SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Hong Mun Gwan) "

Search: WFRF:(Hong Mun Gwan)

  • Result 1-25 of 57
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Allesøe, Rosa Lundbye, et al. (author)
  • Discovery of drug–omics associations in type 2 diabetes with generative deep-learning models
  • 2023
  • In: Nature Biotechnology. - : Springer Nature. - 1087-0156 .- 1546-1696. ; 41:3, s. 399-408
  • Journal article (peer-reviewed)abstract
    • The application of multiple omics technologies in biomedical cohorts has the potential to reveal patient-level disease characteristics and individualized response to treatment. However, the scale and heterogeneous nature of multi-modal data makes integration and inference a non-trivial task. We developed a deep-learning-based framework, multi-omics variational autoencoders (MOVE), to integrate such data and applied it to a cohort of 789 people with newly diagnosed type 2 diabetes with deep multi-omics phenotyping from the DIRECT consortium. Using in silico perturbations, we identified drug–omics associations across the multi-modal datasets for the 20 most prevalent drugs given to people with type 2 diabetes with substantially higher sensitivity than univariate statistical tests. From these, we among others, identified novel associations between metformin and the gut microbiota as well as opposite molecular responses for the two statins, simvastatin and atorvastatin. We used the associations to quantify drug–drug similarities, assess the degree of polypharmacy and conclude that drug effects are distributed across the multi-omics modalities.
  •  
2.
  • Atabaki Pasdar, Naeimeh, et al. (author)
  • Predicting and elucidating the etiology of fatty liver disease: A machine learning modeling and validation study in the IMI DIRECT cohorts
  • 2020
  • In: PLoS Medicine. - San Francisco : Public Library of Science (PLoS). - 1549-1676 .- 1549-1277. ; 17:6, s. 1003149-1003149
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is highly prevalent and causes serious health complications in individuals with and without type 2 diabetes (T2D). Early diagnosis of NAFLD is important, as this can help prevent irreversible damage to the liver and, ultimately, hepatocellular carcinomas. We sought to expand etiological understanding and develop a diagnostic tool for NAFLD using machine learning. METHODS AND FINDINGS: We utilized the baseline data from IMI DIRECT, a multicenter prospective cohort study of 3,029 European-ancestry adults recently diagnosed with T2D (n = 795) or at high risk of developing the disease (n = 2,234). Multi-omics (genetic, transcriptomic, proteomic, and metabolomic) and clinical (liver enzymes and other serological biomarkers, anthropometry, measures of beta-cell function, insulin sensitivity, and lifestyle) data comprised the key input variables. The models were trained on MRI-image-derived liver fat content (
  •  
3.
  • Bar, N., et al. (author)
  • A reference map of potential determinants for the human serum metabolome
  • 2020
  • In: Nature. - : Nature Research. - 0028-0836 .- 1476-4687. ; 588:7836, s. 135-140
  • Journal article (peer-reviewed)abstract
    • The serum metabolome contains a plethora of biomarkers and causative agents of various diseases, some of which are endogenously produced and some that have been taken up from the environment1. The origins of specific compounds are known, including metabolites that are highly heritable2,3, or those that are influenced by the gut microbiome4, by lifestyle choices such as smoking5, or by diet6. However, the key determinants of most metabolites are still poorly understood. Here we measured the levels of 1,251 metabolites in serum samples from a unique and deeply phenotyped healthy human cohort of 491 individuals. We applied machine-learning algorithms to predict metabolite levels in held-out individuals on the basis of host genetics, gut microbiome, clinical parameters, diet, lifestyle and anthropometric measurements, and obtained statistically significant predictions for more than 76% of the profiled metabolites. Diet and microbiome had the strongest predictive power, and each explained hundreds of metabolites—in some cases, explaining more than 50% of the observed variance. We further validated microbiome-related predictions by showing a high replication rate in two geographically independent cohorts7,8 that were not available to us when we trained the algorithms. We used feature attribution analysis9 to reveal specific dietary and bacterial interactions. We further demonstrate that some of these interactions might be causal, as some metabolites that we predicted to be positively associated with bread were found to increase after a randomized clinical trial of bread intervention. Overall, our results reveal potential determinants of more than 800 metabolites, paving the way towards a mechanistic understanding of alterations in metabolites under different conditions and to designing interventions for manipulating the levels of circulating metabolites. 
  •  
4.
  • Bennet, Anna M, et al. (author)
  • Genetic association of sequence variants near AGER/NOTCH4 and dementia.
  • 2011
  • In: Journal of Alzheimer's disease : JAD. - 1875-8908. ; 24:3, s. 475-84
  • Journal article (peer-reviewed)abstract
    • We performed a survey of sequence variation in a series of 20 genes involved in inflammation-related pathways for association with dementia risk in twin and unrelated case-control samples consisting in total of 1462 Swedish dementia casesand 1929 controls. For a total of 218 tested genetic markers, strong evidence was obtained implicating a region near AGER and NOTCH4 on chromosome 6p with replication across both samples and maximum combined significance at marker rs1800625 (OR = 1.37, 95% CI 1.19–1.56, p = 1.36×10(–6)). Imputation of the associated genomic interval provided an improved signal atrs8365, near the 3UTR of AGER (p = 7.34×10(–7)). The associated region extends 120 kb encompassing 11 candidate genes.While AGER encodes a key receptor for amyloid-β protein, an analysis of network context based upon genes now confirmed to contribute to dementia risk (AβPP, PSEN1, PSEN2, CR1, CLU, PICALM, and APOE) suggested strong functional coupling to NOTCH4, with no significant coupling to the remaining candidates. The implicated region occurs in the broad HLA locus on chromosome 6p, but associated markers were not in strong LD with known variants that regulate HLA gene function, suggesting that this may represent a signal distinct from immune-system pathways.
  •  
5.
  • Brown, A.A., et al. (author)
  • Genetic analysis of blood molecular phenotypes reveals common properties in the regulatory networks affecting complex traits
  • 2023
  • In: Nature Communications. - : Springer Nature. - 2041-1723. ; 14
  • Journal article (peer-reviewed)abstract
    • We evaluate the shared genetic regulation of mRNA molecules, proteins and metabolites derived from whole blood from 3029 human donors. We find abundant allelic heterogeneity, where multiple variants regulate a particular molecular phenotype, and pleiotropy, where a single variant associates with multiple molecular phenotypes over multiple genomic regions. The highest proportion of share genetic regulation is detected between gene expression and proteins (66.6%), with a further median shared genetic associations across 49 different tissues of 78.3% and 62.4% between plasma proteins and gene expression. We represent the genetic and molecular associations in networks including 2828 known GWAS variants, showing that GWAS variants are more often connected to gene expression in trans than other molecular phenotypes in the network. Our work provides a roadmap to understanding molecular networks and deriving the underlying mechanism of action of GWAS variants using different molecular phenotypes in an accessible tissue. © 2023, Springer Nature Limited.
  •  
6.
  • Bruzelius, Maria, et al. (author)
  • PDGFB, a new candidate plasma biomarker for venous thromboembolism : results from the VEREMA affinity proteomics study
  • 2016
  • In: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 128:23, s. E59-E66
  • Journal article (peer-reviewed)abstract
    • There is a clear clinical need for high-specificity plasma biomarkers for predicting risk of venous thromboembolism (VTE), but thus far, such markers have remained elusive. Utilizing affinity reagents from the Human Protein Atlas project and multiplexed immuoassays, we extensively analyzed plasma samples from 2 individual studies to identify candidate protein markers associated with VTE risk. We screened plasma samples from 88 VTE cases and 85 matched controls, collected as part of the Swedish Venous Thromboembolism Biomarker Study, using suspension bead arrays composed of 755 antibodies targeting 408 candidate proteins. We identified significant associations between VTE occurrence and plasma levels of human immunodeficiency virus type I enhancer binding protein 1 (HIVEP1), von Willebrand factor (VWF), glutathione peroxidase 3 (GPX3), and platelet-derived growth factor beta (PDGFB). For replication, we profiled plasma samples of 580 cases and 589 controls from the French FARIVE study. These results confirmed the association of VWF and PDGFB with VTE after correction for multiple testing, whereas only weak trends were observed for HIVEP1 and GPX3. Although plasma levels of VWF and PDGFB correlated modestly (rho similar to 0.30) with each other, they were independently associated with VTE risk in a joint model in FARIVE (VWF P < .001; PDGFB P = .002). PDGF. was verified as the target of the capture antibody by immunocapture mass spectrometry and sandwich enzyme-linked immunosorbent assay. In conclusion, we demonstrate that high-throughput affinity plasma proteomic profiling is a valuable research strategy to identify potential candidate biomarkers for thrombosis-related disorders, and our study suggests a novel association of PDGFB plasma levels with VTE.
  •  
7.
  •  
8.
  • Byström, Sanna, et al. (author)
  • Affinity Proteomic Profiling of Plasma, Cerebrospinal Fluid, and Brain Tissue within Multiple Sclerosis
  • 2014
  • In: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 13:11, s. 4607-4619
  • Journal article (peer-reviewed)abstract
    • The brain is a vital organ and because it is well shielded from the outside environment, possibilities for noninvasive analysis are often limited. Instead, fluids taken from the spinal cord or circulatory system are preferred sources for the discovery of candidate markers within neurological diseases. In the context of multiple sclerosis (MS), we applied an affinity proteomic strategy and screened 22 plasma samples with 4595 antibodies (3450 genes) on bead arrays, then defined 375 antibodies (334 genes) for targeted analysis in a set of 172 samples and finally used 101 antibodies (43 genes) on 443 plasma as well as 573 cerebrospinal spinal fluid (CSF) samples. This revealed alteration of protein profiles in relation to MS subtypes for IRF8, IL7, METTL14, SLC30A7, and GAP43. Respective antibodies were subsequently used for immunofluorescence on human post-mortem brain tissue with MS pathology for expression and association analysis. There, antibodies for IRF8, IL7, and METTL14 stained neurons in proximity of lesions, which highlighted these candidate protein targets for further studies within MS and brain tissue. The affinity proteomic translation of profiles discovered by profiling human body fluids and tissue provides a powerful strategy to suggest additional candidates to studies of neurological disorders.
  •  
9.
  • Byström, Sanna, et al. (author)
  • Affinity proteomic profiling of plasma for proteins associated to area-based mammographic breast density
  • 2018
  • In: Breast Cancer Research. - : BIOMED CENTRAL LTD. - 1465-5411 .- 1465-542X. ; 20
  • Journal article (peer-reviewed)abstract
    • Background: Mammographic breast density is one of the strongest risk factors for breast cancer, but molecular understanding of how breast density relates to cancer risk is less complete. Studies of proteins in blood plasma, possibly associated with mammographic density, are well-suited as these allow large-scale analyses and might shed light on the association between breast cancer and breast density. Methods: Plasma samples from 1329 women in the Swedish KARMA project, without prior history of breast cancer, were profiled with antibody suspension bead array (SBA) assays. Two sample sets comprising 729 and 600 women were screened by two different SBAs targeting a total number of 357 proteins. Protein targets were selected through searching the literature, for either being related to breast cancer or for being linked to the extracellular matrix. Association between proteins and absolute area-based breast density (AD) was assessed by quantile regression, adjusting for age and body mass index (BMI). Results: Plasma profiling revealed linear association between 20 proteins and AD, concordant in the two sets of samples (p < 0.05). Plasma levels of seven proteins were positively associated and 13 proteins negatively associated with AD. For eleven of these proteins evidence for gene expression in breast tissue existed. Among these, ABCC11, TNFRSF10D, F11R and ERRF were positively associated with AD, and SHC1, CFLAR, ACOX2, ITGB6, RASSF1, FANCD2 and IRX5 were negatively associated with AD. Conclusions: Screening proteins in plasma indicates associations between breast density and processes of tissue homeostasis, DNA repair, cancer development and/or progression in breast cancer. Further validation and follow-up studies of the shortlisted protein candidates in independent cohorts will be needed to infer their role in breast density and its progression in premenopausal and postmenopausal women.
  •  
10.
  •  
11.
  • Cederroth, Christopher R., et al. (author)
  • Screening for Circulating Inflammatory Proteins Does Not Reveal Plasma Biomarkers of Constant Tinnitus
  • 2023
  • In: Journal of the Association for Research in Otolaryngology. - 1525-3961 .- 1438-7573. ; 24:6, s. 593-606
  • Journal article (peer-reviewed)abstract
    • Background and Objective Tinnitus would benefit from an objective biomarker. The goal of this study is to identify plasma biomarkers of constant and chronic tinnitus among selected circulating inflammatory proteins.Methods A case–control retrospective study on 548 cases with constant tinnitus and 548 matched controls from the Swedish Tinnitus Outreach Project (STOP), whose plasma samples were examined using Olink’s Inflammatory panel. Replication and meta-analysis were performed using the same method on samples from the TwinsUK cohort. Participants from LifeGene, whose blood was collected in Stockholm and Umeå, were recruited to STOP for a tinnitus subtyping study. An age and sex matching was performed at the individual level. TwinsUK participants (n = 928) were selected based on self-reported tinnitus status over 2 to 10 years. Primary outcomes include normalized levels for 96 circulating proteins, which were used as an index test. No reference standard was available in this study.Results After adjustment for age, sex, BMI, smoking, hearing loss, and laboratory site, the top proteins identified were FGF-21, MCP4, GDNF, CXCL9, and MCP-1; however, these were no longer statistically significant after correction for multiple testing. Stratification by sex did not yield any significant associations. Similarly, associations with hearing loss or other tinnitus-related comorbidities such as stress, anxiety, depression, hyperacusis, temporomandibular joint disorders, and headache did not yield any significant associations. Analysis in the TwinsUK failed in replicating the top candidates. Meta-analysis of STOP and TwinsUK did not reveal any significant association. Using elastic net regularization, models exhibited poor predictive capacity tinnitus based on inflammatory markers [sensitivity = 0.52 (95% CI 0.47–0.57), specificity = 0.53 (0.48–0.58), positive predictive value = 0.52 (0.47–0.56), negative predictive values = 0.53 (0.49–0.58), and AUC = 0.53 (0.49–0.56)].Discussion Our results did not identify significant associations of the selected inflammatory proteins with constant tinnitus. Future studies examining longitudinal relations among those with more severe tinnitus and using more recent expanded proteomics platforms and sampling of cerebrospinal fluid could increase the likelihood of identifying relevant molecular biomarkers.
  •  
12.
  • Cederroth, Christopher R., et al. (author)
  • Screening for Circulating Inflammatory Proteins Does Not Reveal Plasma Biomarkers of Constant Tinnitus
  • 2023
  • In: Journal of the Association for Research in Otolaryngology. - : Springer Nature. - 1525-3961 .- 1438-7573. ; 24:6, s. 593-606
  • Journal article (peer-reviewed)abstract
    • Background and Objective: Tinnitus would benefit from an objective biomarker. The goal of this study is to identify plasma biomarkers of constant and chronic tinnitus among selected circulating inflammatory proteins. Methods: A case–control retrospective study on 548 cases with constant tinnitus and 548 matched controls from the Swedish Tinnitus Outreach Project (STOP), whose plasma samples were examined using Olink’s Inflammatory panel. Replication and meta-analysis were performed using the same method on samples from the TwinsUK cohort. Participants from LifeGene, whose blood was collected in Stockholm and Umeå, were recruited to STOP for a tinnitus subtyping study. An age and sex matching was performed at the individual level. TwinsUK participants (n = 928) were selected based on self-reported tinnitus status over 2 to 10 years. Primary outcomes include normalized levels for 96 circulating proteins, which were used as an index test. No reference standard was available in this study. Results: After adjustment for age, sex, BMI, smoking, hearing loss, and laboratory site, the top proteins identified were FGF-21, MCP4, GDNF, CXCL9, and MCP-1; however, these were no longer statistically significant after correction for multiple testing. Stratification by sex did not yield any significant associations. Similarly, associations with hearing loss or other tinnitus-related comorbidities such as stress, anxiety, depression, hyperacusis, temporomandibular joint disorders, and headache did not yield any significant associations. Analysis in the TwinsUK failed in replicating the top candidates. Meta-analysis of STOP and TwinsUK did not reveal any significant association. Using elastic net regularization, models exhibited poor predictive capacity tinnitus based on inflammatory markers [sensitivity = 0.52 (95% CI 0.47–0.57), specificity = 0.53 (0.48–0.58), positive predictive value = 0.52 (0.47–0.56), negative predictive values = 0.53 (0.49–0.58), and AUC = 0.53 (0.49–0.56)]. Discussion: Our results did not identify significant associations of the selected inflammatory proteins with constant tinnitus. Future studies examining longitudinal relations among those with more severe tinnitus and using more recent expanded proteomics platforms and sampling of cerebrospinal fluid could increase the likelihood of identifying relevant molecular biomarkers.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  • Dawed, Adem Y., et al. (author)
  • Pharmacogenomics of GLP-1 receptor agonists : a genome- wide analysis of observational data and large randomised controlled trials
  • 2023
  • In: The Lancet Diabetes and Endocrinology. - : ELSEVIER SCIENCE INC. - 2213-8587 .- 2213-8595. ; 11:1, s. 33-41
  • Journal article (peer-reviewed)abstract
    • Background: In the treatment of type 2 diabetes, GLP-1 receptor agonists lower blood glucose concentrations, body weight, and have cardiovascular benefits. The efficacy and side effects of GLP-1 receptor agonists vary between people. Human pharmacogenomic studies of this inter-individual variation can provide both biological insight into drug action and provide biomarkers to inform clinical decision making. We therefore aimed to identify genetic variants associated with glycaemic response to GLP-1 receptor agonist treatment. Methods:In this genome-wide analysis we included adults (aged & GE;18 years) with type 2 diabetes treated with GLP-1 receptor agonists with baseline HbA1c of 7% or more (53 mmol/mol) from four prospective observational cohorts (DIRECT, PRIBA, PROMASTER, and GoDARTS) and two randomised clinical trials (HARMONY phase 3 and AWARD). The primary endpoint was HbA1c reduction at 6 months after starting GLP-1 receptor agonists. We evaluated variants in GLP1R, then did a genome-wide association study and gene-based burden tests. Findings:4571 adults were included in our analysis, of these, 3339 (73%) were White European, 449 (10%) Hispanic, 312 (7%) American Indian or Alaskan Native, and 471 (10%) were other, and around 2140 (47%) of the participants were women. Variation in HbA1c reduction with GLP-1 receptor agonists treatment was associated with rs6923761G & RARR;A (Gly168Ser) in the GLP1R (0.08% [95% CI 0.04-0.12] or 0.9 mmol/mol lower reduction in HbA1c per serine, p=6.0 x 10-5) and low frequency variants in ARRB1 (optimal sequence kernel association test p=6.7 x 10-8), largely driven by rs140226575G & RARR;A (Thr370Met; 0.25% [SE 0.06] or 2.7 mmol/mol [SE 0.7] greater HbA1c reduction per methionine, p=5.2 x 10-6). A similar effect size for the ARRB1 Thr370Met was seen in Hispanic and American Indian or Alaska Native populations who have a higher frequency of this variant (6-11%) than in White European populations. Combining these two genes identified 4% of the population who had a 30% greater reduction in HbA1c than the 9% of the population with the worse response. Interpretation:This genome-wide pharmacogenomic study of GLP-1 receptor agonists provides novel biological and clinical insights. Clinically, when genotype is routinely available at the point of prescribing, individuals with ARRB1 variants might benefit from earlier initiation of GLP-1 receptor agonists.
  •  
17.
  • Dodig-Crnkovic, Tea, et al. (author)
  • Facets of individual-specific health signatures determined from longitudinal plasma proteome profiling
  • 2020
  • In: Ebiomedicine. - : Elsevier BV. - 2352-3964. ; 57
  • Journal article (peer-reviewed)abstract
    • Background: Precision medicine approaches aim to tackle diseases on an individual level through molecular profiling. Despite the growing knowledge about diseases and the reported diversity of molecular phenotypes, the descriptions of human health on an individual level have been far less elaborate. Methods: To provide insights into the longitudinal protein signatures of well-being, we profiled blood plasma collected over one year from 101 clinically healthy individuals using multiplexed antibody assays. After applying an antibody validation scheme, we utilized > 700 protein profiles for in-depth analyses of the individuals' short-term health trajectories. Findings: We found signatures of circulating proteomes to be highly individual-specific. Considering technical and longitudinal variability, we observed that 49% of the protein profiles were stable over one year. We also identified eight networks of proteins in which 11-242 proteins covaried over time. For each participant, there were unique protein profiles of which some could be explained by associations to genetic variants. Interpretation: This observational and non-interventional study identifyed noticeable diversity among clinically healthy subjects, and facets of individual-specific signatures emerged by monitoring the variability of the circulating proteomes over time. To enable more personal hence precise assessments of health states, longitudinal profiling of circulating proteomes can provide a valuable component for precision medicine approaches.
  •  
18.
  • Dodig-Crnković, Tea (author)
  • On the application and validation of multiplexed affinity assays
  • 2020
  • Doctoral thesis (other academic/artistic)abstract
    • Proteins are essential macromolecules that carry out complex functions in human cells, tissues, and organs. They regulate a diverse set of biological processes and protect against pathogens. However, dysregulation or malformation of proteins can cause disease. By characterizing proteins in health and disease, we can gain insights into disease aetiology and identify druggable targets to treat disorders. By bringing protein discoveries from the research lab into clinical practice, protein assays have been and will continue to be important tools for enabling and improving medical decision-making. The work presented in this thesis concerns both exploratory and targeted affinity-based assays applied for the study of proteins. High-throughput and multiplexed suspension bead arrays have been the primary technology for measuring proteins with antibodies in samples such as human blood. Identification and validation of protein-protein interactions that may provide novel insights into the druggable proteome have also been carried out. Throughout the projects, methods for validating the observations have been pursued and include replication in independent sample sets, as well as the assessment of antibody selectivity via other proteomics assays or orthogonal methods such as genetic associations. In Paper I, we used multiplexed exploratory antibody arrays comprising almost 1.500 affinity binders to study proteins that circulate in plasma. Here, the focus was to determine the longitudinal variability of proteins. We analysed samples from 101 clinically healthy individuals, collected each third month for one year. The protein data provided insights into inter-individual diversity and the unique molecular fingerprint of each participant. We found that 49% of the studied proteins were stable across one year, as these had low variability in each individual. Eight modules, each containing 11-242 proteins, were found to co-vary across one year. We also found genetic variations to influence 15 of the detected protein profiles and confirmed selected indications in an independent set of 3.000 subjects. In summary, we observed the existence of individual-specific protein profiles and found that short-term and continuous changes occurred in almost every participant. In Paper II, we investigated blood-derived serum and plasma to identify age-associated proteins. We started from a large set of exploratory antibody bead arrays to screen 156 individuals aged 50-92 years. We found protein profiles of the histidine-rich glycoprotein (HRG) to be significantly associated with age. This association was further corroborated by the analysis of >4.000 individuals from eight additional and independent sets of blood samples. We further validated the HRG protein profiles by sandwich assays and protein microarrays developed in-house. Comparing genetic data and HRG profiles obtained by two independent antibodies, we observed strong but inverse associations to the genetic variants for two anti-HRG antibodies. In Paper III, we applied multiplexed assays for the detection of autoantibodies against cancer-testis antigens (CTAs) in 133 non-small cell lung cancer (NSCLC) patients. We found reactivity against 29 unique CTAs exclusively in cases, compared to 57 matched controls with benign lung diseases. The presence of six CTAs was further confirmed in an independent set of 34 NSCLC cases. Analysis of longitudinal samples from seven patients demonstrated that the presence of CTA autoantibodies was stable over time for each of the individuals. In Paper IV, we developed a novel multiplexed sandwich-immunoassay for the detection of interaction partners to G-protein coupled receptors (GPCRs). This pharmaceutically important family of membrane proteins is believed to be regulated by another group of receptor activity-modulating proteins (RAMPs) by the formation of protein complexes. We studied cell lysates expressing combinations of 23 GPCRs with three RAMPs. We confirmed most of the previously reported interaction pairs and additionally found evidence for 15 new GPCR-RAMP complexes. All interactions were validated using epitope tags that were engineered onto the proteins. Selected complexes were further validated by in situ proximity ligation assays performed in cell membranes. In summary, the work included in this thesis describes the use of multiplexed affinity-based assays for research within plasma proteomics and the interrogation of protein complexes. The work highlights the method’s potential for the identification of circulating proteins that may aid and add to the current knowledge about human health and disease.
  •  
19.
  • Drobin, Kimi, et al. (author)
  • Molecular Profiling for Predictors of Radiosensitivity in Patients with Breast or Head-and-Neck Cancer
  • 2020
  • In: Cancers. - : MDPI AG. - 2072-6694. ; 12:3
  • Journal article (peer-reviewed)abstract
    • Nearly half of all cancers are treated with radiotherapy alone or in combination with other treatments, where damage to normal tissues is a limiting factor for the treatment. Radiotherapy-induced adverse health effects, mostly of importance for cancer patients with long-term survival, may appear during or long time after finishing radiotherapy and depending on the patient's radiosensitivity. Currently, there is no assay available that can reliably predict the individual's response to radiotherapy. We profiled two study sets from breast (n = 29) and head-and-neck cancer patients (n = 74) that included radiosensitive patients and matched radioresistant controls. We studied 55 single nucleotide polymorphisms (SNPs) in 33 genes by DNA genotyping and 130 circulating proteins by affinity-based plasma proteomics. In both study sets, we discovered several plasma proteins with the predictive power to find radiosensitive patients (adjusted p < 0.05) and validated the two most predictive proteins (THPO and STIM1) by sandwich immunoassays. By integrating genotypic and proteomic data into an analysis model, it was found that the proteins CHIT1, PDGFB, PNKD, RP2, SERPINC1, SLC4A, STIM1, and THPO, as well as the VEGFA gene variant rs69947, predicted radiosensitivity of our breast cancer (AUC = 0.76) and head-and-neck cancer (AUC = 0.89) patients. In conclusion, circulating proteins and a SNP variant of VEGFA suggest that processes such as vascular growth capacity, immune response, DNA repair and oxidative stress/hypoxia may be involved in an individual's risk of experiencing radiation-induced toxicity.
  •  
20.
  •  
21.
  • Drobin, Kimi, et al. (author)
  • Targeted Analysis of Serum Proteins Encoded at Known Inflammatory Bowel Disease Risk Loci
  • 2019
  • In: Inflammatory Bowel Diseases. - : Oxford University Press. - 1078-0998 .- 1536-4844. ; 25:2, s. 306-316
  • Journal article (peer-reviewed)abstract
    • Background: Few studies have investigated the blood proteome of inflammatory bowel disease (IBD). We characterized the serum abundance of proteins encoded at 163 known IBD risk loci and tested these proteins for their biomarker discovery potential.Methods: Based on the Human Protein Atlas (HPA) antibody availability, 218 proteins from genes mapping at 163 IBD risk loci were selected. Targeted serum protein profiles from 49 Crohn's disease (CD) patients, 51 ulcerative colitis (UC) patients, and 50 sex- and age-matched healthy individuals were obtained using multiplexed antibody suspension bead array assays. Differences in relative serum abundance levels between disease groups and controls were examined. Replication was attempted for CD-UC comparisons (including disease subtypes) by including 64 additional patients (33 CD and 31 UC). Antibodies targeting a potentially novel risk protein were validated by paired antibodies, Western blot, immuno-capture mass spectrometry, and epitope mapping.Results: By univariate analysis, 13 proteins mostly related to neutrophil, T-cell, and B-cell activation and function were differentially expressed in IBD patients vs healthy controls, 3 in CD patients vs healthy controls and 2 in UC patients vs healthy controls (q < 0.01). Multivariate analyses further differentiated disease groups from healthy controls and CD subtypes from UC (P < 0.05). Extended characterization of an antibody targeting a novel, discriminative serum marker, the laccase (multicopper oxidoreductase) domain containing 1 (LACC1) protein, provided evidence for antibody on-target specificity.Conclusions: Using affinity proteomics, we identified a set of IBD-associated serum proteins encoded at IBD risk loci. These candidate proteins hold the potential to be exploited as diagnostic biomarkers of IBD.
  •  
22.
  • Fredolini, Claudia, et al. (author)
  • Immunocapture strategies in translational proteomics
  • 2016
  • In: Expert Review of Proteomics. - : Taylor & Francis. - 1478-9450 .- 1744-8387. ; 13:1, s. 83-98
  • Research review (peer-reviewed)abstract
    • Aiming at clinical studies of human diseases, antibody-assisted assays have been applied to biomarker discovery and toward a streamlined translation from patient profiling to assays supporting personalized treatments. In recent years, integrated strategies to couple and combine antibodies with mass spectrometry-based proteomic efforts have emerged, allowing for novel possibilities in basic and clinical research. Described in this review are some of the field's current and emerging immunocapture approaches from an affinity proteomics perspective. Discussed are some of their advantages, pitfalls and opportunities for the next phase in clinical and translational proteomics.
  •  
23.
  • Grahn, Oskar, et al. (author)
  • Mutation of the cyclooxygenase 2 gene promoter and anastomotic leakage in colorectal cancer patients : retrospective cohort study
  • 2024
  • In: BJS Open. - : Oxford University Press. - 2474-9842. ; 8:1
  • Journal article (peer-reviewed)abstract
    • Anastomotic leakage after surgery for colorectal cancer is a serious complication, causing an increased morbidity rate and mortality rate1,2.There is a debate and conflicting evidence on whether non-steroidal anti-inflammatory drugs (NSAIDs) increase the risk of leak3,4. NSAIDs act by inhibiting cyclooxygenase (COX) enzymes, which can be subdivided into isoenzymes COX-1 and COX-2. In a seminal study by Reisinger et al.5, knocking out the COX-2 gene resulted in an increase of colonic anastomotic leaks in mice. In a complementary cohort of colorectal cancer patients5, an increased frequency of anastomotic leaks was demonstrated among those homozygous for the COX-2 gene promoter mutation −765G > C (also known as rs20417). This finding could potentially be translated into clinical use following external validation.Biological effects might not only be present among those homozygous for the minor allele of −765C/C. For example, the heterozygous state of −765G/C has been associated with a decreased postoperative inflammatory response6.The present study aimed to evaluate the prevalence of the polymorphism 765G > C in a Swedish cohort of colorectal cancer patients, and its association with postoperative peritoneal infection.
  •  
24.
  • Gudmundsdottir, Valborg, et al. (author)
  • Whole blood co-expression modules associate with metabolic traits and type 2 diabetes : an IMI-DIRECT study
  • 2020
  • In: Genome Medicine. - : BioMed Central. - 1756-994X. ; 12:1
  • Journal article (peer-reviewed)abstract
    • Background: The rising prevalence of type 2 diabetes (T2D) poses a major global challenge. It remains unresolved to what extent transcriptomic signatures of metabolic dysregulation and T2D can be observed in easily accessible tissues such as blood. Additionally, large-scale human studies are required to further our understanding of the putative inflammatory component of insulin resistance and T2D. Here we used transcriptomics data from individuals with (n = 789) and without (n = 2127) T2D from the IMI-DIRECT cohorts to describe the co-expression structure of whole blood that mainly reflects processes and cell types of the immune system, and how it relates to metabolically relevant clinical traits and T2D.Methods: Clusters of co-expressed genes were identified in the non-diabetic IMI-DIRECT cohort and evaluated with regard to stability, as well as preservation and rewiring in the cohort of individuals with T2D. We performed functional and immune cell signature enrichment analyses, and a genome-wide association study to describe the genetic regulation of the modules. Phenotypic and trans-omics associations of the transcriptomic modules were investigated across both IMI-DIRECT cohorts.Results: We identified 55 whole blood co-expression modules, some of which clustered in larger super-modules. We identified a large number of associations between these transcriptomic modules and measures of insulin action and glucose tolerance. Some of the metabolically linked modules reflect neutrophil-lymphocyte ratio in blood while others are independent of white blood cell estimates, including a module of genes encoding neutrophil granule proteins with antibacterial properties for which the strongest associations with clinical traits and T2D status were observed. Through the integration of genetic and multi-omics data, we provide a holistic view of the regulation and molecular context of whole blood transcriptomic modules. We furthermore identified an overlap between genetic signals for T2D and co-expression modules involved in type II interferon signaling.Conclusions: Our results offer a large-scale map of whole blood transcriptomic modules in the context of metabolic disease and point to novel biological candidates for future studies related to T2D.
  •  
25.
  • Hellström, Cecilia, et al. (author)
  • High-density serum/plasma reverse phase protein arrays
  • 2017
  • In: Serum/Plasma Proteomics. - New York, NY : Humana Press. ; , s. 229-238
  • Book chapter (peer-reviewed)abstract
    • In-depth exploration and characterization of human serum and plasma proteomes is an attractive strategy for the identification of potential prognostic or diagnostic biomarkers. The possibility of analyzing larger numbers of samples in a high-throughput fashion has markedly increased with affinity-based microarrays, thus providing higher statistical power to these biomarker studies. Here, we describe a protocol for high-density serum and plasma reverse phase protein arrays (RPPAs). We demonstrate how a biobank of 12,392 samples was immobilized and analyzed on a single microarray slide, allowing high-quality profiling of abundant target proteins across all samples in one assay.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 57
Type of publication
journal article (51)
other publication (2)
doctoral thesis (2)
research review (1)
book chapter (1)
Type of content
peer-reviewed (48)
other academic/artistic (9)
Author/Editor
Hong, Mun-Gwan (49)
Schwenk, Jochen M. (36)
Uhlén, Mathias (16)
Nilsson, Peter (11)
Forsström, Björn (7)
Pedersen, Nancy L (7)
show more...
Häussler, Ragna S. (7)
Franks, Paul (6)
Dodig-Crnkovic, Tea (6)
Edfors, Fredrik (6)
Pearson, Ewan (6)
Thomas, Cecilia Enge ... (6)
Blennow, Kaj, 1958 (5)
Wiklund, Fredrik (5)
Koivula, Robert (5)
Vinuela, Ana (5)
Sharma, Sapna (5)
Walker, Mark (5)
Dermitzakis, Emmanou ... (5)
Sharma, S. (4)
Mahajan, A. (4)
Odeberg, Jacob, Prof ... (4)
Bergström, Göran, 19 ... (4)
Walker, M (4)
Groop, L. (4)
Odeberg, Jacob (4)
Mari, A (4)
Vinuela, A (4)
Mahajan, Anubha (4)
Adamski, Jerzy (4)
Klintenberg, M (3)
Abdalla, M. (3)
Gummesson, Anders, 1 ... (3)
Fagerberg, Linn (3)
Hall, Per (3)
Froguel, P (3)
Butler, Lynn M. (3)
Mari, Andrea (3)
Ridderstråle, M. (3)
Sjöberg, Ronald (3)
Pawitan, Yudi (3)
Brunak, S. (3)
Brorsson, Caroline (3)
Forgie, Ian (3)
Giordano, G.N. (3)
Pavo, Imre (3)
Ruetten, Hartmut (3)
Franks, P.W. (3)
Fitipaldi, H. (3)
Pomares-Millan, H. (3)
show less...
University
Royal Institute of Technology (42)
Karolinska Institutet (30)
Lund University (12)
University of Gothenburg (10)
Stockholm University (10)
Uppsala University (9)
show more...
Umeå University (3)
Jönköping University (3)
Linköping University (2)
Halmstad University (1)
Örebro University (1)
Chalmers University of Technology (1)
Linnaeus University (1)
show less...
Language
English (57)
Research subject (UKÄ/SCB)
Medical and Health Sciences (47)
Natural sciences (11)
Engineering and Technology (1)
Social Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view