dizygotic twins that allows systematic dissection of genetic (cis and trans) and non-genetic effects on gene expression. Using identity-by-descent estimates, we show that at least 40% of the total heritable cis effect on expression cannot be accounted for by common cis variants, a finding that reveals the contribution of low-frequency and rare regulatory variants with respect to both transcriptional regulation and complex trait susceptibility. We show that a substantial proportion of gene expression heritability is trans to the structural gene, and we identify several replicating trans variants that act predominantly in a tissue-restricted manner and may regulate the transcription of many genes.
  •  
11.
  •  
12.
  • Link, Verena M, et al. (author)
  • Analysis of Genetically Diverse Macrophages Reveals Local and Domain-wide Mechanisms that Control Transcription Factor Binding and Function.
  • 2018
  • In: Cell. - Cambridge, United States : Cell Press. - 0092-8674 .- 1097-4172. ; 173:7, s. 1796-1809.e17
  • Journal article (peer-reviewed)abstract
    • Non-coding genetic variation is a major driver of phenotypic diversity and allows the investigation of mechanisms that control gene expression. Here, we systematically investigated the effects of >50 million variations from five strains of mice on mRNA, nascent transcription, transcription start sites, and transcription factor binding in resting and activated macrophages. We observed substantial differences associated with distinct molecular pathways. Evaluating genetic variation provided evidence for roles of ∼100 TFs in shaping lineage-determining factor binding. Unexpectedly, a substantial fraction of strain-specific factor binding could not be explained by local mutations. Integration of genomic features with chromatin interaction data provided evidence for hundreds of connected cis-regulatory domains associated with differences in transcription factor binding and gene expression. This system and the >250 datasets establish a substantial new resource for investigation of how genetic variation affects cellular phenotypes.
  •  
13.
  • Nica, Alexandra C, et al. (author)
  • The architecture of gene regulatory variation across multiple human tissues : the MuTHER study.
  • 2011
  • In: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 7:2
  • Journal article (peer-reviewed)abstract
    • While there have been studies exploring regulatory variation in one or more tissues, the complexity of tissue-specificity in multiple primary tissues is not yet well understood. We explore in depth the role of cis-regulatory variation in three human tissues: lymphoblastoid cell lines (LCL), skin, and fat. The samples (156 LCL, 160 skin, 166 fat) were derived simultaneously from a subset of well-phenotyped healthy female twins of the MuTHER resource. We discover an abundance of cis-eQTLs in each tissue similar to previous estimates (858 or 4.7% of genes). In addition, we apply factor analysis (FA) to remove effects of latent variables, thus more than doubling the number of our discoveries (1,822 eQTL genes). The unique study design (Matched Co-Twin Analysis--MCTA) permits immediate replication of eQTLs using co-twins (93%-98%) and validation of the considerable gain in eQTL discovery after FA correction. We highlight the challenges of comparing eQTLs between tissues. After verifying previous significance threshold-based estimates of tissue-specificity, we show their limitations given their dependency on statistical power. We propose that continuous estimates of the proportion of tissue-shared signals and direct comparison of the magnitude of effect on the fold change in expression are essential properties that jointly provide a biologically realistic view of tissue-specificity. Under this framework we demonstrate that 30% of eQTLs are shared among the three tissues studied, while another 29% appear exclusively tissue-specific. However, even among the shared eQTLs, a substantial proportion (10%-20%) have significant differences in the magnitude of fold change between genotypic classes across tissues. Our results underline the need to account for the complexity of eQTL tissue-specificity in an effort to assess consequences of such variants for complex traits.
  •  
14.
  • Oishi, Yumiko, et al. (author)
  • SREBP1 Contributes to Resolution of Pro-inflammatory TLR4 Signaling by Reprogramming Fatty Acid Metabolism
  • 2017
  • In: Cell Metabolism. - Cambridge, MA, United States : Cell Press. - 1550-4131 .- 1932-7420. ; 25:2, s. 412-427
  • Journal article (peer-reviewed)abstract
    • Macrophages play pivotal roles in both the induction and resolution phases of inflammatory processes. Macrophages have been shown to synthesize anti-inflammatory fatty acids in an LXR-dependent manner, but whether the production of these species contributes to the resolution phase of inflammatory responses has not been established. Here, we identify a biphasic program of gene expression that drives production of anti-inflammatory fatty acids 12-24 hr following TLR4 activation and contributes to downregulation of mRNAs encoding pro-inflammatory mediators. Unexpectedly, rather than requiring LXRs, this late program of anti-inflammatory fatty acid biosynthesis is dependent on SREBP1 and results in the uncoupling of NFκB binding from gene activation. In contrast to previously identified roles of SREBP1 in promoting production of IL1β during the induction phase of inflammation, these studies provide evidence that SREBP1 also contributes to the resolution phase of TLR4-induced gene activation by reprogramming macrophage lipid metabolism.
  •  
15.
  • Roos, Leonie, et al. (author)
  • Higher Nevus Count Exhibits a Distinct DNA Methylation Signature in Healthy Human Skin : Implications for Melanoma
  • 2017
  • In: Journal of Investigative Dermatology. - : ELSEVIER SCIENCE INC. - 0022-202X .- 1523-1747. ; 137:4, s. 910-920
  • Journal article (peer-reviewed)abstract
    • High nevus count is the strongest risk factor for melanoma, and although gene variants have been discovered for both traits, epigenetic variation is unexplored. We investigated 322 healthy human skin DNA methylomes associated with total body nevi count, incorporating genetic and transcriptomic variation. DNA methylation changes were identified at genes involved in melanocyte biology, such as RAF1 (P = 1.2x10(-6)) and CTC1 (region: P = 6.3 x 10(-4)), and other genes including ARRDC1 (P = 3.1 x 10(-7)). A subset exhibited coordinated methylation and transcription changes within the same biopsy. The total analysis was also enriched for melanoma-associated DNA methylation variation (P = 6.33 x 10(-6)). In addition, we show that skin DNA methylation is associated in cis with known genome-wide association study single nucleotide polymorphisms for nevus count, at PLA2G6 (P = 1.7 x 10(-49)) and NID1 (P = 6.4 x 10(-14)), as well as melanoma risk, including in or near MC1R, MX2, and TERT/CLPTM1L (P < 1 x 10(-10)). Our analysis using a uniquely large dataset comprising healthy skin DNA methylomes identified known and additional regulatory loci and pathways in nevi and melanoma biology. This integrative study improves our understanding of predisposition to nevi and their potential contribution to melanoma pathogenesis.
  •  
16.
  • Stender, Joshua D, et al. (author)
  • Structural and Molecular Mechanisms of Cytokine-Mediated Endocrine Resistance in Human Breast Cancer Cells
  • 2017
  • In: Molecular Cell. - Cambridge, United States : Cell Press. - 1097-2765 .- 1097-4164. ; 65:6, s. 1122-1135.e5
  • Journal article (peer-reviewed)abstract
    • Human breast cancers that exhibit high proportions of immune cells and elevated levels of pro-inflammatory cytokines predict poor prognosis. Here, we demonstrate that treatment of human MCF-7 breast cancer cells with pro-inflammatory cytokines results in ERα-dependent activation of gene expression and proliferation, in the absence of ligand or presence of 4OH-tamoxifen (TOT). Cytokine activation of ERα and endocrine resistance is dependent on phosphorylation of ERα at S305 in the hinge domain. Phosphorylation of S305 by IKKβ establishes an ERα cistrome that substantially overlaps with the estradiol (E2)-dependent ERα cistrome. Structural analyses suggest that S305-P forms a charge-linked bridge with the C-terminal F domain of ERα that enables inter-domain communication and constitutive activity from the N-terminal coactivator-binding site, revealing the structural basis of endocrine resistance. ERα therefore functions as a transcriptional effector of cytokine-induced IKKβ signaling, suggesting a mechanism through which the tumor microenvironment controls tumor progression and endocrine resistance.
  •  
17.
  • Söderström, Mats, et al. (author)
  • Novel prostaglandin D2-derived activators of peroxisome proliferator-activated receptor-γ are formed in macrophage cell cultures
  • 2003
  • In: Biochimica et Biophysica Acta. - : Elsevier. - 0006-3002 .- 1878-2434. ; 1631:1, s. 35-41
  • Journal article (peer-reviewed)abstract
    • Incubation of RAW 264.7 murine macrophages with 9,15-dihydroxy-11-oxo-, (5Z,9alpha,13E,15(S))-Prosta-5,13-dien-1-oic acid [prostaglandin D(2) (PGD(2))] induced formation of considerable peroxisome proliferator-activated receptor-gamma (PPARgamma) activity [Nature 391 (1998) 79]. Because PGD(2) itself is a poor PPARgamma ligand, we incubated RAW 264.7 macrophage cultures with prostaglandin D(2) for 24 h and studied the ability of the metabolites formed to activate PPARgamma. PGD(2) products were extracted and fractionated by reverse phase high-performance liquid chromatography. Chemical identification was achieved by UV spectroscopy, gas-liquid chromatography/mass spectrometry and chemical syntheses of reference compounds. PGD(2) was converted to eight products, six of which were identified. Ligand-induced interaction of PPARgamma with steroid receptor coactivator-1 was determined by glutathione-S-transferase pull-down assays and PPARgamma activation was investigated by transient transfection of RAW 264.7 macrophages. In addition to the previously known ligand 11-oxo-(5Z,9,12E,14Z)-Prosta-5,9,12,14-tetraen-1-oic acid (15-deoxy-delta(12,14)-PGJ(2)), a novel PPARgamma ligand and activator viz. 9-hydroxy-11-oxo-, (5Z,9alpha,12E,14Z)-Prosta-5,12,14-trien-1-oic acid (15-deoxy-delta(12,14)-PGD(2)) was identified. The biological significance of these results is currently under investigation.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-17 of 17
Type of publication
journal article (17)
Type of content
peer-reviewed (17)
Author/Editor
Glass, Christopher K ... (10)
Dermitzakis, Emmanou ... (3)
Glass, Jonathan D. (3)
Sigvardsson, Mikael (3)
Deloukas, Panos (3)
Glass, Daniel (3)
show more...
Antonarakis, Stylian ... (2)
Guigo, Roderic (2)
Soranzo, Nicole (2)
Silani, Vincenzo (2)
Landers, John E. (2)
Söderström, Mats (2)
Montgomery, Stephen ... (2)
McCarthy, Mark I (2)
Keagle, Pamela (2)
Chio, Adriano (2)
Spector, Tim D. (2)
Wheeler, David A (2)
Jhunjhunwala, Suchit (2)
Durbin, Richard (2)
Grundberg, Elin (2)
Trojanowski, John Q (2)
Singleton, Andrew B. (2)
Rogaeva, Ekaterina (2)
Myers, Richard M. (2)
Harms, Matthew B. (2)
Muzny, Donna M (2)
Gibbs, Richard A (2)
Hassanali, Neelam (2)
Bell, Jordana T (2)
Yang, Tsun-Po (2)
Ferrucci, Luigi (2)
Parts, Leopold (2)
Hammarström, Sven (2)
Zody, Michael C (2)
Min, Josine L. (2)
Lindgren, Cecilia M. (2)
Mansson, Robert (2)
Reymond, Alexandre (2)
Alioto, Tyler (2)
Ucla, Catherine (2)
Wyss, Carine (2)
Chrast, Jacqueline (2)
Henrichsen, Charlott ... (2)
Ren, Bing (2)
Eyras, Eduardo (2)
Sodergren, Erica (2)
Worley, Kim C. (2)
Jiang, Huaiyang (2)
Weinstock, George M. (2)
show less...
University
Linköping University (9)
Uppsala University (5)
Lund University (3)
University of Gothenburg (2)
Karolinska Institutet (2)
Umeå University (1)
show more...
Royal Institute of Technology (1)
show less...
Language
English (17)
Research subject (UKÄ/SCB)
Medical and Health Sciences (7)
Natural sciences (6)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view