SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Kleinschnitz C.) "

Search: WFRF:(Kleinschnitz C.)

  • Result 1-15 of 15
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Mishra, A., et al. (author)
  • Stroke genetics informs drug discovery and risk prediction across ancestries
  • 2022
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 611, s. 115-123
  • Journal article (peer-reviewed)abstract
    • Previous genome-wide association studies (GWASs) of stroke - the second leading cause of death worldwide - were conducted predominantly in populations of European ancestry(1,2). Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis(3), and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach(4), we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry(5). Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  • Raslan, F, et al. (author)
  • Inhibition of bradykinin receptor B1 protects mice from focal brain injury by reducing blood-brain barrier leakage and inflammation
  • 2010
  • In: Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. - : SAGE Publications. - 1559-7016. ; 30:8, s. 1477-1486
  • Journal article (peer-reviewed)abstract
    • Kinins are proinflammatory and vasoactive peptides that are released during tissue damage and may contribute to neuronal degeneration, inflammation, and edema formation after brain injury by acting on discrete bradykinin receptors, B1R and B2R. We studied the expression of B1R and B2R and the effect of their inhibition on lesion size, blood–brain barrier (BBB) disruption, and inflammatory processes after a focal cryolesion of the right parietal cortex in mice. B1R and B2R gene transcripts were significantly induced in the lesioned hemispheres of wild-type mice ( P<0.05). The volume of the cortical lesions and neuronal damage at 24 h after injury in B1R −/− mice were significantly smaller than in wild-type controls (2.5±2.6 versus 11.5±3.9 mm3, P<0.001). Treatment with the B1R antagonist R-715 1 h after lesion induction likewise reduced lesion volume in wild-type mice (2.6±1.4 versus 12.2±6.1 mm3, P<0.001). This was accompanied by a remarkable reduction of BBB disruption and tissue inflammation. In contrast, genetic deletion or pharmacological inhibition of B2R had no significant impact on lesion formation or the development of brain edema. We conclude that B1R inhibition may offer a novel therapeutic strategy after acute brain injuries.
  •  
12.
  •  
13.
  • Varga-Szabo, D, et al. (author)
  • The calcium sensor STIM1 is an essential mediator of arterial thrombosis and ischemic brain infarction
  • 2008
  • In: The Journal of experimental medicine. - : Rockefeller University Press. - 1540-9538 .- 0022-1007. ; 205:7, s. 1583-1591
  • Journal article (peer-reviewed)abstract
    • Platelet activation and aggregation are essential to limit posttraumatic blood loss at sites of vascular injury but also contributes to arterial thrombosis, leading to myocardial infarction and stroke. Agonist-induced elevation of [Ca2+]i is a central step in platelet activation, but the underlying mechanisms are not fully understood. A major pathway for Ca2+ entry in nonexcitable cells involves receptor-mediated release of intracellular Ca2+ stores, followed by activation of store-operated calcium (SOC) channels in the plasma membrane. Stromal interaction molecule 1 (STIM1) has been identified as the Ca2+ sensor in the endoplasmic reticulum (ER) that activates Ca2+ release–activated channels in T cells, but its role in mammalian physiology is unknown. Platelets express high levels of STIM1, but its exact function has been elusive, because these cells lack a normal ER and Ca2+ is stored in a tubular system referred to as the sarcoplasmatic reticulum. We report that mice lacking STIM1 display early postnatal lethality and growth retardation. STIM1-deficient platelets have a marked defect in agonist-induced Ca2+ responses, and impaired activation and thrombus formation under flow in vitro. Importantly, mice with STIM1-deficient platelets are significantly protected from arterial thrombosis and ischemic brain infarction but have only a mild bleeding time prolongation. These results establish STIM1 as an important mediator in the pathogenesis of ischemic cardio- and cerebrovascular events.
  •  
14.
  • Warnke, Clemens, et al. (author)
  • Cerebrospinal Fluid JC Virus Antibody Index for Diagnosis of Natalizumab-Associated Progressive Multifocal Leukoencephalopathy
  • 2014
  • In: Annals of Neurology. - : Wiley. - 0364-5134 .- 1531-8249. ; 76:6, s. 792-801
  • Journal article (peer-reviewed)abstract
    • Objective: Progressive multifocal leukoencephalopathy (PML), caused by JC virus (JCV), can occur in patients receiving natalizumab for multiple sclerosis (MS). JCV detection by quantitative polymerase chain reaction (qPCR) in cerebrospinal fluid (CSF), or brain biopsy, is required for probable or definite diagnosis of PML. However, in some patients only low levels of JCV DNA (<100 copies/ml) are present in CSF, making the diagnosis challenging. Our objective was to assess the complementary value of a CSF JCV antibody index (AI(JCV)) in the diagnosis of natalizumab-associated PML.Methods: AI(JCV) was assessed in 37 cases of natalizumab-associated PML and 89 MS-patients treated with natalizumab without PML. Sera and CSF were tested in a capture enzyme-linked immunosorbent assay, using JCV-VP1 fused to glutathione S-transferase as antigen. Albumin levels and total immunoglobulin G concentration were determined by immunonephelometry, and the AI(JCV) was calculated as published.Results:Twenty-six of 37 (70%) patients with natalizumab-associated PML exhibited an AI(JCV) > 1.5, whereas this was seen in none of the controls (p < 0.0001). At time of the first positive qPCR for JCV DNA, 11 of 20 (55%) patients with natalizumab-associated PML had an AI(JCV) > 1.5. JCV DNA levels of <100 copies/ml were seen in 14 (70%) of these 20 patients, of whom 8 (57%) demonstrated an AI(JCV) > 1.5.Interpretation: Determination of the AI(JCV) could be an added tool in the diagnostic workup for PML and should be included in the case definition of natalizumab-associated PML. Ann Neurol 2014;76:792-801
  •  
15.
  • Warnke, Clemens, et al. (author)
  • Natalizumab exerts a suppressive effect on surrogates of B cell function in blood and CSF
  • 2015
  • In: Multiple Sclerosis Journal. - : Sage Publications. - 1352-4585 .- 1477-0970. ; 21:8, s. 1036-1044
  • Journal article (peer-reviewed)abstract
    • Background: Natalizumab for multiple sclerosis (MS) increases the risk of progressive multifocal leukoencephalopathy (PML). Objective: We aimed to assess the effect of natalizumab on cellular composition and functional B cell parameters including patients with natalizumab-associated PML (n=37). Methods: Cellular composition by flow cytometry, levels of immunoglobulin (Ig)G/IgM by immunonephelometry, and oligoclonal bands by isoelectric focusing were studied in blood and cerebrospinal fluid. Results: In MS patients treated with natalizumab without PML (n=59) the proportion of CD19+ B cells was higher in blood, but lower in cerebrospinal fluid compared with MS patients not treated with natalizumab (n=17). The CD4/CD8-ratio in cerebrospinal fluid was lower, and IgG and IgM levels as well as the IgG index dropped in longitudinal samples during natalizumab therapy. Oligoclonal bands persisted, but the total amount of the intrathecally produced IgG fraction, and the polyclonal intrathecal IgG reactivity to measles, rubella, and zoster declined. At the time of diagnosis of PML patients with natalizumab-associated PML had low total IgG levels in blood and cerebrospinal fluid. Conclusions: Natalizumab impacts B and T cell distribution and exerts an inhibitory effect on surrogates of B cell function in periphery and in cerebrospinal fluid, potentially contributing to the increased risk of developing PML.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-15 of 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view