SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Hackl Roman 1981) "

Search: WFRF:(Hackl Roman 1981)

  • Result 1-25 of 33
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Jönsson, Johanna, 1981, et al. (author)
  • From fossil to biogenic feedstock - Exploring Different Technology Pathways for a Swedish Chemical Cluster
  • 2012
  • In: Proceedings of ECEEE industrial summer study.
  • Conference paper (peer-reviewed)abstract
    • This paper presents a case study of the chemical cluster in Stenungsund, Sweden. The cluster is Sweden’s largest agglomeration of its kind and consists of five companies producing a variety of chemical products. For the cluster, different options for enhanced energy efficiency and converting to biogenic feedstock are investigated. Based on these options, nine different technology pathways are defined – representing different ways to fully or partly transform the cluster into an energy efficient biorefinery. For the pathways an impact analysis is made in which the pathways are analysed and discussed from different perspectives. The results show that up to 120 MW of heat can be saved if the plants were to implement extensive heat integration measures. This is equal to ~100% of the heat currently supplied by boilers based on purchased fuels. With moderate enhancement of the heat integration, roughly half of this potential can be reached. In the fossil feedstock is to be replaced with biogenic feedstock the feedstock demand is extensive, however, the exact amount and type of feedstock depends on the technology chosen, degree of heat integration and on whether full or partial substitution is to be achieved. Full substitution of the fossil ethylene demand by ethylene based on imported bioethanol would for example demand ~1 230 kt-bioethanol/yr. If the ethanol for the ethanol-to-ethylene process were to be produced on site (based on lignocellulosic biomass), 4 725 kt-dry biomass/yr of forest biomass would be required (more than the biomass demand for four large pulp and paper mills). The results also show that the scenarios for enhanced heat integration and introduction of biogenic feedstock, to different extents, are interdependent. Furthermore, one important finding from the impact analysis is that regardless of which pathway the cluster wants to travel in their journey towards sustainable chemistry, collaboration is a key issue.
  •  
3.
  • Morandin, Matteo, 1981, et al. (author)
  • Economic feasibility of district heating delivery from industrial excess heat: A case study of a Swedish petrochemical cluster
  • 2014
  • In: Energy. - : Elsevier BV. - 0360-5442 .- 1873-6785. ; 65:Feb., s. 209-220
  • Journal article (peer-reviewed)abstract
    • The present work discusses the potential and the economic feasibility of DH (district heating) delivery using industrial excess heat from a petrochemical cluster at the Swedish West Coast. Pinch Analysis was used for estimating the DH capacity targets and for estimating the cost of heat exchanger installation. A discounted cash flow rate of return of 10% was used as a criterion for identifying the minimum yearly DH delivery that should be guaranteed for a given DH capacity at different DH sales prices. The study was conducted for the current scenario in which no heat recovery is achieved between the cluster plants and for a possible future scenario in which 50% of the fuel currently used for heating purposes is saved by increasing the heat recovery at the site. The competition between excess heat export and local energy efficiency measures is also discussed in terms of CO2 emission consequences. The maximum capacity of DH delivery amounts today to around 235 MW, which reduces to 110 MW in the future scenario of increased site heat recovery. The results of our analysis show that feasible conditions exist that make DH delivery profitable in the entire capacity range.
  •  
4.
  • Andersson, Eva Ingeborg Elisabeth, 1956, et al. (author)
  • TSA II Stenungsund - Investigation of opportunities for implementation of proposed energy efficiency measures
  • 2011
  • Reports (other academic/artistic)abstract
    • A Total Site Analysis (TSA) study of the chemical cluster in Stenungsund was conducted during 2010. This previous study is hereafter referred to as the TSA I study. The study was conducted by CIT Industriell Energi and the Division of Heat and Power Technology at Chalmers together with the participating cluster companies (AGA Gas AB, Akzo Nobel Sverige AB, Borealis AB, INEOS Sverige AB and Perstorp Oxo AB).In the TSA I study, measures to increase energy efficiency by increased energy collaboration (i.e. increased heat exchange between the cluster plants) were identified. The measures were classified according to ease of implementation based on consultation with plant staff. In this report, conducted within the framework of the second stage of the TSA research project (hereafter referred to as the TSA II project) practical issues associated with implementation of the identified measures are investigated. The investigation is limited to category A measures, considered by plant staff to be relatively easy to implement from a technical perspective. A conceptual design of a possible hot water system for exchanging heat between the different sites is presented. Since the steam systems of the different plants are at present only partly connected, or not at all, the overall reduction in steam use that would results from introduction of a hot water system would lead to steam surplus at certain sites. Therefore introducing a hot water system is only beneficial if new steam lines are also implemented so that it becomes possible to exchange steam between the individual plant sites. The exchange of steam is only possible if steam demand and steam excess are at the same pressure level. To avoid excess steam at low pressure level, demand of low pressure steam must increase. In order to increase the possibility to use more low pressure steam, the opportunities to decrease utility steam pressure in individual process heaters are analyzed. The implementation of energy efficiency measures in the refrigeration systems is also investigated. In practice this can be achieved by changing steam as heating utility to a fluid that can operate below ambient. In addition to the steam saving, the heat transfer fluid can transport energy from the current cooling systems and decrease the amount of compressor work required to operate the existing refrigeration system units.In order to achieve a reduction of purchased fuel for firing in boilers it is necessary to implement both a common site-wide circulating hot water system and a reduction of utility steam pressure used in several process heaters .The results show that if all measures that are considered by plant energy engineers to be feasible by moderate changes are carried out as suggested, fuel usage in boilers could be reduced by 89 MW (corresponding to 200 MSEK/year if fuel gas is valued at 270 SEK/MWh and year-round operation is assumed).A rough estimate of the total investment costs for the implementation of category A measures is 660 MSEK.
  •  
5.
  • Andersson, Viktor, 1983, et al. (author)
  • Algae-based biofuel production as part of an industrial cluster
  • 2014
  • In: Biomass and Bioenergy. - : Elsevier BV. - 1873-2909 .- 0961-9534. ; 71, s. 113-124
  • Journal article (peer-reviewed)abstract
    • This paper presents a study on the production of biofuels from algae cultivated in municipal wastewater in Gothenburg, Sweden. A possible biorefinery concept is studied based on two cases; Case A) combined biodiesel and biogas production, and Case B) only biogas production. The cases are compared in terms of product outputs and impact on global CO2 emissions mitigation. The area efficiency of the algae-based biofuels is also compared with other biofuel production routes. The study investigates the collaboration between an algae cultivation, biofuel production processes, a wastewater treatment plant and an industrial cluster for the purpose of utilizing material flows and industrial excess heat between the actors. This collaboration provides the opportunity to reduce the CO2 emissions from the process compared to a stand-alone operation. The results show that Case A is advantageous to Case B with respect to all studied factors. It is found that the algae-based biofuel production routes investigated in this study has higher area efficiency than other biofuel production routes. The amount of algae-based biofuel possible to produce corresponds to 31 MWfuel for Case A and 26 MWfuel in Case B.
  •  
6.
  • Andersson, Viktor, 1983, et al. (author)
  • Dubbel energivinst med alger som biobränsle
  • 2013
  • In: Energimagasinet.
  • Journal article (other academic/artistic)abstract
    • Idag kan produktionen av biobränsle påverka livsmedelsförsörjningen negativt. Istället för att biobränsleproduktion ska konkurrera med produktion av livsmedel kan en hittills outnyttjad resurs - kommunalt avloppsvatten - användas för produktion av alger som i sin tur kan användas till biogas och biodiesel. Ny forskning visar på denna potential.
  •  
7.
  • Andersson, Viktor, 1983, et al. (author)
  • Integrated Algae Cultivation for Municipal Wastewater Treatment and Biofuels Production in Industrial Clusters
  • 2012
  • In: World Renewable Energy Forum, WREF 2012. - 9781622760923 ; 1, s. 684-691
  • Conference paper (peer-reviewed)abstract
    • This paper presents a case study on biofuels production from microalgae cultivated in municipal wastewater in Gothenburg, Sweden. A) Combined biodiesel and biogas production and B) only biogas production, are compared in terms of product outputs, impact on global CO2 emissions reduction and economic performance. Land-use efficiency of biofuels from microalgae was compared with other biofuel production routes. The biofuel production process is assumed to be integrated with a wastewater treatment plant and an industrial cluster, providing the opportunity to reduce the CO2 emissions of the process compared to stand-alone operation.The results show that case A is advantageous in terms of all the studied factors. A higher area efficiency of algae biofuels production routes compared to other biofuel production routes was shown. Nutrient availability in municipal wastewater is shown to be the limiting factor regarding product output. The competitive advantage of co-location with a wastewater treatment plant is clearly shown.
  •  
8.
  • Broberg, Sarah, 1983-, et al. (author)
  • Integrated Algae Cultivation for Biofuels Production in Industrial Clusters
  • 2011
  • Reports (other academic/artistic)abstract
    • Declining fossil resources and the issue of climate change caused by anthropogenic emissions of greenhouse gases make global action towards a more sustainable society inevitable. The EU decided in 2007 that 20 % of the union´s energy use should origin from renewable resources by the year 2020. One way of achieving this goal is to increase the utilisation of biofuels. Today 2nd generation biofuels are being developed. They are seen as a more sustainable solution than 1st generation biofuels since they have a higher area efficiency (more fuel produced per area) and the biomass can be cultivated at land which is not suitable for food crops. One of these 2nd generation biofuels are fuels derived from microalgae. In this study a thorough literature survey has been conducted in order to assess the State-of-the-Art in algae biofuels production. The literature review showed the importance of a supplementary function in conjunction with algae cultivation and therefore algae cultivation for municipal wastewater treatment and capturing CO2 emissions from industry was included in the study. It was assumed that all the wastewater of the city of Gothenburg, Sweden, was treated by algae cultivation. A computer model of the whole production process has been developed, covering; algae cultivation in conjunction with wastewater treatment, algae harvesting and biofuels production. Two different cases are modelled; a first case including combined biodiesel and biogas production, and a second case investigating only biogas production. Both cases have been evaluated in terms of product outputs, CO2 emissions savings and compared to each other in an economic sense. Utilising the nutrients in the wastewater of Gothenburg it is possible to cultivate 29 ktalgae/year. In the biogas case it is possible to produce 205 GWhbiogas/year. The biogas/biodiesel case showed a production potential of 63 GWhbiodiesel/year and 182 GWhbiogas/year. There is a deficit of carbon in the wastewater, hence CO2 is injected as flue gases from industrial sources. The biodiesel/biogas case showed an industrial CO2 sequestration capacity of 24 ktCO2/year while in the biogas case 22.6 ktCO2/year, could be captured. Estimating the total CO2 emissions savings showed 46 ktCO2/year in the biodiesel/biogas case and 38 ktCO2/year for the biogas case. The importance of including wastewater treatment in the process was confirmed, as it contributes with 13.7 ktCO2/year to the total CO2 emissions savings. Economic comparison of the two cases showed that biodiesel in conjunction with biogas production is advantageous compared to only biogas production. This is mainly due to the higher overall fuel yield and the high willingness to pay for biodiesel. The total incomes from biodiesel/biogas sales were calculated to 221 million SEK/year and 193 million SEK/year for biogas. It was found that the higher incomes from biodiesel/biogas sales repay the increased investment for the biodiesel process in approximately 3 years.
  •  
9.
  • Bungener, S., et al. (author)
  • Multi-period analysis of heat integration measures in industrial clusters
  • 2015
  • In: Energy. - : Elsevier BV. - 0360-5442 .- 1873-6785. ; 93, s. 220-234
  • Journal article (peer-reviewed)abstract
    • TSA (total site analysis) has shown to be an efficient tool for identifying heat integration measures in industrial clusters, leading to the optimal design of utility systems and energy bill reduction. In order to justify investments, any proposed utility system must be shown to be able to operate in all configurations that an industrial cluster can encounter, especially those relating to varying heat demand. Previous TSAs have generally been carried out using yearly means of heat exchange loads or using scenarios corresponding to specific operation modes of the sites. While these have been useful for designing systems under normal conditions, they are not fit for evaluating minima and peaks in utility demand. Carrying out a TSA on each possible configuration of a cluster is not feasible from a computational and results analysis point of view. A method is therefore proposed to represent the variability of data over long periods in a reduced form in order to carry out engineering studies.A methodology is proposed to identify typical operating periods of an industrial cluster made up of several production units. This algorithm exploits a multi-objective optimisation to identify n periods that delimit typical operating modes or multiple profiles.A TSA was previously carried out on the Stenungsund petrochemical cluster in Sweden, leading to the design of a utility system to significantly reduce the overall energy consumption of the cluster. The solution proposes that a common utility system would decrease the hot utility demand from 124 MWth to 70 MWth. The multi-period analysis methodology is demonstrated by application to this case study in order to identify the resilience of the proposed solution when faced with variations in heat production and consumption. The multi-period analysis of the proposed utility system leads to the identification of a peak utility demand of 88 MWth rather than the previously identified 70 MWth. A Total Site Sensitivity Analysis leads to a better understanding of the contribution of each of the clusters units and feasibility of investments.
  •  
10.
  • Grahn, Maria, 1963, et al. (author)
  • The role of electrofuels: A cost-effective solution for future transport?
  • 2017
  • Reports (other academic/artistic)abstract
    • Electrofuels (also known as e.g., power-to-gas/liquids/fuels, e-fuels, or synthetic fuels) are synthetichydrocarbons, e.g. methane or methanol, produced from carbon dioxide (CO2) and water with electricity as primary energy source. The CO2 can be captured from various industrial processes giving rise to excess CO2 e.g. biofuel production plants, and fossil and biomass combustionplants. Electrofuels are interesting at least for the following reasons: (i) electrofuels may play an importantrole as transport fuels in the future due to limitations with other options and are potentially of interestfor all transport modes, (ii) electrofuels could be used to store intermittent electricity production,and (iii) electrofuels potentially provide an opportunity for biofuel producers to increase the yield from the same amount of biomass. The overall purpose of this project is to deepen the knowledge of electrofuels by mapping andanalyzing the technical and economic potential and by analyzing the potential role of electrofuels inthe future energy system aiming to reach stringent climate targets. The specific project targets include:(i) Mapping of the technical potential for CO2-recovering from Swedish production plants forbiofuels for transport and combustion plants.(ii) A review and analysis of different electrofuel production pathways and associated costsand an overall comparison with the production cost of other renewable transport fuels.(iii) An analysis of the potential conditions under which electrofuels are cost-effective comparedto other alternative fuels for transport in order to reach stringent climate targets. Main conclusions are: (1)Electrofuels used in combustion engines demand significantly more energy compared tobattery electric vehicles and hydrogen used in fuel cells, (2) Compared to biofuels, our estimates of the production costs of electrofuels are in the samesize of order but in the upper range or above, (3) The results of the energy system modelling indicate that electrofuels is not the most costefficientoption for road transport. Thus, it is not likely that electrofuels can compete withcurrent conventional fuels in road transportation (unless there are higher taxes on fossilCO2-emissions), (4) Under some circumstances (e.g., when assuming relatively high costs for other options),electrofuels may be able to complement battery electric vehicles and hydrogen used in fuelcells in a scenario reaching almost zero CO2 emissions in the global road transport sector, (5) The cost-competitiveness of electrofuels depends on e.g. the availability of advanced CO2reduction technologies such as CCS, and costs for the competing technologies, but also onthe costs and efficiencies of synthesis reactors and electrolysers for the electrofuel productionas well as the electricity price, (6) In the short term, renewable CO2 does not seem to be a limiting factor for electrofuels.However, the demand for renewable electricity represents a possible limiting factor especiallyin the case of large-scale production of electrofuels. The production cost may alsorepresent a challenge.
  •  
11.
  • Hackl, Roman, 1981 (author)
  • A Methodology for Identifying Transformation Pathways for Industrial Process Clusters: Toward Increased Energy Efficiency and Renewable Feedstock
  • 2014
  • Doctoral thesis (other academic/artistic)abstract
    • The European process industry is facing major challenges. Modern, large-scale production facilities in other parts of the world are often more efficient. Furthermore, limited access to inexpensive shale gas from North America has led to an additional disadvantage for the European industry. At the same time, the European Union (EU) has implemented policy instruments aiming at increasing the costs for emitting Greenhouse Gases (GHG) in order to curb global warming.According to the International Energy Agency (IEA), the only measure that decreases GHG emissions and at the same time achieves economic, environmental and societal goals is increasing energy efficiency. Clusters of industrial production plants often offer considerable opportunities to increase efficiency at the total site level. Another option for the process industry is to tap into new markets in order to stay competitive. The interest for biomass based products has increased lately due to societal expectations for sustainable development and renewable feedstock based products. This work presents a framework methodology that can provide guidance to the process industry in order to manage this transformation in an efficient way. Process integration tools are used to identify common measures to improve energy efficiency at a site-wide scale. This targeting procedure is followed by a detailed procedure for design and evaluation of practical energy efficiency measures. This step should be performed in close collaboration with experts from the industrial cluster in order to present solutions that can overcome some of the main barriers for the implementation of common energy efficiency measures. The knowledge obtained during this targeting and design process can also be used to identify favourable ways to integrate biomass based processes that can replace fossil with biogenic feedstocks and utilise existing infrastructure. In most chemical processes, there is usually excess process heat that cannot be utilised internally. In the last stage of the framework methodology developed in this work, the opportunity to export industrial excess heat should be investigated. This includes an assessment of the quantity of available heat, the economic feasibility and the competition between internal integration and the export of heat.The framework methodology is demonstrated via a case study of a chemical cluster in Sweden.
  •  
12.
  • Hackl, Roman, 1981, et al. (author)
  • Applying exergy and total site analysis for targeting refrigeration shaft power in industrial clusters
  • 2013
  • In: Energy. - : Elsevier BV. - 0360-5442 .- 1873-6785. ; 55, s. 5-14
  • Journal article (peer-reviewed)abstract
    • Process cooling below ambient temperature is an energy demanding part of many chemical production processes. Compression refrigeration systems operating at very low temperatures consume a lot of high quality utility such as electricity or high pressure steam to drive the compressor units. In industrial process clusters with several processes operating at low temperatures, it is important to investigate opportunities for exchange of low-temperature energy between processes. This paper demonstrates how total site analysis and exergy analysis can be applied to target for shaft power and related hot utility savings for processes and utility systems operating below ambient temperature. Shaft power targeting by optimizing refrigerant use is conducted. In addition the methodology is extended for shaft power targeting in connection with site-wide heat recovery from cold process streams to generate sub-ambient utility. The methodology is illustrated through application to a case study of a chemical cluster. One chemical plant within the cluster operates two compression refrigeration systems at its steam cracker plant. The results of the case study indicate potential savings of 1.5 MW of shaft power by optimizing the use of refrigerant from the compression refrigeration system and additional 2.5 MW of shaft power by recovering refrigeration from two other sites located outside the cracker plant. In total this corresponds to 15% of the total shaft power consumption of the refrigeration systems. Economic evaluation of the proposed measures indicates a pay-back period of approximately 4 years.
  •  
13.
  • Hackl, Roman, 1981, et al. (author)
  • Applying process integration methods to target for electricity production from industrial waste heat using Organic Rankine Cycle (ORC) technology
  • 2011
  • In: World Renewable Energy Congress 2011 – Sweden 8-11 May 2011, Linköping, Sweden - Industrial Energy Efficiency (IEE). - : Linköping University Electronic Press.
  • Conference paper (peer-reviewed)abstract
    • This paper presents the results of an investigation of power production from low temperature excess process heat from a chemical cluster using Organic Rankine Cycle (ORC) technology. Process simulations and process integration methods including Pinch Technology and Total Site Analysis (TSA) are used to estimate the potential for electricity production from excess heat from the cluster. Results of a previous TSA study indicate that ca. 192 MWheat of waste heat are available at 84 °C to 55 °C, a suitable temperature range for ORC applications. Process streams especially suitable for ORC power production are identified. Simulation results indicate that 14 MWheat of waste heat are available from a PE-reactor, which can be used to generate ca. 1 MWel. Costs of electricity production calculated range from 70 to 147 €/MWh depending on the cost for ORC integration. Economic risk evaluation indicates that pay-back periods lower than 4.5 years should not be expected at the electricity price and RES-E support (a European support system for renewable electricity) levels considered in this study. CO2 emission reductions of up to 5900 tonnes/year were estimated for the analysed case.
  •  
14.
  • Hackl, Roman, 1981, et al. (author)
  • Cultivating Ciona intestinalis to counteract marine eutrophication: Environmental assessment of a marine biomass based bioenergy and biofertilizer production system
  • 2018
  • In: Renewable Energy. - : Elsevier BV. - 0960-1481 .- 1879-0682. ; 124, s. 103-113
  • Journal article (peer-reviewed)abstract
    • Eutrophication in the North and Baltic Seas is a major problem to the marine environment and the communities depending on it. To counteract this, the Swedish Marine and Water Authority suggested financial support for measures that increase the uptake of nutrients from the water by e.g. marine organisms and support for the utilisation of these organisms as value added products. In Sweden the use of biogas to replace fossil transportation fuels is widely adopted. The domestic biogas production corresponded to approx. 1.95 TWh (approx. 7010 TJ) in 2015 of which approx. 63% were upgraded for use as e.g. transportation fuel. Other uses are heat and electricity generation as well as industrial applications. To expand production, the biogas industry is searching for new substrates. In this paper the utilisation of the marine evertebrate organism Ciona intestinalis (tunicata), cultivated in the North Sea and used as feedstock for biogas and biofertilizer production is suggested and assessed. The greenhouse gas (GHG) emissions performance of the concept and it's consequences on marine eutrophication are investigated applying life cycle assessment. Results show that at full scale biogas production from C. intestinalis reduces GHG emissions by more than 65% compared to fossil transportation fuels. In addition, the results show that accounting for the system consequences of other products and services such as biofertilizer replacing mineral fertilizers and decreased marine eutrophication largely increase the environmental benefits provided by the concept. Approx. 3.7 g-N eq /MJ biogas of nitrogen are removed from the marine environment during the cultivation of C. intestinalis.
  •  
15.
  •  
16.
  • Hackl, Roman, 1981, et al. (author)
  • Framework methodology for increased energy efficiency and renewable feedstock integration in industrial clusters
  • 2012
  • In: International Conference on Applied Energy ICEA 2012, Jul 5-8, 2012, Suzhou, China. ; , s. 11-
  • Conference paper (peer-reviewed)abstract
    • Energy intensive industries, such as the bulk chemical industry, are facing major challenges. The chemical cluster in Stenungsund on the West coast of Sweden recently adopted a common vision called “Sustainable Chemistry 2030”. The cluster consists of 5 different companies operating 6 process plants. There is a wide range of technologies and process integration opportunities available for improving the clusters overall performance, including (i) decreasing fossil fuel and electricity demand by increasing heat integration within individual processes and across the total site; (ii) replacing fossil feedstocks with renewables and biorefinery integration with the existing cluster; (iii) increased external utilization of excess process heat wherever possible. This paper presents an overview of the use of process integration methods for the holistic development of the cluster. The framework methodology is based on a Total Site Analysis (TSA) study, in which the cluster’s current energy system was analysed and measures for site-wide energy efficiency improvement were identified. TSA showed that up to 129 MW of heat can be recovered by site-wide energy efficiency measures, theoretically eliminating the cluster’s demand for external boiler fuel. Pinch analysis of a single plant showed hot utility savings potential of 38 % of the current demand. Heat integration investments with a pay-back period of 0.4 to 1.2 years could cover up to 83 % (6.5 MWheat) of the identified savings potential.A process integration study on replacing fossil based ethylene in the cluster by bio-ethylene produced via fermentation of lignocellulosic biomass and ethanol dehydration showed that the heating demand of the bio-ethylene process can be reduced by 37 % if the both process steps are integrated. TSA showed that 9 MW of excess heat from the cluster can be used to replace hot utility in the biorefinery.A total of 226 MWexcess heat above 50 °C is available from the cluster that can be used, e.g. for district heating, low temperature refrigeration/electricity generation, heat pumping or biomass drying
  •  
17.
  • Hackl, Roman, 1981, et al. (author)
  • Framework methodology for increased energy efficiency and renewable feedstock integration in industrial clusters
  • 2013
  • In: Applied Energy. - : Elsevier BV. - 1872-9118 .- 0306-2619. ; 112, s. 1500-1509
  • Journal article (peer-reviewed)abstract
    • Energy intensive industries, such as the bulk chemical industry, are facing major challenges and adopting strategies to face these challenges. This paper investigates options for clusters of chemical process plants to decrease their energy and emission footprints. There is a wide range of technologies and process integration opportunities available for achieving these objectives, including (i) decreasing fossil fuel and electricity demand by increasing heat integration within individual processes and across the total cluster site; (ii) replacing fossil feedstocks with renewables and biorefinery integration with the existing cluster; (iii) increasing external utilization of excess process heat wherever possible. This paper presents an overview of the use of process integration methods for development of chemical clusters. Process simulation, pinch analysis, Total Site Analysis (TSA) and exergy concepts are combined in a holistic approach to identify opportunities to improve energy efficiency and integrate renewable feedstocks within such clusters. The methodology is illustrated by application to a chemical cluster in Stenungsund on the West Coast of Sweden consisting of five different companies operating six process plants. The paper emphasizes and quantifies the gains that can be made by adopting a total site approach for targeting energy efficiency measures within the cluster and when investigating integration opportunities for advanced biorefinery concepts compared to restricting the analysis to the individual constituent plants. The holistic approach applied highlights the significant potential improvement to energy and emissions footprints that can be achieved when applying a total site approach.
  •  
18.
  • Hackl, Roman, 1981, et al. (author)
  • From heat integration targets toward implementation - A TSA (total site analysis)-based design approach for heat recovery systems in industrial clusters
  • 2015
  • In: Energy. - : Elsevier BV. - 0360-5442 .- 1873-6785. ; 90, s. 163-172
  • Journal article (peer-reviewed)abstract
    • The European process industry is facing major challenges to decrease production costs. One strategy to achieve this is by increasing energy efficiency. Single chemical processes are often well-integrated and the tools to target and design such measures are well developed. Site-wide heat integration based on total site analysis tools can be used to identify opportunities to further increase energy efficiency. However, the methodology has to be developed further in order to enable identification of practical heat integration measures in a systematic way. Designing site-wide heat recovery systems across an industrial cluster is complex and involves aspects apart from thermal process and utility flows. This work presents a method for designing a roadmap of heat integration investments based on total site analysis. The method is applied to a chemical cluster in Sweden. The results of the case study show that application of the proposed method can achieve up to 42% of the previously targeted hot utility savings of 129 MW. A roadmap of heat integration systems is suggested, ranging from less complex systems that achieve a minor share of the heat recovery potential to sophisticated, strongly interdependent systems demanding large investments and a high level of collaboration. (C) 2015 Elsevier Ltd. All rights reserved.
  •  
19.
  • Hackl, Roman, 1981, et al. (author)
  • Identification, cost estimation and economic performance of common heat recovery systems for the chemical cluster in Stenungsund
  • 2013
  • Reports (other academic/artistic)abstract
    • In previous work, the heat savings potential that can be accomplished by increased heat recovery collaboration between the constituent companies was identified at the chemical cluster in Stenungsund. Based on this work specific measures to realize the potential were determined. All heat exchangers that can be included in a common heat recovery system were identified and other measures necessary in order to construct such a system were described. Detailed systems design, cost estimation, economic evaluation and cost sensitivity analysis was not dealt with in detail. A number of different systems solutions are available In order to identify cost-efficient system configurations it is important to develop a methodology that deals with design, cost estimation, economic evaluation and cost sensitivity analysis. The present study aims the development of such a methodology in order to enable decision makers to identify and compare cost-efficient and site-wide common heat recovery system configurations.In a first step all the different cost items of the common heat recovery measures are identified. After that a short cut approach for estimating the different costs (HX, piping, pumps etc.) involved is applied. Later a methodological approach to identify the most cost efficient overall systems solutions is introduced. During this a number of promising options is identified, which then are evaluated in more detail according their economic performance.As a result five promising systems were identified saving between 20.6 MW and 53.6 MW of hot utility. The estimated Pay Back Period (PBP) of the system was between 3.2 and 4.2 years. Further evaluation showed that especially two systems showed superior economic performance. System 20 recovering 20.6 MW of heat at a PBP of 3.2 years has the best Discounted Cash Flow Rate Of Return (DCFROR) of all systems (34.2 %). The retrofit only involves Borealis and Perstorp. Perstorp only serves as a sink for excess LP steam from Borealis, while recovered excess process heat is delivered from Borealis PE to Borealis Cracker. As it only enables for utilizing a minor share of the total heat integration potential it is considered as a first step towards a larger system. The final step in the development of common heat recovery systems is System 50 recovering 50.8 MW of heat at a PBP of 3.9 years and a DCFROR of 26.6 %. This system shows the highest Net Present Value of all investigated systems and recovers a major share of the heat recovery potential. Three companies, Borealis, Perstorp and INEOS are involved in the retrofit. Borealis PE and Perstorp are mainly delivering excess process heat to Borealis Cracker, while INEOS solely servers as a sink for excess steam from Borealis Cracker. It is possible to extend System 20 towards System 50 if minor preparatory investments are taken. Sensitivity analysis showed that only in two scenarios where the price of saved fuel decrease or the total investment costs increase by 30 % the PBP of System 50 exceeds 5 years and DCFROR drops below 20 %. The systems identified can be considered robust to fluctuations in investments costs and fuel price.The methodology applied in this study was shown to enable for identifying cost efficient and economically robust heat recovery systems and even making it possible to describe staged investment paths where the simplest investments are taken first allowing for further systems extension in order to realize the a larger share of the heat recovery potential.
  •  
20.
  •  
21.
  • Hackl, Roman, 1981, et al. (author)
  • Implementing Energy Efficiency Measures in Industrial Clusters - A Design Approach for Site-Wide Heat Recovery Systems
  • 2014
  • In: Chemical Engineering Transactions. - 2283-9216 .- 2283-9216. ; 39:Special Issue, s. 103-108
  • Journal article (peer-reviewed)abstract
    • Heat integration between chemical production facilities in an industrial cluster provides significant cost savings opportunities. While single chemical processes are often well integrated, site-wide heat integration based on Total Site Analysis (TSA) tools often identifies opportunities to further increase energy efficiency. However, further development of the TSA methodology is required to improve its applicability for identifying practical heat integration measures and providing key information for investment decision makers. The design of common site-wide heat recovery systems in an industrial cluster is a complex task in which a large number of aspects other than thermal process and utility flows must be considered. This paper presents a procedure for identifying site-wide heat recovery measures based on TSA. The proposed approach is illustrated for a chemical cluster located on the West Coast of Sweden, showing feasible site-wide heat recovery systems achieving up to 42 % of the maximum total site heat recovery target of 129 MW. A number of systems are suggested ranging from low complexity achieving a minor share of the heat recovery potential to complex, strongly interdependent systems demanding large investments and a high level of collaboration. Estimated pay-back periods for the proposed systems range from 3.2 to 4.2 years, while up to approx. 12 % of the cluster's CO2 emissions can be avoided.
  •  
22.
  • Hackl, Roman, 1981, et al. (author)
  • Opportunities for Process Integrated Biorefinery Concepts in the Chemical Cluster in Stenungsund
  • 2010
  • Reports (other academic/artistic)abstract
    • The energy and material needs of human society are increasing while at the same time fossil resources decline. Greenhouse gas (GHG) emissions are influencing the world’s climate. The potential for substituting fossil hydrocarbons in synthetic products and liquid fuels by renewable raw materials is being discussed in order to fight climate change and decrease dependency on fossil resources. The biorefinery concept is a way to accomplish this transition. A wide range of renewable raw materials can be converted into value added products and therefore substitute fossil feedstocks. High efficiency is very important in order to profitably implement biorefinery concepts. The interest for energy combines and eco-industrial parks is increasing nowadays as they offer the opportunity to exchange materials and energy between two or more industries and also the society. Therefore integration of biorefinery concepts into industrial cluster can be advantageous. In this study suitable biorefinery concepts are identified and analysed with respect to integration opportunities in Sweden’s largest chemical cluster in Stenungsund. Technical, economical and environmental consequences of integrating a biorefinery in the cluster compared to stand-alone operation are identified based on mass and energy balances, knowledge on the current energy situation in the cluster and the thermal characteristics of the different biorefineries. Suitable biorefinery concepts for integration in the cluster include biomass gasification for syngas production, lignocellulosic ethanol production for conversion into ethylene and low temperature biomass drying for fuel upgrading. The current demand of steam produced in the cluster’s boilers is 122 MW at pressure levels between 85 and 1 bar(g). Excess steam from a gasification unit with an assumed operation time of 8000 h/yr can be used for cogeneration to cover parts of this demand. By integration of a gasification unit producing 160 kt_product gas/yr, 16 GWhel/yr and 128 GWhsteam/yr can be delivered to the cluster. For a stand-alone unit it is assumed that all excess steam is used for electricity production in a condensing turbine, producing 47.4 GWhel/yr. This results in increased incomes between 18.3 and 47.4 MSEK/yr in the integrated case. CO2 emissions reduction is 24.4 kt_CO2/yr higher with integration.Ethanol production from lignocellulosic raw material yields substantial amounts of residual products which can be used for heat and power generation to cover parts of the clusters current energy demand and/or deliver heat and electricity to a downstream ethanol-to-ethylene dehydration plant. The results are obtained for a process that produces 100 kt ethylene/yr and has an operating time of 8000 h/yr. A lignocellulosic ethanol plant producing the feedstock (174 kt ethanol/yr) to an ethanol-to-ethylene plant has an energy surplus of 195.2 GWh/yr when all residues are combusted. In an integrated plant this yields 21.8 GWhel/yr and 168 GWhsteam/yr to the cluster and/or the ethanol-to-ethylene plant, while in stand-alone operation (only production of electricity from excess steam) 64.3 GWhel/yr can be produced. Incomes by integration are between 24.8 and 64.2 MSEK/yr higher and CO2 emissions reduction is increased by 31.2 kt/yr by integration.An improved utility system for maximum energy recovery was developed in a previous total site analysis (TSA) study. The residual waste heat is 498 MW at 99 °C to 27 °C. Utilising this heat for low temperature drying of biomass was compared to stand-alone dryer operation. This gave a total potential of 4.3*106 tonnes dried biomass per year (15 wt-% moisture content). By integration 129 SEK/t_dry mass less fuel costs and 234 kg/t_dry mass less CO2 emissions where found.
  •  
23.
  • Hackl, Roman, 1981, et al. (author)
  • Process integration study of a biorefinery producing ethylene from lignocellulosic feedstock for a chemical cluster
  • 2011
  • In: 6th Dubrovnik Conference on Sustainable Development of Energy, Water and Environment Systems. ; 2011
  • Conference paper (peer-reviewed)abstract
    • Biorefineries are a way to achieve the transition from our fossil feedstock based society towards the use of sustainable raw materials. Heat integration can help to increase the overall energy efficiency. Therefore integration of biorefinery concepts with industrial clusters can be advantageous. The chemical cluster investigated in this paper consumes a large amount of ethylene. The integration potential of a lignocellulosic ethanol plant and an ethanol dehydration plant is investigated. Based upon Aspen+ simulations integration opportunities at four different levels were identified using traditional Pinch Analysis and Total Site Analysis (TSA): (1) internal integration within each of the two separate processes; (2) heat integration of the two processes with each other; (3) heat integration of the processes with direct material flow from the upstream process to teh downstream process, and (4) integration of the two combined processes with an existing chemical cluster. Savings of up to 51 % utility steam by integrating the lignocellulosic ethanol production process with the ethylene dehydration and the chemical cluster were identified.
  •  
24.
  • Hackl, Roman, 1981, et al. (author)
  • Targeting for Energy Efficiency and Improved Energy Collaboration Between Different Companies Using Total Site Analysis (TSA)
  • 2010
  • In: Chemical Engineering Transactions. - 2283-9216 .- 2283-9216. ; 21, s. 301-306
  • Conference paper (peer-reviewed)abstract
    • Rising fuel prices, the threat of global warming and the start of the 2nd period of the EU Emission Trading System make efficient use of energy more and more important. Industrial clusters have the potential to significantly increase energy efficiency by energy collaboration. In this paper Sweden’s largest chemical cluster is analysed using the Total Site Analysis (TSA) method. The cluster consists of 5 chemical companies producing a variety of products. The overall heating and cooling demands of the site are around 442 MW and 953 MW, respectively. 122 MW of heat is produced from internally generated and purchased fuels and delivered to the processes.TSA is used to stepwise design a site-wide utility system which improves energy efficiency. It is shown that utility savings of up to 122 MW can be achieved, plus a steam excess of 7 MW. The proposed retrofitted utility system involves the introduction of a site-wide hot water circuit, increased recovery of low pressure steam and changes in steam levels in several heat exchangers. Qualitative evaluation of the suggested measures shows that 60 MW of the savings potential can be expected to be achieved with moderate changes to the process utility system.
  •  
25.
  • Hackl, Roman, 1981, et al. (author)
  • Targeting for energy efficiency and improved energy collaboration between different companies using total site analysis (TSA)
  • 2010
  • In: 19th International Congress of Chemical and Process Engineering, CHISA 2010 and 7th European Congress of Chemical Engineering, ECCE-7; Prague; Czech Republic; 28 August 2010 through 1 September 2010.
  • Conference paper (peer-reviewed)abstract
    • A chemical cluster located in Stenungsund on the West Coast of Sweden is analyzed to determine the total site level energy efficiency opportunities using the Total Site Analysis (TSA) method. The cluster consists of 5 chemical companies, i.e., AGA Gas AB producing industrial gases, Akzo Nobel Sverige AB producing amines and surfactants, Borealis AB producing ethylene, and PE, INEOS Sverige AB producing PVC and Perstorp Oxo AB producing speciality chemicals. The heart of the cluster is a steam cracker plant run by Borealis, which delivers partly feedstock and fuel to the other plants. The overall heating and cooling demands of the site are ∼ 442 and 953 Mw, respectively. TSA is used to stepwise design a site-wide utility system which improves energy efficiency. Utility savings of ≤ 122 Mw can be achieved, plus a steam excess of 7 Mw. Qualitative evaluation of the suggested measures shows that 60 Mw of the savings potential can be expected to be achieved with moderate changes to the process utility system. This is an abstract of a paper presented at the 19th International Congress of Chemical and Process Engineering and 7th European Congress of Chemical Engineering (Prague, Czech Republic 8/28/2010-9/1/2010).
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 33

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view