SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Klaui M.) "

Search: WFRF:(Klaui M.)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Chumak, A. V., et al. (author)
  • Advances in Magnetics Roadmap on Spin-Wave Computing
  • 2022
  • In: IEEE Transactions on Magnetics. - 0018-9464. ; 58:6
  • Journal article (peer-reviewed)abstract
    • Magnonics addresses the physical properties of spin waves and utilizes them for data processing. Scalability down to atomic dimensions, operation in the GHz-to-THz frequency range, utilization of nonlinear and nonreciprocal phenomena, and compatibility with CMOS are just a few of many advantages offered by magnons. Although magnonics is still primarily positioned in the academic domain, the scientific and technological challenges of the field are being extensively investigated, and many proof-of-concept prototypes have already been realized in laboratories. This roadmap is a product of the collective work of many authors that covers versatile spin-wave computing approaches, conceptual building blocks, and underlying physical phenomena. In particular, the roadmap discusses the computation operations with Boolean digital data, unconventional approaches like neuromorphic computing, and the progress towards magnon-based quantum computing. The article is organized as a collection of sub-sections grouped into seven large thematic sections. Each sub-section is prepared by one or a group of authors and concludes with a brief description of current challenges and the outlook of further development for each research direction. Author
  •  
2.
  • Stamps, R. L., et al. (author)
  • The 2014 Magnetism Roadmap
  • 2014
  • In: Journal of Physics D-Applied Physics. - : IOP Publishing. - 0022-3727 .- 1361-6463. ; 47:33
  • Journal article (peer-reviewed)abstract
    • Magnetism is a very fascinating and dynamic field. Especially in the last 30 years, there have been many major advances in a range of areas from novel fundamental phenomena to new products. Applications such as hard disc drives and magnetic sensors are part of our daily life and new applications, such as in non-volatile computer random access memory, are expected to surface shortly. Thus it is an opportune time for describing the current status and current and future challenges in the form of a roadmap article. The 2014 Magnetism Roadmap provides a view on several selected, presently very active innovative developments. It consists of twelve sections, each written by an expert in the field and addressing a specific subject, with a strong emphasis on future potential. This Roadmap cannot cover the entire field. Several highly relevant areas have been selected without attempting to provide a full review - a future update will aim to address further. The scope covers mostly nanomagnetic phenomena and applications, where surfaces and interfaces provide additional functionality. New developments in fundamental topics such as interacting nanoelements, novel magnon-based spintronics concepts, spin-orbit torques and spin-caloric phenomena are addressed. New materials such as organic magnetic materials and permanent magnets are covered. New applications are presented such as nanomagnetic logic, non-local and domain-wall based devices, heat-assisted magnetic recording, magnetic random access memory and applications in biotechnology. This Roadmap acts to serve as a guideline for future emerging research directions in modern magnetism.
  •  
3.
  • Ilyakov, I., et al. (author)
  • Terahertz-wave decoding of femtosecond extreme-ultraviolet light pulses
  • 2022
  • In: Optica. - : Optica Publishing Group. - 2334-2536. ; 9:5, s. 545-550
  • Journal article (peer-reviewed)abstract
    • In recent years, femtosecond extreme-ultraviolet (XUV) and x-ray pulses from free-electron lasers have developed into important probes to monitor processes and dynamics in matter on femtosecond-time and angstrom-length scales. With the rapid progress of versatile ultrafast x-ray spectroscopy techniques and more sophisticated data analysis tools, accurate single-pulse information on the arrival time, duration, and shape of the probing x-ray and XUV pulses becomes essential. Here, we demonstrate that XUV pulses can be converted into terahertz electromagnetic pulses using a spintronic terahertz emitter. We observe that the duration, arrival time, and energy of each individual XUV pulse is encoded in the waveform of the associated terahertz pulses, and thus can be readily deduced from single-shot terahertz time-domain detection.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view