SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Haas Mary E.) "

Search: WFRF:(Haas Mary E.)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  • Verweij, Niek, et al. (author)
  • Germline Mutations in CIDEB and Protection against Liver Disease
  • 2022
  • In: New England Journal of Medicine. - 0028-4793. ; 387:4, s. 332-344
  • Journal article (peer-reviewed)abstract
    • BACKGROUND Exome sequencing in hundreds of thousands of persons may enable the identification of rare protein-coding genetic variants associated with protection from human diseases like liver cirrhosis, providing a strategy for the discovery of new therapeutic targets. METHODS We performed a multistage exome sequencing and genetic association analysis to identify genes in which rare protein-coding variants were associated with liver phenotypes. We conducted in vitro experiments to further characterize associations. RESULTS The multistage analysis involved 542,904 persons with available data on liver aminotransferase levels, 24,944 patients with various types of liver disease, and 490,636 controls without liver disease. We found that rare coding variants in APOB, ABCB4, SLC30A10, and TM6SF2 were associated with increased aminotransferase levels and an increased risk of liver disease. We also found that variants in CIDEB, which encodes a structural protein found in hepatic lipid droplets, had a protective effect. The burden of rare predicted loss-of-function variants plus missense variants in CIDEB (combined carrier frequency, 0.7%) was associated with decreased alanine aminotransferase levels (beta per allele, -1.24 U per liter; 95% confidence interval [CI], -1.66 to -0.83; P=4.8×10-9) and with 33% lower odds of liver disease of any cause (odds ratio per allele, 0.67; 95% CI, 0.57 to 0.79; P=9.9×10-7). Rare coding variants in CIDEB were associated with a decreased risk of liver disease across different underlying causes and different degrees of severity, including cirrhosis of any cause (odds ratio per allele, 0.50; 95% CI, 0.36 to 0.70). Among 3599 patients who had undergone bariatric surgery, rare coding variants in CIDEB were associated with a decreased nonalcoholic fatty liver disease activity score (beta per allele in score units, -0.98; 95% CI, -1.54 to -0.41 [scores range from 0 to 8, with higher scores indicating more severe disease]). In human hepatoma cell lines challenged with oleate, CIDEB small interfering RNA knockdown prevented the buildup of large lipid droplets. CONCLUSIONS Rare germline mutations in CIDEB conferred substantial protection from liver disease.
  •  
4.
  • Aragam, Krishna G., et al. (author)
  • Phenotypic Refinement of Heart Failure in a National Biobank Facilitates Genetic Discovery
  • 2019
  • In: Circulation. - 0009-7322. ; 139:4, s. 489-501
  • Journal article (peer-reviewed)abstract
    • Heart failure (HF) is a morbid and heritable disorder for which the biological mechanisms are incompletely understood. We therefore examined genetic associations with HF in a large national biobank, and assessed whether refined phenotypic classification would facilitate genetic discovery. Methods: We defined all-cause HF among 488 010 participants from the UK Biobank and performed a genome-wide association analysis. We refined the HF phenotype by classifying individuals with left ventricular dysfunction and without coronary artery disease as having nonischemic cardiomyopathy (NICM), and repeated a genetic association analysis. We then pursued replication of lead HF and NICM variants in independent cohorts, and performed adjusted association analyses to assess whether identified genetic associations were mediated through clinical HF risk factors. In addition, we tested rare, loss-of-function mutations in 24 known dilated cardiomyopathy genes for association with HF and NICM. Finally, we examined associations between lead variants and left ventricular structure and function among individuals without HF using cardiac magnetic resonance imaging (n=4158) and echocardiographic data (n=30 201). Results: We identified 7382 participants with all-cause HF in the UK Biobank. Genome-wide association analysis of all-cause HF identified several suggestive loci (P<1×10 -6 ), the majority linked to upstream HF risk factors, ie, coronary artery disease (CDKN2B-AS1 and MAP3K7CL) and atrial fibrillation (PITX2). Refining the HF phenotype yielded a subset of 2038 NICM cases. In contrast to all-cause HF, genetic analysis of NICM revealed suggestive loci that have been implicated in dilated cardiomyopathy (BAG3, CLCNKA-ZBTB17). Dilated cardiomyopathy signals arising from our NICM analysis replicated in independent cohorts, persisted after HF risk factor adjustment, and were associated with indices of left ventricular dysfunction in individuals without clinical HF. In addition, analyses of loss-of-function variants implicated BAG3 as a disease susceptibility gene for NICM (loss-of-function variant carrier frequency=0.01%; odds ratio,12.03; P=3.62×10 -5 ). Conclusions: We found several distinct genetic mechanisms of all-cause HF in a national biobank that reflect well-known HF risk factors. Phenotypic refinement to a NICM subtype appeared to facilitate the discovery of genetic signals that act independently of clinical HF risk facto rs and that are associated with subclinical left ventricular dysfunction.
  •  
5.
  • Hindy, George, et al. (author)
  • Cardiometabolic Polygenic Risk Scores and Osteoarthritis Outcomes : A Mendelian Randomization Study Using Data From the Malmö Diet and Cancer Study and the UK Biobank
  • 2019
  • In: Arthritis and Rheumatology. - : Wiley. - 2326-5191 .- 2326-5205. ; 71:6, s. 925-934
  • Journal article (peer-reviewed)abstract
    • Objective: To investigate the causal role of cardiometabolic risk factors in osteoarthritis (OA) using associated genetic variants. Methods: We studied 27,691 adults from the Malmö Diet and Cancer Study (MDCS) and replicated novel findings among 376,435 adults from the UK Biobank. Trait-specific polygenic risk scores for low-density lipoprotein (LDL) and high-density lipoprotein (HDL) cholesterol levels, triglyceride levels, body mass index (BMI), fasting plasma glucose (FPG) levels, and systolic blood pressure (BP) were used to test the associations of genetically predicted elevations in each trait with incident OA diagnosis (n = 3,559), OA joint replacement (n = 2,780), or both (total OA; n = 4,226) in Mendelian randomization (MR) analyses in the MDCS, and with self-reported and/or hospital-diagnosed OA (n = 65,213) in the UK Biobank. Multivariable MR, MR-Egger, and weighted median MR were used to adjust for potential pleiotropic biases. Results: In the MDCS, genetically predicted elevation in LDL cholesterol level was associated with a lower risk of OA diagnosis (odds ratio [OR] 0.83 [95% confidence interval (95% CI) 0.73–0.95] per 1SD increase) and total OA (OR 0.87 [95% CI 0.78–0.98]), which was supported by multivariable MR for OA diagnosis (OR 0.84 [95% CI 0.75–0.95]) and total OA (0.87 [95% CI 0.78–0.97]), and by conventional 2-sample MR for OA diagnosis (OR 0.86 [95% CI 0.75–0.98]). MR-Egger indicated no pleiotropic bias. Genetically predicted elevation in BMI was associated with an increased risk of OA diagnosis (OR 1.65 [95% CI 1.14–2.41]), while MR-Egger indicated pleiotropic bias and a larger association with OA diagnosis (OR 3.25 [1.26–8.39]), OA joint replacement (OR 3.81 [95% CI 1.39–10.4]), and total OA (OR 3.41 [95% CI 1.43–8.15]). No associations were observed between genetically predicted HDL cholesterol level, triglyceride level, FPG level, or systolic BP and OA outcomes. The associations with LDL cholesterol levels were replicated in the UK Biobank (OR 0.95 [95% CI 0.93–0.98]). Conclusion: Our MR study provides evidence of a causal role of lower LDL cholesterol level and higher BMI in OA.
  •  
6.
  • Hindy, George, et al. (author)
  • Increased soluble urokinase plasminogen activator levels modulate monocyte function to promote atherosclerosis
  • 2022
  • In: Journal of Clinical Investigation. - 0021-9738. ; 132:24, s. 1-14
  • Journal article (peer-reviewed)abstract
    • People with kidney disease are disproportionately affected by atherosclerosis for unclear reasons. Soluble urokinase plasminogen activator receptor (suPAR) is an immune-derived mediator of kidney disease, levels of which are strongly associated with cardiovascular outcomes. We assessed suPAR’s pathogenic involvement in atherosclerosis using epidemiologic, genetic, and experimental approaches. We found serum suPAR levels to be predictive of coronary artery calcification and cardiovascular events in 5,406 participants without known coronary disease. In a genome-wide association meta-analysis including over 25,000 individuals, we identified a missense variant in the plasminogen activator, urokinase receptor (PLAUR) gene (rs4760), confirmed experimentally to lead to higher suPAR levels. Mendelian randomization analysis in the UK Biobank using rs4760 indicated a causal association between genetically predicted suPAR levels and atherosclerotic phenotypes. In an experimental model of atherosclerosis, proprotein convertase subtilisin/kexin–9 (Pcsk9) transfection in mice overexpressing suPAR (suPARTg) led to substantially increased atherosclerotic plaques with necrotic cores and macrophage infiltration compared with those in WT mice, despite similar cholesterol levels. Prior to induction of atherosclerosis, aortas of suPARTg mice excreted higher levels of CCL2 and had higher monocyte counts compared with WT aortas. Aortic and circulating suPARTg monocytes exhibited a proinflammatory profile and enhanced chemotaxis. These findings characterize suPAR as a pathogenic factor for atherosclerosis acting at least partially through modulation of monocyte function.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view