SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Janssen Julie M) "

Search: WFRF:(Janssen Julie M)

  • Result 1-10 of 10
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Iles, Mark M., et al. (author)
  • A variant in FTO shows association with melanoma risk not due to BMI
  • 2013
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 45:4, s. 428-432
  • Journal article (peer-reviewed)abstract
    • We report the results of an association study of melanoma that is based on the genome-wide imputation of the genotypes of 1,353 cases and 3,566 controls of European origin conducted by the GenoMEL consortium. This revealed an association between several SNPs in intron 8 of the FTO gene, including rs16953002, which replicated using 12,313 cases and 55,667 controls of European ancestry from Europe, the USA and Australia (combined P = 3.6 x 10(-12), per-allele odds ratio for allele A = 1.16). In addition to identifying a new melanomasusceptibility locus, this is to our knowledge the first study to identify and replicate an association with SNPs in FTO not related to body mass index (BMI). These SNPs are not in intron 1 (the BMI-related region) and exhibit no association with BMI. This suggests FTO's function may be broader than the existing paradigm that FTO variants influence multiple traits only through their associations with BMI and obesity.
  •  
2.
  • Barrett, Jennifer H., et al. (author)
  • Genome-wide association study identifies three new melanoma susceptibility loci
  • 2011
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 43:11, s. 1108-1113
  • Journal article (peer-reviewed)abstract
    • We report a genome-wide association study for melanoma that was conducted by the GenoMEL Consortium. Our discovery phase included 2,981 individuals with melanoma and 1,982 study-specific control individuals of European ancestry, as well as an additional 6,426 control subjects from French or British populations, all of whom were genotyped for 317,000 or 610,000 single-nucleotide polymorphisms (SNPs). Our analysis replicated previously known melanoma susceptibility loci. Seven new regions with at least one SNP with P < 10(-5) and further local imputed or genotyped support were selected for replication using two other genome-wide studies (from Australia and Texas, USA). Additional replication came from case-control series from the UK and The Netherlands. Variants at three of the seven loci replicated at P < 10(-3): an SNP in ATM (rs1801516, overall P = 3.4 x 10(-9)), an SNP in MX2 (rs45430, P = 2.9 x 10-9) and an SNP adjacent to CASP8 (rs13016963, P = 8.6 x 10(-10)). A fourth locus near CCND1 remains of potential interest, showing suggestive but inconclusive evidence of replication (rs1485993, overall P = 4.6 x 10(-7) under a fixed-effects model and P = 1.2 x 10(-3) under a random-effects model). These newly associated variants showed no association with nevus or pigmentation phenotypes in a large British case-control series.
  •  
3.
  • Janssen, Julie M, et al. (author)
  • A Semi-Mechanistic Population Pharmacokinetic/Pharmacodynamic Model of Bortezomib in Pediatric Patients with Relapsed/Refractory Acute Lymphoblastic Leukemia.
  • 2020
  • In: Clinical Pharmacokinetics. - : Springer Science and Business Media LLC. - 0312-5963 .- 1179-1926. ; 59:2, s. 207-216
  • Journal article (peer-reviewed)abstract
    • INTRODUCTION: The pharmacokinetics (PK) of the 20S proteasome inhibitor bortezomib are characterized by a large volume of distribution and a rapid decline in plasma concentrations within the first hour after administration. An increase in exposure was observed in the second week of treatment, which has previously been explained by extensive binding of bortezomib to proteasome in erythrocytes and peripheral tissues. We characterized the nonlinear population PK and pharmacodynamics (PD) of bortezomib in children with acute lymphoblastic leukemia.METHODS: Overall, 323 samples from 28 patients were available from a pediatric clinical study investigating bortezomib at an intravenous dose of 1.3 mg/m2 twice weekly (Dutch Trial Registry number 1881/ITCC021). A semi-physiological PK model for bortezomib was first developed; the PK were linked to the decrease in 20S proteasome activity in the final PK/PD model.RESULTS: The plasma PK data were adequately described using a two-compartment model with linear elimination. Increased concentrations were observed in week 2 compared with week 1, which was described using a Langmuir binding model. The decrease in 20S proteasome activity was best described by a direct effect model with a sigmoidal maximal inhibitory effect, representing the relationship between plasma concentrations and effect. The maximal inhibitory effect was 0.696 pmol AMC/s/mg protein (95% confidence interval 0.664-0.728) after administration.CONCLUSION: The semi-physiological model adequately described the nonlinear PK and PD of bortezomib in plasma. This model can be used to further optimize dosing of bortezomib.
  •  
4.
  • Janssen, Julie M, et al. (author)
  • Longitudinal nonlinear mixed effects modeling of EGFR mutations in ctDNA as predictor of disease progression in treatment of EGFR-mutant non-small cell lung cancer.
  • 2022
  • In: Clinical and Translational Science. - : John Wiley & Sons. - 1752-8054 .- 1752-8062. ; 15:8, s. 1916-1925
  • Journal article (peer-reviewed)abstract
    • Correlations between increasing concentrations of circulating tumor DNA (ctDNA) in plasma and disease progression have been shown. A nonlinear mixed effects model to describe the dynamics of epidermal growth factor receptor (EGFR) ctDNA data from patients with non-small cell lung cancer (NSCLC) combined with a parametric survival model were developed to evaluate the ability of these modeling techniques to describe ctDNA data. Repeated ctDNA measurements on L858R, exon19del, and T790M mutants were available from 54 patients with EGFR mutated NSCLC treated with erlotinib or gefitinib. Different dynamic models were tested to describe the longitudinal ctDNA concentrations of the driver and resistance mutations. Subsequently, a parametric time-to-event model for progression-free survival (PFS) was developed. Predicted L858R, exon19del, and T790M concentrations were used to evaluate their value as predictor for disease progression. The ctDNA dynamics were best described by a model consisting of a zero-order increase and first-order elimination (19.7/day, 95% confidence interval [CI] 14.9-23.6/day) of ctDNA concentrations. In addition, time-dependent development of resistance (5.0 × 10-4 , 95% CI 2.0 × 10-4 -7.0 × 10-4 /day) was included in the final model. Relative change in L858R and exon19del concentrations from baseline was identified as most significant predictor of disease progression (p = 0.001). The dynamic model for L858R, exon19del, and T790M concentrations in ctDNA and time-to-event model adequately described the observed concentrations and PFS data in our clinical cohort. In addition, it was shown that nonlinear mixed effects modeling is a valuable method for the analysis of longitudinal and heterogeneous biomarker datasets obtained from clinical practice.
  •  
5.
  • Janssen, Julie M, et al. (author)
  • Pharmacokinetic Targets for Therapeutic Drug Monitoring of Small Molecule Kinase Inhibitors in Pediatric Oncology.
  • 2020
  • In: Clinical Pharmacology and Therapeutics. - : Wiley. - 0009-9236 .- 1532-6535. ; 108:3, s. 494-505
  • Journal article (peer-reviewed)abstract
    • In recent years new targeted small molecule kinase inhibitors have become available for pediatric patients with cancer. Relationships between drug exposure and treatment response have been established for several of these drugs in adults. Following these exposure-response relationships, pharmacokinetic (PK) target minimum plasma rug concentration at the end of a dosing interval (Cmin ) values to guide therapeutic drug monitoring (TDM) in adults have been proposed. Despite the fact that variability in PK may be even larger in pediatric patients, TDM is only sparsely applied in pediatric oncology. Based on knowledge of the PK, mechanism of action, molecular driver, and pathophysiology of the disease, we bridge available data on the exposure-efficacy relationship from adults to children and propose target Cmin values to guide TDM for the pediatric population. Dose adjustments in individual pediatric patients can be based on these targets. Nevertheless, further research should be performed to validate these targets.
  •  
6.
  • Yu, Huixin, et al. (author)
  • Quantification of the pharmacokinetic-toxicodynamic relationship of oral docetaxel co-administered with ritonavir.
  • 2020
  • In: Investigational new drugs. - : Springer Science and Business Media LLC. - 0167-6997 .- 1573-0646. ; 38:5, s. 1526-1532
  • Journal article (peer-reviewed)abstract
    • Introduction Oral formulations of docetaxel have successfully been developed as an alternative for intravenous administration. Co-administration with the enzyme inhibitor ritonavir boosts the docetaxel plasma exposure. In dose-escalation trials, the maximum tolerated doses for two different dosing regimens were established and dose-limiting toxicities (DLTs) were recorded. The aim of current analysis was to develop a pharmacokinetic (PK)-toxicodynamic (TOX) model to quantify the relationship between docetaxel plasma exposure and DLTs. Methods A total of 85 patients was included in the current analysis, 18 patients showed a DLT in the four-week observation period. A PK-TOX model was developed and simulations based on the PK-TOX model were performed. Results The final PK-TOX model was characterized by an effect compartment representing the toxic effect of docetaxel, which was linked to the probability of developing a DLT. Simulations of once-weekly, once-daily 60 mg and once-weekly, twice-daily 30 mg followed by 20 mg of oral docetaxel suggested that 14% and 34% of patients, respectively, would have a probability >25% to develop a DLT in a four-week period. Conclusions A PK-TOX model was successfully developed. This model can be used to evaluate the probability of developing a DLT following treatment with oral docetaxel and ritonavir in different dosing regimens.
  •  
7.
  •  
8.
  • Janssen, Julie M, et al. (author)
  • Evaluation of Extrapolation Methods to Predict Trough Concentrations to Guide Therapeutic Drug Monitoring of Oral Anticancer Drugs.
  • 2020
  • In: Therapeutic Drug Monitoring. - 0163-4356 .- 1536-3694. ; 42:4, s. 532-539
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: For oral anticancer drugs, trough concentration (Cmin) is usually used as a target in therapeutic drug monitoring (TDM). Recording of Cmin is highly challenging in outpatients, in whom there is typically a variability in sample collection time after dosing. Various methods are used to estimate Cmin from the collected samples. This simulation study aimed to evaluate the performance of 3 different methods in estimating the Cmin of 4 oral anticancer drugs for which TDM is regularly performed.METHODS: Plasma concentrations of abiraterone, dabrafenib, imatinib, and pazopanib at a random time (Ct,sim) and at the end of the dosing interval (Cmin,sim) were simulated from population pharmacokinetic models including 1000 patients, and the values were converted into simulated observed concentrations (Ct,sim,obs and Cmin,sim,obs) by adding a residual error. From Ct, sim,obs, Cmin was predicted (Cmin,pred) by the Bayesian estimation (method 1), taking the ratio of the Ct,sim,obs and typical population concentration and multiplying this ratio with the typical population value of Cmin,sim (method 2), and log-linear extrapolation (method 3). Target attainment was assessed by comparing Cmin,pred with the proposed pharmacokinetic targets related to efficacy and calculating the positive predictive and negative predictive values.RESULTS: The mean relative prediction error and root mean squared relative prediction error results showed that method 3 was out-performed by method 1 and 2. Target attainment was adequately predicted by all 3 methods (the respective positive predictive value of method 1, 2, and 3 was 92.1%, 92.5%, and 93.1% for abiraterone; 87.3%, 86.9%, and 99.1% for dabrafenib; 79.3%, 79.3%, and 75.9% for imatinib; and 72.5%, 73.5%, and 67.6% for pazopanib), indicating that dose adjustments were correctly predicted.CONCLUSIONS: Both method 1 and 2 provided accurate and precise individual Cmin,pred values. However, method 2 was easier to implement than method 1 to guide individual dose adjustments in TDM programs.
  •  
9.
  • Janssen, Julie M, et al. (author)
  • Population Pharmacokinetics of Docetaxel, Paclitaxel, Doxorubicin and Epirubicin in Pregnant Women with Cancer : A Study from the International Network of Cancer, Infertility and Pregnancy (INCIP).
  • 2021
  • In: Clinical Pharmacokinetics. - : Springer Science and Business Media LLC. - 0312-5963 .- 1179-1926. ; 60:6, s. 775-784
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Based on reassuring short-term foetal and maternal safety data, there is an increasing trend to administer chemotherapy during the second and third trimesters of pregnancy. The pharmacokinetics (PK) of drugs might change as a result of several physiological changes that occur during pregnancy, potentially affecting the efficacy and safety of chemotherapy.OBJECTIVE: With this analysis, we aimed to quantitatively describe the changes in the PK of docetaxel, paclitaxel, doxorubicin and epirubicin in pregnant women compared with non-pregnant women.METHODS: PK data from 9, 20, 22 and 16 pregnant cancer patients from the International Network of Cancer, Infertility and Pregnancy (INCIP) were available for docetaxel, paclitaxel, doxorubicin and epirubicin, respectively. These samples were combined with available PK data from non-pregnant patients. Empirical non-linear mixed-effects models were developed, evaluating fixed pregnancy effects and gestational age as covariates.RESULTS: Overall, 82, 189, 271, and 227 plasma samples were collected from pregnant patients treated with docetaxel, paclitaxel, doxorubicin and epirubicin, respectively. The plasma PK data were adequately described by the respective models for all cytotoxic drugs. Typical increases in central and peripheral volumes of distribution of pregnant women were identified for docetaxel, paclitaxel, doxorubicin and epirubicin. Additionally, docetaxel, doxorubicin and paclitaxel clearance were increased in pregnant patients, resulting in lower exposure in pregnant women compared with non-pregnant patients.CONCLUSION: Given the interpatient variability, the identified pregnancy-induced changes in PK do not directly warrant dose adjustments for the studied drugs. Nevertheless, these results underscore the need to investigate the efficacy of chemotherapy, when administered during pregnancy.
  •  
10.
  • Janssen, Julie M, et al. (author)
  • Population Pharmacokinetics of Intracellular 5-Fluorouridine 5'-Triphosphate and its Relationship with Hand-and-Foot Syndrome in Patients Treated with Capecitabine.
  • 2021
  • In: AAPS Journal. - : Springer Nature. - 1550-7416. ; 23:1, s. 23-
  • Journal article (peer-reviewed)abstract
    • Capecitabine is an oral pro-drug of 5-fluorouracil. Patients with solid tumours who are treated with capecitabine may develop hand-and-foot syndrome (HFS) as side effect. This might be a result of accumulation of intracellular metabolites. We characterised the pharmacokinetics (PK) of 5-fluorouridine 5'-triphosphate (FUTP) in peripheral blood mononuclear cells (PBMCs) and assessed the relationship between exposure to capecitabine or its metabolites and the development of HFS. Plasma and intracellular capecitabine PK data and ordered categorical HFS data was available. A previously developed model describing the PK of capecitabine and metabolites was extended to describe the intracellular FUTP concentrations. Subsequently, a continuous-time Markov model was developed to describe the development of HFS during treatment with capecitabine. The influences of capecitabine and metabolite concentrations on the development of HFS were evaluated. The PK of intracellular FUTP was described by an one-compartment model with first-order elimination (ke,FUTP was 0.028 h-1 (95% confidence interval 0.022-0.039)) where the FUTP influx rate was proportional to the 5-FU plasma concentrations. The predicted individual intracellular FUTP concentration was identified as a significant predictor for the development and severity of HFS. Simulations demonstrated a clear exposure-response relationship. The intracellular FUTP concentrations were successfully described and a significant relationship between these intracellular concentrations and the development and severity of HFS was identified. This model can be used to simulate future dosing regimens and thereby optimise treatment with capecitabine.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view