SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Hultqvist M) "

Search: WFRF:(Hultqvist M)

  • Result 1-25 of 306
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Schael, S., et al. (author)
  • Electroweak measurements in electron positron collisions at W-boson-pair energies at LEP
  • 2013
  • In: Physics Reports. - : Elsevier BV. - 0370-1573 .- 1873-6270. ; 532:4, s. 119-244
  • Research review (peer-reviewed)abstract
    • Electroweak measurements performed with data taken at the electron positron collider LEP at CERN from 1995 to 2000 are reported. The combined data set considered in this report corresponds to a total luminosity of about 3 fb(-1) collected by the four LEP experiments ALEPH, DELPHI, 13 and OPAL, at centre-of-mass energies ranging from 130 GeV to 209 GeV. Combining the published results of the four LEP experiments, the measurements include total and differential cross-sections in photon-pair, fermion-pair and four-fermion production, the latter resulting from both double-resonant WW and ZZ production as well as singly resonant production. Total and differential cross-sections are measured precisely, providing a stringent test of the Standard Model at centre-of-mass energies never explored before in electron positron collisions. Final-state interaction effects in four-fermion production, such as those arising from colour reconnection and Bose Einstein correlations between the two W decay systems arising in WW production, are searched for and upper limits on the strength of possible effects are obtained. The data are used to determine fundamental properties of the W boson and the electroweak theory. Among others, the mass and width of the W boson, m(w) and Gamma(w), the branching fraction of W decays to hadrons, B(W -> had), and the trilinear gauge-boson self-couplings g(1)(Z), K-gamma and lambda(gamma), are determined to be: m(w) = 80.376 +/- 0.033 GeV Gamma(w) = 2.195 +/- 0.083 GeV B(W -> had) = 67.41 +/- 0.27% g(1)(Z) = 0.984(-0.020)(+0.018) K-gamma - 0.982 +/- 0.042 lambda(gamma) = 0.022 +/- 0.019. (C) 2013 Elsevier B.V. All rights reserved.
  •  
2.
  • Schael, S, et al. (author)
  • Precision electroweak measurements on the Z resonance
  • 2006
  • In: Physics Reports. - : Elsevier BV. - 0370-1573 .- 1873-6270. ; 427:5-6, s. 257-454
  • Research review (peer-reviewed)abstract
    • We report on the final electroweak measurements performed with data taken at the Z resonance by the experiments operating at the electron-positron colliders SLC and LEP. The data consist of 17 million Z decays accumulated by the ALEPH, DELPHI, L3 and OPAL experiments at LEP, and 600 thousand Z decays by the SLID experiment using a polarised beam at SLC. The measurements include cross-sections, forward-backward asymmetries and polarised asymmetries. The mass and width of the Z boson, m(Z) and Gamma(Z), and its couplings to fermions, for example the p parameter and the effective electroweak mixing angle for leptons, are precisely measured: m(Z) = 91.1875 +/- 0.0021 GeV, Gamma(Z) = 2.4952 +/- 0.0023 GeV, rho(l) = 1.0050 +/- 0.0010, sin(2)theta(eff)(lept) = 0.23153 +/- 0.00016. The number of light neutrino species is determined to be 2.9840 +/- 0.0082, in agreement with the three observed generations of fundamental fermions. The results are compared to the predictions of the Standard Model (SM). At the Z-pole, electroweak radiative corrections beyond the running of the QED and QCD coupling constants are observed with a significance of five standard deviations, and in agreement with the Standard Model. Of the many Z-pole measurements, the forward-backward asymmetry in b-quark production shows the largest difference with respect to its SM expectation, at the level of 2.8 standard deviations. Through radiative corrections evaluated in the framework of the Standard Model, the Z-pole data are also used to predict the mass of the top quark, m(t) = 173(+10)(+13) GeV, and the mass of the W boson, m(W) = 80.363 +/- 0.032 GeV. These indirect constraints are compared to the direct measurements, providing a stringent test of the SM. Using in addition the direct measurements of m(t) and m(W), the mass of the as yet unobserved SM Higgs boson is predicted with a relative uncertainty of about 50% and found to be less than 285 GeV at 95% confidence level. (c) 2006 Elsevier B.V. All rights reserved.
  •  
3.
  •  
4.
  •  
5.
  • Aartsen, M. G., et al. (author)
  • Very high-energy gamma-ray follow-up program using neutrino triggers from IceCube
  • 2016
  • In: Journal of Instrumentation. - 1748-0221. ; 11
  • Journal article (peer-reviewed)abstract
    • We describe and report the status of a neutrino-triggered program in IceCube that generates real-time alerts for gamma-ray follow-up observations by atmospheric-Cherenkov telescopes (MAGIC and VERITAS). While IceCube is capable of monitoring the whole sky continuously, high-energy gamma-ray telescopes have restricted fields of view and in general are unlikely to be observing a potential neutrino-flaring source at the time such neutrinos are recorded. The use of neutrino-triggered alerts thus aims at increasing the availability of simultaneous multi-messenger data during potential neutrino flaring activity, which can increase the discovery potential and constrain the phenomenological interpretation of the high-energy emission of selected source classes (e. g. blazars). The requirements of a fast and stable online analysis of potential neutrino signals and its operation are presented, along with first results of the program operating between 14 March 2012 and 31 December 2015.
  •  
6.
  • Actis, M., et al. (author)
  • Design concepts for the Cherenkov Telescope Array CTA : an advanced facility for ground-based high-energy gamma-ray astronomy
  • 2011
  • In: Experimental astronomy. - : Springer. - 0922-6435 .- 1572-9508. ; 32:3, s. 193-316
  • Journal article (peer-reviewed)abstract
    • Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.
  •  
7.
  • Aartsen, M. G., et al. (author)
  • Multiwavelength follow-up of a rare IceCube neutrino multiplet
  • 2017
  • In: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 607
  • Journal article (peer-reviewed)abstract
    • On February 17, 2016, the IceCube real-time neutrino search identified, for the first time, three muon neutrino candidates arriving within 100 s of one another, consistent with coming from the same point in the sky. Such a triplet is expected once every 13.7 years as a random coincidence of background events. However, considering the lifetime of the follow-up program the probability of detecting at least one triplet from atmospheric background is 32%. Follow-up observatories were notified in order to search for an electromagnetic counterpart. Observations were obtained by Swift's X-ray telescope, by ASAS-SN, LCO and MASTER at optical wavelengths, and by VERITAS in the very-high-energy gamma-ray regime. Moreover, the Swift BAT serendipitously observed the location 100 s after the first neutrino was detected, and data from the Fermi LAT and HAWC observatory were analyzed. We present details of the neutrino triplet and the follow-up observations. No likely electromagnetic counterpart was detected, and we discuss the implications of these constraints on candidate neutrino sources such as gamma-ray bursts, core-collapse supernovae and active galactic nucleus flares. This study illustrates the potential of and challenges for future follow-up campaigns.
  •  
8.
  • Abreu, P., et al. (author)
  • Measurement of the gluon fragmentation function and a comparison of the scaling violation in gluon and quark jets
  • 2000
  • In: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 13:4, s. 573-589
  • Journal article (peer-reviewed)abstract
    • The fragmentation functions of quarks and gluons are measured in various three-jet topologies in Z decays from the full data set collected with the DELPHI detector at the Z resonance between 1992 and 995. The results at different values of transverse momentum-like scales are compared. A parameterization of the quark and gluon fragmentation functions at a fixed reference scale is given. The quark and gluon fragmentation functions show the predicted pattern of scaling violations. The scaling violation for quark jets as a function of a transverse momentum-like scale is in a good agreement with that observed in lower energy e+e- annihilation experiments. For gluon jets it appears to be significantly stronger. The scale dependences of the gluon and quark fragmentation functions agree with the prediction of the DGLAP evolution equations from which the colour factor ratio CA/CF is measured to be: CA/CF = 2.26 ± 0.09stat. ± 0.06sys. ± 0.12clus.,scale..
  •  
9.
  • Abreu, P., et al. (author)
  • Study of dimuon production in photon-photon collisions and measurement of QED photon structure functions at LEP
  • 2001
  • In: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 19:1, s. 15-28
  • Journal article (peer-reviewed)abstract
    • Muon pair production in the process e+e- → e+e- μ+μ- is studied using the data taken at LEP1 (√s ≃ mz) with the DELPHI detector during the years 1992-1995. The corresponding integrated luminosity is 138.5 pb-1. The QED predictions have been tested over the whole Q2 range accessible at LEP1 (from several GeV2/c4 to several hundred GeV2/c4) by comparing experimental distributions with distributions resulting from Monte Carlo simulations using various generators. Selected events are used to extract the leptonic photon structure function Fγ 2. Azimuthal correlations are used to obtain information on additional structure functions, Fγ A and Fγ B, which originate from interference terms of the scattering amplitudes. The measured ratios Fγ A/Fγ 2 and FγB/Fγ 2 are significantly different from zero and consistent with QED predictions.
  •  
10.
  • Abreu, P., et al. (author)
  • Search for sleptons in e+e- collisions at √s = 183 to 189 GeV
  • 2001
  • In: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 19:1, s. 29-42
  • Journal article (peer-reviewed)abstract
    • Data taken by the DELPHI experiment at centre-of-mass energies of 183 GeV and 189 GeV with a total integrated luminosity of 212 pb-1 have been used to search for the supersymmetric partners of the electrons, muons, and taus in the context of the Minimal Supersymmetric Standard Model (MSSM). The decay topologies searched for were the direct decay (ℓ̃ → ℓx̃), producing acoplanar lepton pairs plus missing energy, and the cascade decay (ℓ → ℓx̃0 2 → ℓγx̃0 1), producing acoplanar lepton and photon pairs plus missing energy. The observed number of events is in agreement with Standard Model predictions. The 95% CL excluded mass limits for selectrons, smuons and staus are mẽ ≤ 87 GeV/c2, mμ̃ ≤ 80 GeV/c2 and mτ̃ 75 GeV/c2, respectively, for values of μ=-200 GeV/c2 and tanβ=1.5.
  •  
11.
  • Adrian-Martinez, S., et al. (author)
  • The First Combined Search For Neutrino Point-Sources In The Southern Hemisphere With The Antares And Icecube Neutrino Telescopes
  • 2016
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 823:1
  • Journal article (peer-reviewed)abstract
    • We present the results of searches for point-like sources of neutrinos based on the first combined analysis of data from both the ANTARES and IceCube neutrino telescopes. The combination of both detectors, which differ in size and location, forms a window in the southern sky where the sensitivity to point sources improves by up to a factor of 2 compared with individual analyses. Using data recorded by ANTARES from 2007 to 2012, and by IceCube from 2008 to 2011, we search for sources of neutrino emission both across the southern sky and from a preselected list of candidate objects. No significant excess over background has been found in these searches, and flux upper limits for the candidate sources are presented for E-2.5 and E-2 power-law spectra with different energy cut-offs.
  •  
12.
  • Aartsen, M. G., et al. (author)
  • PINGU : a vision for neutrino and particle physics at the South Pole
  • 2017
  • In: Journal of Physics G. - : IOP Publishing. - 0954-3899 .- 1361-6471. ; 44:5
  • Journal article (peer-reviewed)abstract
    • The Precision IceCube Next Generation Upgrade (PINGU) is a proposed low-energy in-fill extension to the IceCube Neutrino Observatory. With detection technology modeled closely on the successful IceCube example, PINGU will provide a 6 Mton effective mass for neutrino detection with an energy threshold of a few GeV. With an unprecedented sample of over 60 000 atmospheric neutrinos per year in this energy range, PINGU will make highly competitive measurements of neutrino oscillation parameters in an energy range over an order of magnitude higher than long-baseline neutrino beam experiments. PINGU will measure the mixing parameters theta(23) and Delta m(32)(2), including the octant of theta(23) for a wide range of values, and determine the neutrino mass ordering at 3 sigma median significance within five years of operation. PINGU's high precision measurement of the rate of nu(T) appearance will provide essential tests of the unitarity of the 3 x 3 PMNS neutrino mixing matrix. PINGU will also improve the sensitivity of searches for low mass dark matter in the Sun, use neutrino tomography to directly probe the composition of the Earth's core, and improve IceCube's sensitivity to neutrinos from Galactic supernovae. Reoptimization of the PINGU design has permitted substantial reduction in both cost and logistical requirements while delivering performance nearly identical to configurations previously studied.
  •  
13.
  • Aartsen, M. G., et al. (author)
  • The IceCube Neutrino Observatory : instrumentation and online systems
  • 2017
  • In: Journal of Instrumentation. - : IOP PUBLISHING LTD. - 1748-0221. ; 12
  • Journal article (peer-reviewed)abstract
    • The IceCube Neutrino Observatory is a cubic-kilometer-scale high-energy neutrino detector built into the ice at the South Pole. Construction of IceCube, the largest neutrino detector built to date, was completed in 2011 and enabled the discovery of high-energy astrophysical neutrinos. We describe here the design, production, and calibration of the IceCube digital optical module (DOM), the cable systems, computing hardware, and our methodology for drilling and deployment. We also describe the online triggering and data filtering systems that select candidate neutrino and cosmic ray events for analysis. Due to a rigorous pre-deployment protocol, 98.4% of the DOMs in the deep ice are operating and collecting data. IceCube routinely achieves a detector uptime of 99% by emphasizing software stability and monitoring. Detector operations have been stable since construction was completed, and the detector is expected to operate at least until the end of the next decade.
  •  
14.
  • Abbasi, R., et al. (author)
  • Characterization of the astrophysical diffuse neutrino flux using starting track events in IceCube
  • 2024
  • In: Physical Review D - Particles, Fields, Gravitation and Cosmology. - 2470-0010 .- 2470-0029. ; 110:2
  • Journal article (peer-reviewed)abstract
    • A measurement of the diffuse astrophysical neutrino spectrum is presented using IceCube data collected from 2011-2022 (10.3 years). We developed novel detection techniques to search for events with a contained vertex and exiting track induced by muon neutrinos undergoing a charged-current interaction. Searching for these starting track events allows us to not only more effectively reject atmospheric muons but also atmospheric neutrino backgrounds in the southern sky, opening a new window to the sub-100 TeV astrophysical neutrino sky. The event selection is constructed using a dynamic starting track veto and machine learning algorithms. We use this data to measure the astrophysical diffuse flux as a single power law flux (SPL) with a best-fit spectral index of γ=2.58-0.09+0.10 and per-flavor normalization of φper-flavorAstro=1.68-0.22+0.19×10-18×GeV-1 cm-2 s-1 sr-1 (at 100 TeV). The sensitive energy range for this dataset is 3-550 TeV under the SPL assumption. This data was also used to measure the flux under a broken power law, however we did not find any evidence of a low energy cutoff.
  •  
15.
  • Abbasi, R., et al. (author)
  • Improved modeling of in-ice particle showers for IceCube event reconstruction
  • 2024
  • In: Journal of Instrumentation. - 1748-0221. ; 19:6
  • Journal article (peer-reviewed)abstract
    • The IceCube Neutrino Observatory relies on an array of photomultiplier tubes to detect Cherenkov light produced by charged particles in the South Pole ice. IceCube data analyses depend on an in-depth characterization of the glacial ice, and on novel approaches in event reconstruction that utilize fast approximations of photoelectron yields. Here, a more accurate model is derived for event reconstruction that better captures our current knowledge of ice optical properties. When evaluated on a Monte Carlo simulation set, the median angular resolution for in-ice particle showers improves by over a factor of three compared to a reconstruction based on a simplified model of the ice. The most substantial improvement is obtained when including effects of birefringence due to the polycrystalline structure of the ice. When evaluated on data classified as particle showers in the high-energy starting events sample, a significantly improved description of the events is observed.
  •  
16.
  • Abbasi, R., et al. (author)
  • Citizen science for IceCube: Name that Neutrino
  • 2024
  • In: European Physical Journal Plus. - 2190-5444. ; 139:6
  • Journal article (peer-reviewed)abstract
    • Name that Neutrino is a citizen science project where volunteers aid in classification of events for the IceCube Neutrino Observatory, an immense particle detector at the geographic South Pole. From March 2023 to September 2023, volunteers did classifications of videos produced from simulated data of both neutrino signal and background interactions. Name that Neutrino obtained more than 128,000 classifications by over 1800 registered volunteers that were compared to results obtained by a deep neural network machine-learning algorithm. Possible improvements for both Name that Neutrino and the deep neural network are discussed.
  •  
17.
  • Aartsen, M. G., et al. (author)
  • All-flavour search for neutrinos from dark matter annihilations in the Milky Way with IceCube/DeepCore
  • 2016
  • In: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 76:10
  • Journal article (peer-reviewed)abstract
    • We present the first IceCube search for a signal of dark matter annihilations in the Milky Way using all-flavour neutrino-induced particle cascades. The analysis focuses on the DeepCore sub-detector of IceCube, and uses the surrounding IceCube strings as a veto region in order to select starting events in the DeepCore volume. We use 329 live-days of data from IceCube operating in its 86-string configuration during 2011-2012. No neutrino excess is found, the final result being compatible with the background-only hypothesis. From this null result, we derive upper limits on the velocity-averaged self-annihilation cross-section, , for dark matter candidate masses ranging from 30 GeV up to 10 TeV, assuming both a cuspy and a flat-cored dark matter halo profile. For dark matter masses between 200 GeV and 10 TeV, the results improve on all previous IceCube results on , reaching a level of 10 cm s, depending on the annihilation channel assumed, for a cusped NFW profile. The analysis demonstrates that all-flavour searches are competitive with muon channel searches despite the intrinsically worse angular resolution of cascades compared to muon tracks in IceCube.
  •  
18.
  • Aartsen, M. G., et al. (author)
  • Constraints on Ultrahigh-Energy Cosmic-Ray Sources from a Search for Neutrinos above 10 PeV with IceCube
  • 2016
  • In: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 117:24
  • Journal article (peer-reviewed)abstract
    • We report constraints on the sources of ultrahigh-energy cosmic rays (UHECRs) above 10(9) GeV, based on an analysis of seven years of IceCube data. This analysis efficiently selects very high-energy neutrino-induced events which have deposited energies from 5 x 10(5) GeV to above 10(11) GeV. Two neutrino-induced events with an estimated deposited energy of (2.6 +/- 0.3) x 10(6) GeV, the highest neutrino energy observed so far, and (7.7 +/- 2.0) x 10(5) GeV were detected. The atmospheric background-only hypothesis of detecting these events is rejected at 3.6 sigma. The hypothesis that the observed events are of cosmogenic origin is also rejected at > 99% CL because of the limited deposited energy and the nonobservation of events at higher energy, while their observation is consistent with an astrophysical origin. Our limits on cosmogenic neutrino fluxes disfavor the UHECR sources having a cosmological evolution stronger than the star formation rate, e.g., active galactic nuclei and gamma-ray bursts, assuming proton-dominated UHECRs. Constraints on UHECR sources including mixed and heavy UHECR compositions are obtained for models of neutrino production within UHECR sources. Our limit disfavors a significant part of parameter space for active galactic nuclei and new-born pulsar models. These limits on the ultrahigh-energy neutrino flux models are the most stringent to date.
  •  
19.
  • Aartsen, M. G., et al. (author)
  • First search for dark matter annihilations in the Earth with the IceCube detector
  • 2017
  • In: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 77:2
  • Journal article (peer-reviewed)abstract
    • We present the results of the first IceCube search for dark matter annihilation in the center of the Earth. Weakly interacting massive particles (WIMPs), candidates for dark matter, can scatter off nuclei inside the Earth and fall below its escape velocity. Over time the captured WIMPs will be accumulated and may eventually self-annihilate. Among the annihilation products only neutrinos can escape from the center of the Earth. Large-scale neutrino telescopes, such as the cubic kilometer IceCube Neutrino Observatory located at the South Pole, can be used to search for such neutrino fluxes. Data from 327 days of detector livetime during 2011/2012 were analyzed. No excess beyond the expected background from atmospheric neutrinos was detected. The derived upper limits on the annihilation rate of WIMPs in the Earth (Gamma(A) = 1.12 x 10(14) s(-1) for WIMP masses of 50 GeV annihilating into tau leptons) and the resulting muon flux are an order of magnitude stronger than the limits of the last analysis performed with data from IceCube's predecessor AMANDA. The limits can be translated in terms of a spin-independent WIMP-nucleon cross section. For a WIMP mass of 50GeV this analysis results in the most restrictive limits achieved with IceCube data.
  •  
20.
  • Aartsen, M. G., et al. (author)
  • Observation And Characterization Of A Cosmic Muon Neutrino Flux From The Northern Hemisphere Using Six Years Of Icecube Data
  • 2016
  • In: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 833:1
  • Journal article (peer-reviewed)abstract
    • The IceCube Collaboration has previously discovered a high-energy astrophysical neutrino flux using neutrino events with interaction vertices contained within the instrumented volume of the IceCube detector. We present a complementary measurement using charged current muon neutrino events where the interaction vertex can be outside this volume. As a consequence of the large muon range the effective area is significantly larger but the field of view is restricted to the Northern Hemisphere. IceCube data from 2009 through 2015 have been analyzed using a likelihood approach based on the reconstructed muon energy and zenith angle. At the highest neutrino energies between 194 TeV and 7.8 PeV a significant astrophysical contribution is observed, excluding a purely atmospheric origin of these events at 5.6 sigma significance. The data are well described by an isotropic, unbroken power-law flux with a normalization at 100 TeV neutrino energy of (0.90(-0.27)(+0.30)) x 10(-18) GeV-1 cm(-2) s(-1) sr(-1) and a hard spectral index of gamma = 2.13 +/- 0.13. The observed spectrum is harder in comparison to previous IceCube analyses with lower energy thresholds which may indicate a break in the astrophysical neutrino spectrum of unknown origin. The highest-energy event observed has a reconstructed muon energy of (4.5 +/- 1.2) PeV which implies a probability of less than 0.005% for this event to be of atmospheric origin. Analyzing the arrival directions of all events with reconstructed muon energies above 200 TeV no correlation with known gamma-ray sources was found. Using the high statistics of atmospheric neutrinos we report the current best constraints on a prompt atmospheric muon neutrino flux originating from charmed meson decays which is below 1.06 in units of the flux normalization of the model in Enberg et al.
  •  
21.
  • Aartsen, M. G., et al. (author)
  • Search For Sources Of High-Energy Neutrons With Four Years Of Data From The Icetop Detector
  • 2016
  • In: Astrophysical Journal. - : IOP PUBLISHING LTD. - 0004-637X .- 1538-4357. ; 830:2
  • Journal article (peer-reviewed)abstract
    • IceTop is an air-shower array located on the Antarctic ice sheet at the geographic South Pole. IceTop can detect an astrophysical flux of neutrons from Galactic sources as an excess of cosmic-ray air showers arriving from the source direction. Neutrons are undeflected by the Galactic magnetic field and can typically travel 10 (E/PeV) pc before decay. Two searches are performed using 4 yr of the IceTop data set to look for a statistically significant excess of events with energies above 10 PeV (10(16) eV) arriving within a small solid angle. The all-sky search method covers from -90 degrees to approximately -50 degrees in declination. No significant excess is found. A targeted search is also performed, looking for significant correlation with candidate sources in different target sets. This search uses a higher-energy cut (100 PeV) since most target objects lie beyond 1 kpc. The target sets include pulsars with confirmed TeV energy photon fluxes and high-mass X-ray binaries. No significant correlation is found for any target set. Flux upper limits are determined for both searches, which can constrain Galactic neutron sources and production scenarios.
  •  
22.
  • Aartsen, M. G., et al. (author)
  • The Contribution Of Fermi-2Lac Blazars To Diffuse Tev-Pev Neutrino Flux
  • 2017
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 835:1
  • Journal article (peer-reviewed)abstract
    • The recent discovery of a diffuse cosmic neutrino flux extending up to PeV energies raises the question of which astrophysical sources generate this signal. Blazars are one class of extragalactic sources which may produce such high-energy neutrinos. We present a likelihood analysis searching for cumulative neutrino emission from blazars in the 2nd Fermi-LAT AGN catalog (2LAC) using IceCube neutrino data set 2009-12, which was optimized for the detection of individual sources. In contrast to those in previous searches with IceCube, the populations investigated contain up to hundreds of sources, the largest one being the entire blazar sample in the 2LAC catalog. No significant excess is observed, and upper limits for the cumulative flux from these populations are obtained. These constrain the maximum contribution of 2LAC blazars to the observed astrophysical neutrino flux to 27% or less between around 10 TeV and 2 PeV, assuming the equipartition of flavors on Earth and a single power-law spectrum with a spectral index of -2.5. We can still exclude the fact that 2LAC blazars (and their subpopulations) emit more than 50% of the observed neutrinos up to a spectral index as hard as -2.2 in the same energy range. Our result takes into account the fact that the neutrino source count distribution is unknown, and it does not assume strict proportionality of the neutrino flux to the measured 2LAC gamma-ray signal for each source. Additionally, we constrain recent models for neutrino emission by blazars.
  •  
23.
  • Aartsen, M. G., et al. (author)
  • Lowering Icecube'S Energy Threshold For Point Source Searches In The Southern Sky
  • 2016
  • In: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 824:2
  • Journal article (peer-reviewed)abstract
    • Observation of a point source of astrophysical neutrinos would be a "smoking gun" signature of a cosmic-ray accelerator. While IceCube has recently discovered a diffuse flux of astrophysical neutrinos, no localized point source has been observed. Previous IceCube searches for point sources in the southern sky were restricted by either an energy threshold above a few hundred TeV or poor neutrino angular resolution. Here we present a search for southern sky point sources with greatly improved sensitivities to neutrinos with energies below 100 TeV. By selecting charged-current nu(mu) interacting inside the detector, we reduce the atmospheric background while retaining efficiency for astrophysical neutrino-induced events reconstructed with sub-degree angular resolution. The new event sample covers three years of detector data and leads to a factor of 10 improvement in sensitivity to point sources emitting below 100 TeV in the southern sky. No statistically significant evidence of point sources was found, and upper limits are set on neutrino emission from individual sources. A posteriori analysis of the highest-energy (similar to 100 TeV) starting event in the sample found that this event alone represents a 2.8 sigma deviation from the hypothesis that the data consists only of atmospheric background.
  •  
24.
  • Aartsen, M. G., et al. (author)
  • An All-Sky Search For Three Flavors Of Neutrinos From Gamma-Ray Bursts With The Icecube Neutrino Observatory
  • 2016
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 824:2
  • Journal article (peer-reviewed)abstract
    • We present the results and methodology of a search for neutrinos produced in the decay of charged pions created in interactions between protons and gamma-rays during the prompt emission of 807 gamma-ray bursts (GRBs) over the entire sky. This three-year search is the first in IceCube for shower-like Cherenkov light patterns from electron, muon, and tau neutrinos correlated with GRBs. We detect five low-significance events correlated with five GRBs. These events are consistent with the background expectation from atmospheric muons and neutrinos. The results of this search in combination with those of IceCube's four years of searches for track-like Cherenkov light patterns from muon neutrinos correlated with Northern-Hemisphere GRBs produce limits that tightly constrain current models of neutrino and ultra high energy cosmic ray production in GRB fireballs.
  •  
25.
  • Aartsen, M. G., et al. (author)
  • Anisotropy In Cosmic-Ray Arrival Directions In The Southern Hemisphere Based On Six Years Of Data From The Icecube Detector
  • 2016
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 826:2
  • Journal article (peer-reviewed)abstract
    • The IceCube Neutrino Observatory accumulated a total of 318 billion cosmic-ray-induced muon events between 2009 May and 2015 May. This data set was used for a detailed analysis of the sidereal anisotropy in the arrival directions of cosmic rays in the TeV to PeV energy range. The observed global sidereal anisotropy features large regions of relative excess and deficit, with amplitudes of the order of 10(-3) up to about 100 TeV. A decomposition of the arrival direction distribution into spherical harmonics shows that most of the power is contained in the low-multipole (l <= 4) moments. However, higher multipole components are found to be statistically significant down to an angular scale of less than 10 degrees, approaching the angular resolution of the detector. Above 100 TeV, a change in the morphology of the arrival direction distribution is observed, and the anisotropy is characterized by a wide relative deficit whose amplitude increases with primary energy up to at least 5 PeV, the highest energies currently accessible to IceCube. No time dependence of the large-and small-scale structures is observed in the period of six years covered by this analysis. The high-statistics data set reveals more details of the properties of the anisotropy and is potentially able to shed light on the various physical processes that are responsible for the complex angular structure and energy evolution.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 306
Type of publication
journal article (292)
conference paper (7)
other publication (5)
research review (2)
Type of content
peer-reviewed (294)
other academic/artistic (12)
Author/Editor
De Clercq, C. (215)
Hultqvist, K. (213)
Botner, Olga (177)
Hultqvist, Klas (169)
Walck, Christian (161)
Rhode, W. (160)
show more...
Schmidt, T. (160)
Bai, X. (159)
Desiati, P. (159)
Karle, A. (159)
Rawlins, K. (159)
Resconi, E. (159)
Kowalski, M. (158)
Halzen, F. (158)
Madsen, J. (158)
Bohm, Christian (157)
Gerhardt, L. (157)
Hanson, K. (157)
Spiering, C. (157)
Taboada, I. (156)
Tilav, S. (156)
Bernardini, E. (155)
Przybylski, G. T. (154)
Barwick, S. W. (153)
Cowen, D. F. (153)
Finley, Chad (152)
Helbing, K. (152)
Hill, G. C. (152)
DeYoung, T. (151)
Spiczak, G. M. (151)
Stanev, T. (151)
Kolanoski, H. (149)
Berley, D. (149)
Blaufuss, E. (149)
Hoshina, K. (149)
Montaruli, T. (149)
Olivas, A. (149)
Rott, C. (149)
Ryckbosch, D. (149)
Stezelberger, T. (149)
Ishihara, A. (148)
Karg, T. (148)
Sarkar, S. (148)
Seckel, D. (148)
Seunarine, S. (148)
Adams, J. (147)
Chirkin, D. (146)
Gaisser, T. K. (146)
Kappes, A. (146)
Meagher, K. (146)
show less...
University
Uppsala University (218)
Stockholm University (186)
Lund University (68)
Linnaeus University (27)
Karolinska Institutet (20)
Chalmers University of Technology (15)
show more...
Royal Institute of Technology (7)
Halmstad University (2)
University of Gothenburg (1)
Linköping University (1)
show less...
Language
English (305)
Undefined language (1)
Research subject (UKÄ/SCB)
Natural sciences (275)
Engineering and Technology (7)
Medical and Health Sciences (7)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view