SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Graafsma Heinz) "

Search: WFRF:(Graafsma Heinz)

  • Result 1-25 of 82
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Allahgholi, A., et al. (author)
  • AGIPD 1.0 : The high-speed high dynamic range readout ASIC for the adaptive gain integrating pixel detector at the European XFEL
  • 2014
  • In: 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2014. - : Institute of Electrical and Electronics Engineers (IEEE). - 9781479960972
  • Conference paper (peer-reviewed)abstract
    • AGIPD is a hybrid pixel X-ray detector developed by a collaboration between Deutsches Elektronen-Synchrotron (DESY), Paul-Scherrer-Institute (PSI), University of Hamburg and the University of Bonn. The detector is designed to comply with the requirements of the European XFEL. The radiation tolerant Application Specific Integrated Circuit (ASIC) is designed with the following highlights: high dynamic range, spanning from single photon sensitivity up to 104 × 12.4 keV photons, achieved by the use of dynamic gain switching, auto-selecting one of 3 gains of the charge sensitive pre-amplifier. To cope with the unique features of the European XFEL source, image data is stored in 352 analogue memory cells per pixel. The selected gain is stored in the same way and depth, encoded as one of 3 voltage levels. These memories are operated in random-access mode at 4.5MHz frame rate. Data is read out on a row-by-row basis via multiplexers to the DAQ system for digitisation during the 99.4ms gap between the bunch trains of the European XFEL. The AGIPD 1.0 ASIC features 64×64 pixels with a pixel area of 200×200 μm2. It is bump-bonded to a 500 μm thick silicon sensor. The principles of the chip architecture were proven in different experiments and the ASIC characterization was performed with a series of development prototypes. The mechanical concept of the detector system was developed in close contact with the XFEL beamline scientists to ensure a seamless integration into the beamline setup and is currently being manufactured. The first single module system was successfully tested at APS1 the high dynamic range allows imaging of the direct synchrotron beam along with single photon sensitivity and burst imaging of 352 subsequent frames synchronized to the source.
  •  
2.
  • Allahgholi, A., et al. (author)
  • AGIPD, a high dynamic range fast detector for the European XFEL
  • 2015
  • In: Journal of Instrumentation. - 1748-0221. ; 10:1
  • Journal article (peer-reviewed)abstract
    • AGIPD-(Adaptive Gain Integrating Pixel Detector) is a hybrid pixel X-ray detector developed by a collaboration between Deutsches Elektronen-Synchrotron (DESY), Paul-Scherrer-Institut (PSI), University of Hamburg and the University of Bonn. The detector is designed to comply with the requirements of the European XFEL. The radiation tolerant Application Specific Integrated Circuit (ASIC) is designed with the following highlights: high dynamic range, spanning from single photon sensitivity up to 10(4) 12.5keV photons, achieved by the use of the dynamic gain switching technique using 3 possible gains of the charge sensitive preamplifier. In order to store the image data, the ASIC incorporates 352 analog memory cells per pixel, allowing also to store 3 voltage levels corresponding to the selected gain. It is operated in random-access mode at 4.5MHz frame rate. The data acquisition is done during the 99.4ms between the bunch trains. The AGIPD has a pixel area of 200 x 200 m m(2) and a 500 m m thick silicon sensor is used. The architecture principles were proven in different experiments and the ASIC characterization was done with a series of development prototypes. The mechanical concept was developed in the close contact with the XFEL beamline scientists and is now being manufactured. A first single module system was successfully tested at APS.
  •  
3.
  • Allahgholi, A., et al. (author)
  • AGIPD, the electronics for a high speed X-ray imager at the Eu-XFEL
  • 2014
  • In: Proceedings of Science. - : Proceedings of Science (PoS).
  • Conference paper (peer-reviewed)abstract
    • The AGIPD (Adaptive Gain Integrated Pixel Detector) X-ray imaging camera will be operated at the X-ray Free Electron Laser, Eu-XFEL, under construction in Hamburg, Germany. Key parameters are 1 million 200 μm square pixels, single 12.4 keV photon detection and a dynamic range to 10 000/pixel/image. The developed sensors, ASICs, PCB-electronics and FPGA firmware acquire individual images per bunch at 27 000 bunches/s, packed into 10 bunch-trains/s with a bunch separation of 222 ns. Bunch-trains are handled by 352 analogue storage cells within each pixel of the ASIC and written during the 0.6msec train delivery. Therefore AGIPD can store 3520 images/s from the delivered 27 000 bunches/s. Random addressing provides reusability of each cell after an image has been declared as low-quality, so that good images can be selected. Digitization is performed between trains (99.4 msec). In the paper all functional blocks are introduced. The details concentrate on the DAQ-chain PCB-electronics and the slow control. A dense area of 1024 ADC-channels, each with a pickup-noise filtering and sampling of up to 50 MS/s/ADC and a serial output of 700 Mbit/s/ADC. FPGAs operate the ASICs synchronized to the bunch structure and collect the bit streams from 64 ADCs/FPGA. Pre-sorted data is transmitted on 10 GbE links out of the camera head using the time between trains. The control and monitoring of the camera with 600 A current consumption is based on a micro-controller and I2C bus with an addressing architecture allowing many devices and identical modules. The high currents require planned return paths at the system level. First experimental experience with the constructed components will be presented.
  •  
4.
  • Allahgholi, A., et al. (author)
  • Front end ASIC for AGIPD, a high dynamic range fast detector for the European XFEL
  • 2016
  • In: Journal of Instrumentation. - 1748-0221. ; 11:1
  • Journal article (peer-reviewed)abstract
    • The Adaptive Gain Integrating Pixel Detector (AGIPD) is a hybrid pixel X-ray detector for the European-XFEL. One of the detector's important parts is the radiation tolerant front end ASIC fulfilling the European-XFEL requirements: high dynamic range-from sensitivity to single 12.5keV-photons up to 104 photons. It is implemented using the dynamic gain switching technique with three possible gains of the charge sensitive preamplifier. Each pixel can store up to 352 images in memory operated in random-access mode at >= 4.5MHz frame rate. An external vetoing may be applied to overwrite unwanted frames.
  •  
5.
  • Allahgholi, Aschkan, et al. (author)
  • Megapixels @ Megahertz – The AGIPD high-speed cameras for the European XFEL
  • 2019
  • In: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 942
  • Research review (peer-reviewed)abstract
    • The European XFEL is an extremely brilliant Free Electron Laser Source with a very demanding pulse structure: trains of 2700 X-ray pulses are repeated at 10Hz. The pulses inside the train are spaced by 220ns and each one contains up to 1012photons of 12.4keV, while being ≤100fs in length. AGIPD, the Adaptive Gain Integrating Pixel Detector, is a hybrid pixel detector developed by DESY, PSI, and the Universities of Bonn and Hamburg to cope with these properties. It is a fast, low noise integrating detector, with single photon sensitivity (for Eγ⪆6keV) and a large dynamic range, up to 104 photons at 12.4keV. This is achieved with a charge sensitive amplifier with 3 adaptively selected gains per pixel. 352 images can be recorded at up to 6.5MHz and stored in the in-pixel analogue memory and read out between pulse trains. The core component of this detector is the AGIPD ASIC, which consists of 64 × 64 pixels of 200µm×200µm. Control of the ASIC's image acquisition and analogue readout is via a command based interface. FPGA based electronic boards, controlling ASIC operation, image digitisation and 10GE data transmission interface AGIPD detectors to DAQ and control systems. An AGIPD 1Mpixel detector has been installed at the SPB1 experimental station in August 2017, while a second one is currently commissioned for the MID 2 endstation. A larger (4Mpixel) AGIPD detector and one to employ Hi-Z sensor material to efficiently register photons up to Eγ≈25keV are currently under construction. 
  •  
6.
  • Allahgholi, A., et al. (author)
  • The adaptive gain integrating pixel detector
  • 2016
  • In: Journal of Instrumentation. - 1748-0221. ; 11:2
  • Journal article (peer-reviewed)abstract
    • The adaptive gain integrating pixel detector (AGIPD) is a development of a collaboration between Deustsches Elektronen-Synchrotron (DESY), the Paul-Scherrer-Institute (PSI), the University of Hamburg and the University of Bonn. The detector is designed to cope with the demanding challenges of the European XFEL. Therefore it comes along with an adaptive gain stage allowing a high dynamic range, spanning from single photon sensitivity to 10(4) x 12.4 keV photons and 352 analogue memory cells per pixel. The aim of this report is to briefly explain the concepts of the AGIPD electronics and mechanics and then present recent experiments demonstrating the functionality of its key features.
  •  
7.
  • Allahgholi, Aschkan, et al. (author)
  • The Adaptive Gain Integrating Pixel Detector at the European XFEL
  • 2019
  • In: Journal of Synchrotron Radiation. - 0909-0495 .- 1600-5775. ; 26, s. 74-82
  • Journal article (peer-reviewed)abstract
    • The Adaptive Gain Integrating Pixel Detector (AGIPD) is an X-ray imager, custom designed for the European X-ray Free-Electron Laser (XFEL). It is a fast, low-noise integrating detector, with an adaptive gain amplifier per pixel. This has an equivalent noise of less than 1keV when detecting single photons and, when switched into another gain state, a dynamic range of more than 10(4)photons of 12keV. In burst mode the system is able to store 352 images while running at up to 6.5MHz, which is compatible with the 4.5MHz frame rate at the European XFEL. The AGIPD system was installed and commissioned in August 2017, and successfully used for the first experiments at the Single Particles, Clusters and Biomolecules (SPB) experimental station at the European XFEL since September 2017. This paper describes the principal components and performance parameters of the system.
  •  
8.
  • Allahgholi, A., et al. (author)
  • The AGIPD 1.0 ASIC : Random access high frame rate, high dynamic range X-ray camera readout for the European XFEL
  • 2015
  • In: 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2015. - : Institute of Electrical and Electronics Engineers (IEEE). - 9781467398626
  • Conference paper (peer-reviewed)abstract
    • The European XFEL is an extremely brilliant Free Electron Laser Source with a very demanding pulse structure: trains of 2700 X-Ray pulses are repeated at 10 Hz. The pulses inside the train are spaced by 220 ns and each one contains up to 1012 photons of 12.4 keV, while being ≤ 100 fs in length. AGIPD (Adaptive Gain Integrating Pixel Detector) is a hybrid 1M-pixel detector developed by DESY, PSI, and the Universities of Bonn and Hamburg to cope with these properties. Thus the readout ASIC has to provide not only single photon sensitivity and a dynamic range ≳ 104 photons/pixel in the same image but also a memory for as many images of a pulse train as possible for delayed readout prior to the next train. The AGIPD 1.0 ASIC uses a 130 nm CMOS technology and radiation tolerant techniques to withstand the radiation damage incurred by the high impinging photon flux. Each ASIC contains 64 × 64 pixels of 200μmχ200μm. The circuit of each pixel contains a charge sensitive preamplifier with threefold switchable gain, a discriminator for an adaptive gain selection, and a correlated double sampling (CDS) stage to remove reset and low-frequency noise components. The output of the CDS, as well as the dynamically selected gain is sampled in a capacitor-based analogue memory for 352 samples, which occupies about 80% of a pixels area. For readout each pixel features a charge sensitive buffer. A control circuit with a command based interface provides random access to the memory and controls the row-wise readout of the data via multiplexers to four differential analogue ports. The AGIPD 1.0 full scale ASIC has been received back from the foundry in fall of 2013. Since then it has been extensively characterised also with a sensor as a single chip and in 2 × 8-chip modules for the AGIPD 1 Mpix detector. We present the design of the AGIPD 1.0 ASIC along with supporting results, also from beam tests at PETRA III and APS, and show changes incorporated in the recently taped out AGIPD 1.1 ASIC upgrade.
  •  
9.
  • Aquila, Andrew, et al. (author)
  • Time-resolved protein nanocrystallography using an X-ray free-electron laser
  • 2012
  • In: Optics Express. - 1094-4087. ; 20:3, s. 2706-2716
  • Journal article (peer-reviewed)abstract
    • We demonstrate the use of an X-ray free electron laser synchronized with an optical pump laser to obtain X-ray diffraction snapshots from the photoactivated states of large membrane protein complexes in the form of nanocrystals flowing in a liquid jet. Light-induced changes of Photosystem I-Ferredoxin co-crystals were observed at time delays of 5 to 10 µs after excitation. The result correlates with the microsecond kinetics of electron transfer from Photosystem I to ferredoxin. The undocking process that follows the electron transfer leads to large rearrangements in the crystals that will terminally lead to the disintegration of the crystals. We describe the experimental setup and obtain the first time-resolved femtosecond serial X-ray crystallography results from an irreversible photo-chemical reaction at the Linac Coherent Light Source. This technique opens the door to time-resolved structural studies of reaction dynamics in biological systems.
  •  
10.
  • Assoufid, Lahsen, et al. (author)
  • Next-generation materials for future synchrotron and free-electron laser sources
  • 2017
  • In: MRS bulletin. - : Cambridge University Press. - 0883-7694 .- 1938-1425. ; 42:6, s. 418-423
  • Journal article (peer-reviewed)abstract
    • The development of new materials and improvements of existing ones are at the root of the spectacular recent developments of new technologies for synchrotron storage rings and free-electron laser sources. This holds true for all relevant application areas, from electron guns to undulators, x-ray optics, and detectors. As demand grows for more powerful and efficient light sources, efficient optics, and high-speed detectors, an overview of ongoing materials research for these applications is timely. In this article, we focus on the most exciting and demanding areas of materials research and development for synchrotron radiation optics and detectors. Materials issues of components for synchrotron and free-electron laser accelerators are briefly discussed. The articles in this issue expand on these topics.
  •  
11.
  • Battaglia, Marco, et al. (author)
  • R&D paths of pixel detectors for vertex tracking and radiation imaging
  • 2013
  • In: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 716, s. 29-45
  • Research review (peer-reviewed)abstract
    • This report reviews current trends in the R&D of semiconductor pixellated sensors for vertex tracking and radiation imaging. It identifies requirements of future HEP experiments at colliders, needed technological breakthroughs and highlights the relation to radiation detection and imaging applications in other fields of science.
  •  
12.
  • Becker, J., et al. (author)
  • Architecture and design of the AGIPD detector for the European XFEL
  • 2012
  • Conference paper (peer-reviewed)abstract
    • AGIPD is a hybrid pixel detector developed by DESY, PSI, the University of Bonn and the University of Hamburg. The detector is targeted for use at the European XFEL, a source with unique properties: a bunch train of 2700 pulses with > 1012 photons of 12 keV each, only 100 fs long and with a 220 ns spacing, is repeated at a 10Hz rate. This puts up very demanding requirements: dynamic range has to cover the detection of single photons and extend up to > 104 photons/pixel in the same image, and as many images, as possible have to be recorded in the pixel to be read out between pulse trains. The high photon flux impinging on the detector also calls for a very radiation hard design of sensor and ASIC. The detector will consist of 16 Sensor modules arranged around a central hole for the direct beam. Each made of a single sensor bump-bonded to 2 × 8 readout chips of 64 × 64 pixels in a grid of 200 μm pitch. Each pixel of these ASICs contains a charge sensitive preamplifier featuring adaptive gain switching, changing sensitivity in three ranges, and a buffer to provide correlated double sampling (in the highest sensitivity mode). Most of the pixel area, albeit, is used for an analogue memory to record 352 frames. It is operated in random-access mode: data containing bad frames can be overwritten and the memory can be used in the most efficient way. The readout between two bunch trains is arranged via 4 ports: Data from pixels of one row is read in parallel and serialised by 4 multiplexers at the end of the pixel columns and driven off-chip as differential signals. The operation of the ASIC is controlled via a three-line serial interface, using a command based protocol. It is also used to configure the chip's operational parameters and internal timings. © 2012 IEEE.
  •  
13.
  • Becker, J., et al. (author)
  • High speed cameras for X-rays : AGIPD and others
  • 2013
  • In: Journal of Instrumentation. - 1748-0221. ; 8:1, s. Art. no. C01042-
  • Journal article (peer-reviewed)abstract
    • Experiments at high pulse rate Free Electron Laser (FEL) facilities require new cameras capable of acquiring 2D images at high rates, handling large signal dynamic ranges and resolving images from individual pulses. The Adaptive Gain Integrated Pixel Detector (AGIPD) will operated with pulse rates and separations of 27000/s and 220 ns, respectively at European XFEL. Si-sensors, ASICs, PCBs, and FPGA logic are developed for a 1 Mega-pixel camera with 200 μm square pixels with per-pulse occupancies 104. Data from 3520 images/s will be transferred with 80 Gbits/s to a DAQ-system. The electronics have been adapted for use in other synchrotron light source detectors. 
  •  
14.
  • Becker, J., et al. (author)
  • Performance tests of an AGIPD 0.4 assembly at the beamline P10 of PETRA III
  • 2013
  • In: Journal of Instrumentation. - 1748-0221. ; 8:6, s. Art. no. P06007-
  • Journal article (peer-reviewed)abstract
    • The Adaptive Gain Integrating Pixel Detector (AGIPD) is a novel detector system, currently under development by a collaboration of DESY, the Paul Scherrer Institute in Switzerland, the University of Hamburg and the University of Bonn, and is primarily designed for use at the European XFEL. To verify key features of this detector, an AGIPD 0.4 test chip assembly was tested at the P10 beamline of the PETRA III synchrotron at DESY. The test chip successfully imaged both the direct synchrotron beam and single 7.05 keV photons at the same time, demonstrating the large dynamic range required for XFEL experiments. X-ray scattering measurements from a test sample agree with standard measurements and show the chip's capability of observing dynamics at the microsecond time scale.
  •  
15.
  • Becker, J., et al. (author)
  • The detector simulation toolkit HORUS
  • 2012
  • In: Journal of Instrumentation. - 1748-0221. ; 7:10, s. Art. no. C10009-
  • Journal article (peer-reviewed)abstract
    • In recent years, X-ray detectors used and developed at synchrotron sources and Free Electron Lasers (FELs) have become increasing powerful and versatile. However, as the capabilities of modern X-ray cameras grew so did their complexity and therefore their response functions are far from trivial. Since understanding the detecting system and its behavior is vital for any physical experiment, the need for dedicated powerful simulation tools arose. The HPAD Output Response fUnction Simulator (HORUS) was originally developed to analyze the performance implications of certain design choices for the Adaptive Gain Integrating Pixel Detector (AGIPD) and over the years grew to a more universal detector simulation toolkit covering the relevant physics in the energy range from below 1 keV to a few hundred keV. HORUS has already been used to study possible improvements of the AGIPD for X-ray Photon Correlation Spectroscopy (XPCS) at the European XFEL and its performance at low beam energies. It is currently being used to study the optimum detector layout for Coherent Diffration Imaging (CDI) at the European XFEL. Simulations of the charge summing mode of the Medipix3 chip have been essential for the improvements of the charge summing mode in the Medipix3 RX chip. HORUS is universal enough to support arbitrary hybrid pixel detector systems (within limitations). To date, the following detector systems are predefined within HORUS: The AGIPD, the Large Pixel Detector (LPD), the Cornell-Stanford Pixel Array Detector (CSPAD), the Mixed-Mode (MMPAD) and KEKPAD, and the Medipix2, Medipix3 and Medipix3 RX chips. © 2012 IOP Publishing Ltd and Sissa Medialab srl.
  •  
16.
  • Becker, J., et al. (author)
  • The high speed, high dynamic range camera AGIPD
  • 2013
  • In: IEEE Nuclear Science Symposium Conference Record. - : IEEE conference proceedings. - 9781479905348 ; , s. Art. no. 6829504-
  • Conference paper (peer-reviewed)abstract
    • The European X-Ray Free Electron Laser (XFEL) will provide ultra short, highly coherent X-ray pulses which will revolutionize scientific experiments in a variety of disciplines spanning physics, chemistry, materials science, and biology. One of the differences between the European XFEL and other free electron laser sources is the high pulse frequency of 4.5 MHz. The European XFEL will provide pulse trains, consisting of up to 2700 pulses separated by 220 ns (600 μs in total) followed by an idle time of 99.4 ms, resulting in a supercycle of 10 Hz. Dedicated fast 2D detectors are being developed, one of which is the Adaptive Gain Integrating Pixel Detector (AGIPD). AGIPD is based on the hybrid pixel technology. The design goals of the recently produced, radiation hard Application Specific Integrated Circuit (ASIC) with dynamic gain switching amplifiers are (for each pixel) a dynamic range of more than 10 4 12.4 keV photons in the lowest gain, single photon sensitivity in the highest gain, an analog memory capable of storing 352 images, and operation at 4.5 MHz frame rate. A vetoing scheme allows to maximize the number of useful images that are acquired by providing the possibility to overwrite any previously recorded image during the pulse train. The AGIPD will feature a pixel size of (200 μm)2 and a silicon sensor with a thickness of 500 μm. The image data is read out and digitized between pulse trains. © 2013 IEEE.
  •  
17.
  • Bianco, L., et al. (author)
  • The AGIPD System for the European XFEL
  • 2013
  • In: ADVANCES IN X-RAY FREE-ELECTRON LASERS II. - : SPIE. - 9780819495808 ; , s. Art. no. UNSP 87780V-
  • Conference paper (peer-reviewed)abstract
    • The European XFEL will generate extremely brilliant pulses of X-rays organized in pulse trains consisting of 2700 pulses <100 fs long, with >10(12) photons, and with a 220 ns spacing. The pulse trains are running at a 10Hz repetition rate. The detector to be used under these conditions will have to face several challenges: the dynamic range has to cover the detection of single photons and extend up to >10(4) photons/pixel/pulse in the same image, framing rates of 4.5 MHz (220 ns) are required in order to record one image per pulse, and as many images as possible have to be recorded during the pulse trains. Due to the high flux, the detector will have to withstand a dose up to 1GGy integrated over 3 years. To meet these challenges a consortium, consisting of Deutsches Elektronensynchrotron (DESY), Paul-Scherrer-Institut (PSI), University of Hamburg and University of Bonn, is developing the Adaptive Gain Integrating Pixel Detector (AGIPD). It is a hybrid-pixel detector, featuring a charge integrating amplifier with dynamic gain switching to cope with the extended dynamic range, and an analogue on-pixel memory for image storage at the required 4.5 MHz frame rate. The readout chip consists of 64x64 pixels of (200 mu m)(2), 8x2 of these readout chips are bump-bonded to a monolithic silicon sensor to form the basic module with 512 x 128 pixels. 4 of these modules are stacked to form a quadrant of the 1k x 1k detector system. Each quadrant is independently moveable in order to adjust a central hole, needed for the direct beam to pass through. Special designs are employed for both the sensor and the readout chip to withstand the integrated dose for 3 years.
  •  
18.
  • Chapman, Henry N, et al. (author)
  • Femtosecond X-ray protein nanocrystallography.
  • 2011
  • In: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 470:7332, s. 73-7
  • Journal article (peer-reviewed)abstract
    • X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded. It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction 'snapshots' are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source. We prove this concept with nanocrystals of photosystem I, one of the largest membrane protein complexes. More than 3,000,000 diffraction patterns were collected in this study, and a three-dimensional data set was assembled from individual photosystem I nanocrystals (∼200nm to 2μm in size). We mitigate the problem of radiation damage in crystallography by using pulses briefer than the timescale of most damage processes. This offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage.
  •  
19.
  • Chung, Simon, et al. (author)
  • Transient heating of Pd nanoparticles studied by x-ray diffraction with time of arrival photon detection
  • 2024
  • In: Structural Dynamics. - : AIP Publishing. - 2329-7778. ; 11:4
  • Journal article (peer-reviewed)abstract
    • Pulsed laser heating of an ensemble of Pd nanoparticles, supported by a MgO substrate, is studied by x-ray diffraction. By time-resolved Bragg peak shift measurements due to thermal lattice expansion, the transient temperature of the Pd nanoparticles is determined, which quickly rises by at least 100 K upon laser excitation and then decays within 90 ns. The diffraction experiments were carried out using a Cu x-ray tube, giving continuous radiation, and the hybrid pixel detector Timepix3 operating with single photon counting in a time-of-arrival mode. This type of detection scheme does not require time-consuming scanning of the pump-probe delay. The experimental time resolution is estimated at 15 +/- 5 ns, which is very close to the detector's limit and matches with the 7 ns laser pulse duration. Compared to bulk metal single crystals, it is discussed that the maximum temperature reached by the Pd nanoparticles is higher and their cooling rate is lower. These effects are explained by the oxide support having a lower heat conductivity.
  •  
20.
  • Correa, J., et al. (author)
  • Characterisation of a PERCIVAL monolithic active pixel prototype using synchrotron radiation
  • 2016
  • In: Journal of Instrumentation. - : IOP. - 1748-0221. ; 11:2
  • Journal article (peer-reviewed)abstract
    • PERCIVAL ("Pixelated Energy Resolving CMOS Imager, Versatile And Large") is a monolithic active pixel sensor (MAPS) based on CMOS technology. Is being developed by DESY, RAL/STFC, Elettra, DLS, and PAL to address the various requirements of detectors at synchrotron radiation sources and Free Electron Lasers (FELs) in the soft X-ray regime. These requirements include high frame rates and FELs base-rate compatibility, large dynamic range, single-photon counting capability with low probability of false positives, high quantum efficiency (QE), and (multi-)megapixel arrangements with good spatial resolution. Small-scale back-side-illuminated (BSI) prototype systems are undergoing detailed testing with X-rays and optical photons, in preparation of submission of a larger sensor. A first BSI processed prototype was tested in 2014 and a preliminary result—first detection of 350eV photons with some pixel types of PERCIVAL—reported at this meeting a year ago. Subsequent more detailed analysis revealed a very low QE and pointed to contamination as a possible cause. In the past year, BSI-processed chips on two more wafers were tested and their response to soft X-ray evaluated. We report here the improved charge collection efficiency (CCE) of different PERCIVAL pixel types for 400eV soft X-rays together with Airy patterns, response to a flat field, and noise performance for such a newly BSI-processed prototype sensor.
  •  
21.
  • Correa, J., et al. (author)
  • On the Charge Collection Efficiency of the PERCIVAL Detector
  • 2016
  • In: Journal of Instrumentation. - : IOP. - 1748-0221. ; 11:12
  • Journal article (peer-reviewed)abstract
    • The PERCIVAL soft X-ray imager is being developed by DESY, RAL, Elettra, DLS, and PAL to address the challenges at high brilliance Light Sources such as new-generation Synchrotrons and Free Electron Lasers. Typical requirements for detector systems at these sources are high frame rates, large dynamic range, single-photon counting capability with low probability of false positives, high quantum efficiency, and (multi)-mega-pixel arrangements. PERCIVAL is a monolithic active pixel sensor, based on CMOS technology. It is designed for the soft X-ray regime and, therefore, it is post-processed in order to achieve high quantum efficiency in its primary energy range (250 eV to 1 keV) . This work will report on the latest experimental results on charge collection efficiency obtained for multiple back-side-illuminated test sensors during two campaigns, at the P04 beam-line at PETRA III, and the CiPo beam-line at Elettra, spanning most of the primary energy range as well as testing the performance for photon-energies below 250 eV . In addition, XPS surface analysis was used to cross-check the obtained results.
  •  
22.
  • Correa, J., et al. (author)
  • The PERCIVAL detector : first user experiments
  • 2023
  • In: Journal of Synchrotron Radiation. - 0909-0495 .- 1600-5775. ; 30, s. 242-250
  • Journal article (peer-reviewed)abstract
    • The PERCIVAL detector is a CMOS imager designed for the soft X-ray regime at photon sources. Although still in its final development phase, it has recently seen its first user experiments: ptychography at a free-electron laser, holographic imaging at a storage ring and preliminary tests on X-ray photon correlation spectroscopy. The detector performed remarkably well in terms of spatial resolution achievable in the sample plane, owing to its small pixel size, large active area and very large dynamic range; but also in terms of its frame rate, which is significantly faster than traditional CCDs. In particular, it is the combination of these features which makes PERCIVAL an attractive option for soft X-ray science.
  •  
23.
  • Correa, J., et al. (author)
  • The PERCIVAL soft X-ray Detector
  • 2018
  • In: 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2018 - Proceedings. - : Institute of Electrical and Electronics Engineers (IEEE). - 9781538684948
  • Conference paper (peer-reviewed)abstract
    • The PERCIVAL collaboration to develop a soft X-ray imager able to address the challenges of high brilliance light sources, such as new-generation synchrotrons and Free Electron Lasers, has reached one of its major milestones: a full 2-MegaPixel (P2M) system (uninterrupted 4 × 4 cm2 active area) has already seen its first light.Smaller prototypes of the device, a monolithic active pixel sensor based on CMOS technology, have already been fully characterised, and have demonstrated high frame rate, large dynamic range, and relatively high quantum efficiency.The PERCIVAL modular layout allows for clover-leaf like arrangement of up to four P2M systems. Moreover, it will be post-processed in order to achieve a high quantum efficiency in its primary energy range (250 eV to 1 keV).We will present the P2M system, its status and newest results, bring these in context with achieved prototype performance, and outline future steps. 
  •  
24.
  • Ehn, Sebastian, et al. (author)
  • X-ray deconvolution microscopy
  • 2016
  • In: Biomedical Optics Express. - 2156-7085. ; 7:4, s. 1227-1239
  • Journal article (peer-reviewed)abstract
    • Recent advances in single-photon-counting detectors are enabling the development of novel approaches to reach micrometer-scale resolution in x-ray imaging. One example of such a technology are the MEDIPIX3RX-based detectors, such as the LAMBDA which can be operated with a small pixel size in combination with real-time on-chip charge-sharing correction. This characteristic results in a close to ideal, box-like point spread function which we made use of in this study. The proposed method is based on raster-scanning the sample with sub-pixel sized steps in front of the detector. Subsequently, a deconvolution algorithm is employed to compensate for blurring introduced by the overlap of pixels with a well defined point spread function during the raster-scanning. The presented approach utilizes standard laboratory x-ray equipment while we report resolutions close to 10 mu m. The achieved resolution is shown to follow the relationship p/n with the pixel-size p of the detector and the number of raster-scanning steps n. (C) 2016 Optical Society of America
  •  
25.
  • Ekeberg, Tomas, et al. (author)
  • Single-shot diffraction data from the Mimivirus particle using an X-ray free-electron laser
  • 2016
  • In: Scientific Data. - : Springer Science and Business Media LLC. - 2052-4463. ; 3
  • Journal article (peer-reviewed)abstract
    • Free-electron lasers (FEL) hold the potential to revolutionize structural biology by producing X-ray pules short enough to outrun radiation damage, thus allowing imaging of biological samples without the limitation from radiation damage. Thus, a major part of the scientific case for the first FELs was three-dimensional (3D) reconstruction of non-crystalline biological objects. In a recent publication we demonstrated the first 3D reconstruction of a biological object from an X-ray FEL using this technique. The sample was the giant Mimivirus, which is one of the largest known viruses with a diameter of 450 nm. Here we present the dataset used for this successful reconstruction. Data-analysis methods for single-particle imaging at FELs are undergoing heavy development but data collection relies on very limited time available through a highly competitive proposal process. This dataset provides experimental data to the entire community and could boost algorithm development and provide a benchmark dataset for new algorithms.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 82
Type of publication
journal article (57)
conference paper (17)
research review (4)
book chapter (2)
other publication (1)
doctoral thesis (1)
show more...
show less...
Type of content
peer-reviewed (79)
other academic/artistic (3)
Author/Editor
Graafsma, Heinz (81)
Marras, A. (40)
Lange, S. (31)
Zimmer, M. (30)
Trunk, U (26)
Hirsemann, H. (24)
show more...
Klyuev, A. (23)
Becker, J. (21)
Shi, X. (20)
Greiffenberg, D. (20)
Schmitt, B. (20)
Zhang, J. (19)
Xia, Q. (19)
Mozzanica, A. (19)
Dinapoli, R. (18)
Sheviakov, I. (17)
Schwandt, J. (17)
Goettlicher, P. (16)
Jack, S. (16)
Klanner, R. (15)
Bianco, L. (15)
Allahgholi, A. (14)
Mezza, D. (14)
Rah, S. (14)
Smoljanin, S. (14)
Hirsemann, Helmut (14)
Correa, J. (14)
Barty, Anton (14)
Bajt, Saša (14)
Gumprecht, Lars (14)
Aquila, Andrew (12)
Delfs, A. (12)
Erk, Benjamin (12)
Rudenko, Artem (12)
Rolles, Daniel (12)
Shoeman, Robert L (12)
Foucar, Lutz (12)
Hartmann, Robert (12)
Rudek, Benedikt (12)
Maia, Filipe R. N. C ... (12)
Barthelmess, Miriam (12)
Bostedt, Christoph (12)
Holl, Peter (12)
Kimmel, Nils (12)
Lomb, Lukas (12)
Reich, Christian (12)
Schlichting, Ilme (12)
Schulz, Joachim (12)
Soltau, Heike (12)
Ullrich, Joachim (12)
show less...
University
Mid Sweden University (69)
Uppsala University (15)
University of Gävle (6)
University of Gothenburg (3)
Swedish University of Agricultural Sciences (3)
Royal Institute of Technology (1)
show more...
Chalmers University of Technology (1)
show less...
Language
English (82)
Research subject (UKÄ/SCB)
Natural sciences (48)
Engineering and Technology (43)
Medical and Health Sciences (4)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view