SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Karsch S) "

Sökning: WFRF:(Karsch S)

  • Resultat 1-11 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Campbell, PJ, et al. (författare)
  • Pan-cancer analysis of whole genomes
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 578:7793, s. 82-
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale1–3. Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4–5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter4; identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation5,6; analyses timings and patterns of tumour evolution7; describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity8,9; and evaluates a range of more-specialized features of cancer genomes8,10–18.
  •  
2.
  • Walker, Anthony P, et al. (författare)
  • Horizon 2020 EuPRAXIA design study
  • 2017
  • Ingår i: Journal of Physics: Conference Series. - : IOP Publishing. - 1742-6588 .- 1742-6596. ; 874:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Horizon 2020 Project EuPRAXIA ("European Plasma Research Accelerator with eXcellence In Applications") is preparing a conceptual design report of a highly compact and cost-effective European facility with multi-GeV electron beams using plasma as the acceleration medium. The accelerator facility will be based on a laser and/or a beam driven plasma acceleration approach and will be used for photon science, high-energy physics (HEP) detector tests, and other applications such as compact X-ray sources for medical imaging or material processing. EuPRAXIA started in November 2015 and will deliver the design report in October 2019. EuPRAXIA aims to be included on the ESFRI roadmap in 2020.
  •  
3.
  • Bashkanov, M., et al. (författare)
  • Two-pion production in proton-proton collisions
  • 2004
  • Ingår i: Hadron Spectroscopy, Tenth International Conference on Hadron Spectrscopy, Aschaffenburg, Germany 31 August - 6 September 2003. - 0735401977 ; , s. 241-244
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)
  •  
4.
  • Götzfried, J., et al. (författare)
  • Physics of High-Charge Electron Beams in Laser-Plasma Wakefields
  • 2020
  • Ingår i: Physical Review X. - : American Physical Society. - 2160-3308. ; 10:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Laser wakefield acceleration (LWFA) and its particle-driven counterpart, particle or plasma wakefield acceleration (PWFA), are commonly treated as separate, though related, branches of high-gradient plasma-based acceleration. However, novel proposed schemes are increasingly residing at the interface of both concepts where the understanding of their interplay becomes crucial. Here, we present a comprehensive study of this regime, which we may term laser-plasma wakefields. Using datasets of hundreds of shots, we demonstrate the influence of beam loading on the spectral shape of electron bunches. Similar results are obtained using both 100-TW-class and few-cycle lasers, highlighting the scale invariance of the involved physical processes. Furthermore, we probe the interplay of dual electron bunches in the same or in two subsequent plasma periods under the influence of beam loading. We show that, with decreasing laser intensity, beam loading transitions to a beam-dominated regime, where the first bunch acts as the main driver of the wakefield. This transition is evidenced experimentally by a varying acceleration of a low-energy witness beam with respect to the charge of a high-energy drive beam in a spatially separate gas target. Our results also present an important step in the development of LWFA using controlled injection in a shock front. The electron beams in this study reach record performance in terms of laser-to-beam energy transfer efficiency (up to 10%), spectral charge density (regularly exceeding 10  pC MeV−1), and angular charge density (beyond 300  pC μsr−1 at 220 MeV). We provide an experimental scaling for the accelerated charge per terawatt (TW) of laser power, which approaches 2 nC at 300 TW. With the expanding availability of petawatt-class (PW) lasers, these beam parameters will become widely accessible. Thus, the physics of laser-plasma wakefields is expected to become increasingly relevant, as it provides new paths toward low-emittance beam generation for future plasma-based colliders or light sources.
  •  
5.
  • Leshchenko, V.E., et al. (författare)
  • Relativistic harmonics D-scan for on-target temporal characterization of intense optical pulses
  • 2019
  • Ingår i: Ultrafast Optics 2019. - : SPIE. - 9781510635128 ; , s. 209-212
  • Konferensbidrag (refereegranskat)abstract
    • Accurate knowledge of the on-target pulse intensity is one of key prerequisites for the correct interpretation of high-field experiments due to their high sensitivity to the exact value of the pulse peak intensity caused by the nonlinearity of underlying processes. There are three parameters determining the peak intensity: pulse energy, spatial and temporal energy distribution. While the detection of pulse energy and spatial profile are well established, the unambiguous temporal characterization of intense optical pulses remains a challenge especially at relativistic intensities and a few-cycle pulse duration. We report on the progress in the temporal characterization of intense laser pulses and present the relativistic surface second harmonic generation dispersion scan (RSSHG-D-scan) – a new approach allowing direct on-target temporal characterization of high-energy few-cycle optical pulses at up to relativistic intensities.
  •  
6.
  • Wenz, J., et al. (författare)
  • Dual-energy electron beams from a compact laser-driven accelerator
  • 2019
  • Ingår i: Nature Photonics. - : Nature Publishing Group. - 1749-4885 .- 1749-4893. ; 13, s. 263-269
  • Tidskriftsartikel (refereegranskat)abstract
    • Ultrafast pump–probe experiments open the possibility to track fundamental material behaviour, such as changes in electronic configuration, in real time. To date, most of these experiments are performed using an electron or a high-energy photon beam that is synchronized to an infrared laser pulse. Entirely new opportunities can be explored if not only a single, but multiple synchronized, ultrashort, high-energy beams are used. However, this requires advanced radiation sources that are capable of producing dual-energy electron beams, for example. Here, we demonstrate simultaneous generation of twin-electron beams from a single compact laser wakefield accelerator. The energy of each beam can be individually adjusted over a wide range and our analysis shows that the bunch lengths and their delay inherently amount to femtoseconds. Our proof-of-concept results demonstrate an elegant way to perform multi-beam experiments in the future on a laboratory scale.
  •  
7.
  • Wenz, J, et al. (författare)
  • Quantitative X-ray phase-contrast microtomography from a compact laser-driven betatron source.
  • 2015
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray phase-contrast imaging has recently led to a revolution in resolving power and tissue contrast in biomedical imaging, microscopy and materials science. The necessary high spatial coherence is currently provided by either large-scale synchrotron facilities with limited beamtime access or by microfocus X-ray tubes with rather limited flux. X-rays radiated by relativistic electrons driven by well-controlled high-power lasers offer a promising route to a proliferation of this powerful imaging technology. A laser-driven plasma wave accelerates and wiggles electrons, giving rise to a brilliant keV X-ray emission. This so-called betatron radiation is emitted in a collimated beam with excellent spatial coherence and remarkable spectral stability. Here we present a phase-contrast microtomogram of a biological sample using betatron X-rays. Comprehensive source characterization enables the reconstruction of absolute electron densities. Our results suggest that laser-based X-ray technology offers the potential for filling the large performance gap between synchrotron- and current X-ray tube-based sources.
  •  
8.
  • Buck, A., et al. (författare)
  • Shock-Front Injector for High-Quality Laser-Plasma Acceleration
  • 2013
  • Ingår i: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 110:18
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the generation of stable and tunable electron bunches with very low absolute energy spread (ΔE≈5  MeV) accelerated in laser wakefields via injection and trapping at a sharp downward density jump produced by a shock front in a supersonic gas flow. The peak of the highly stable and reproducible electron energy spectrum was tuned over more than 1 order of magnitude, containing a charge of 1–100 pC and a charge per energy interval of more than 10  pC/MeV. Laser-plasma electron acceleration with Ti:sapphire lasers using this novel injection mechanism provides high-quality electron bunches tailored for applications.
  •  
9.
  • Chou, Shao-wei, et al. (författare)
  • Collective Deceleration of Laser-Driven Electron Bunches
  • 2016
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 117:14
  • Tidskriftsartikel (refereegranskat)abstract
    • Few-fs electron bunches from laser wakefield acceleration (LWFA) can efficiently drive plasma wakefields (PWFs), as shown by their propagation through underdense plasma in two experiments. A strong and density-insensitive deceleration of the bunches has been observed in 2 mm of 1018 cm−3 density plasma with 5.1 GV=m average gradient, which is attributed to a self-driven PWF. This observation implies that the physics of PWFs, usually relying on large-scale rf accelerators as drivers, can be studied by tabletop LWFA electron sources.
  •  
10.
  • Heissler, P., et al. (författare)
  • Multi‑μJ harmonic emission energy from laser‑driven plasma
  • 2015
  • Ingår i: Applied physics. B, Lasers and optics (Print). - : Springer. - 0946-2171 .- 1432-0649. ; 118:2, s. 195-201
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on simultaneous efficiency and divergence measurements for harmonics from solid targets generated by the relativistic oscillating mirror mechanism. For a value of the normalized vector potential of aL≃1.5aL≃1.5, we demonstrate the generation of 30 μJ high-harmonic radiation in a 17±317±3 mrad divergence cone. This corresponds to a conversion efficiency of ≳≳ 10−4 in the 17–80 nm range into a well-confined beam. Presuming phase-locked harmonics, our results predict unprecedented levels of average power for a single attosecond pulse in the generated pulse train. Results of PIC simulations raise the prospect of attaining efficiencies of a few percent at higher laser intensities.
  •  
11.
  • Khrennikov, K., et al. (författare)
  • Tunable All-Optical Quasimonochromatic Thomson X-Ray Sourcein the Nonlinear Regime
  • 2015
  • Ingår i: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 114:19
  • Tidskriftsartikel (refereegranskat)abstract
    • We present an all-laser-driven, energy-tunable, and quasimonochromatic x-ray source based on Thomson scattering from laser-wakefield-accelerated electrons. One part of the laser beam was used to drive a few-fs bunch of quasimonoenergetic electrons, while the remainder was backscattered off the bunch at weakly relativistic intensity. When the electron energy was tuned from 17–50 MeV, narrow x-ray spectra peaking at 5–42 keV were recorded with high resolution, revealing nonlinear features. We present a large set of measurements showing the stability and practicality of our source.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-11 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy