SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Kotak R.) "

Search: WFRF:(Kotak R.)

  • Result 1-25 of 70
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • de Jong, R. S., et al. (author)
  • 4MOST : Project overview and information for the First Call for Proposals
  • 2019
  • In: The Messenger. - : European Southern Observatory. - 0722-6691. ; 175, s. 3-11
  • Journal article (other academic/artistic)abstract
    • We introduce the 4-metre Multi-Object Spectroscopic Telescope (4MOST), a new high-multiplex, wide-field spectroscopic survey facility under development for the four-metre-class Visible and Infrared Survey Telescope for Astronomy (VISTA) at Paranal. Its key specifications are: a large field of view (FoV) of 4.2 square degrees and a high multiplex capability, with 1624 fibres feeding two low-resolution spectrographs (R = λ/Δλ ~ 6500), and 812 fibres transferring light to the high-resolution spectrograph (R ~ 20 000). After a description of the instrument and its expected performance, a short overview is given of its operational scheme and planned 4MOST Consortium science; these aspects are covered in more detail in other articles in this edition of The Messenger. Finally, the processes, schedules, and policies concerning the selection of ESO Community Surveys are presented, commencing with a singular opportunity to submit Letters of Intent for Public Surveys during the first five years of 4MOST operations.
  •  
2.
  • Ackley, K., et al. (author)
  • Observational constraints on the optical and near-infrared emission from the neutron star-black hole binary merger candidate S190814bv
  • 2020
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 643
  • Journal article (peer-reviewed)abstract
    • Context. Gravitational wave (GW) astronomy has rapidly reached maturity, becoming a fundamental observing window for modern astrophysics. The coalescences of a few tens of black hole (BH) binaries have been detected, while the number of events possibly including a neutron star (NS) is still limited to a few. On 2019 August 14, the LIGO and Virgo interferometers detected a high-significance event labelled S190814bv. A preliminary analysis of the GW data suggests that the event was likely due to the merger of a compact binary system formed by a BH and a NS.Aims. In this paper, we present our extensive search campaign aimed at uncovering the potential optical and near infrared electromagnetic counterpart of S190814bv. We found no convincing electromagnetic counterpart in our data. We therefore use our non-detection to place limits on the properties of the putative outflows that could have been produced by the binary during and after the merger.Methods. Thanks to the three-detector observation of S190814bv, and given the characteristics of the signal, the LIGO and Virgo Collaborations delivered a relatively narrow localisation in low latency - a 50% (90%) credible area of 5 deg(2) (23 deg(2)) - despite the relatively large distance of 26752 Mpc. ElectromagNetic counterparts of GRAvitational wave sources at the VEry Large Telescope collaboration members carried out an intensive multi-epoch, multi-instrument observational campaign to identify the possible optical and near infrared counterpart of the event. In addition, the ATLAS, GOTO, GRAWITA-VST, Pan-STARRS, and VINROUGE projects also carried out a search on this event. In this paper, we describe the combined observational campaign of these groups.Results. Our observations allow us to place limits on the presence of any counterpart and discuss the implications for the kilonova (KN), which was possibly generated by this NS-BH merger, and for the strategy of future searches. The typical depth of our wide-field observations, which cover most of the projected sky localisation probability (up to 99.8%, depending on the night and filter considered), is r similar to 22 (resp. K similar to 21) in the optical (resp. near infrared). We reach deeper limits in a subset of our galaxy-targeted observations, which cover a total similar to 50% of the galaxy-mass-weighted localisation probability. Altogether, our observations allow us to exclude a KN with large ejecta mass M greater than or similar to 0.1 M-circle dot to a high (> 90%) confidence, and we can exclude much smaller masses in a sub-sample of our observations. This disfavours the tidal disruption of the neutron star during the merger.Conclusions. Despite the sensitive instruments involved in the campaign, given the distance of S190814bv, we could not reach sufficiently deep limits to constrain a KN comparable in luminosity to AT 2017gfo on a large fraction of the localisation probability. This suggests that future (likely common) events at a few hundred megaparsecs will be detected only by large facilities with both a high sensitivity and large field of view. Galaxy-targeted observations can reach the needed depth over a relevant portion of the localisation probability with a smaller investment of resources, but the number of galaxies to be targeted in order to get a fairly complete coverage is large, even in the case of a localisation as good as that of this event.
  •  
3.
  • Agudo, I., et al. (author)
  • Panning for gold, but finding helium: Discovery of the ultra-stripped supernova SN 2019wxt from gravitational-wave follow-up observations
  • 2023
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 675
  • Journal article (peer-reviewed)abstract
    • We present the results from multi-wavelength observations of a transient discovered during an intensive follow-up campaign of S191213g, a gravitational wave (GW) event reported by the LIGO-Virgo Collaboration as a possible binary neutron star merger in a low latency search. This search yielded SN 2019wxt, a young transient in a galaxy whose sky position (in the 80% GW contour) and distance (∼150 Mpc) were plausibly compatible with the localisation uncertainty of the GW event. Initially, the transienta's tightly constrained age, its relatively faint peak magnitude (Mi ∼ -16.7 mag), and the r-band decline rate of ∼1 mag per 5 days appeared suggestive of a compact binary merger. However, SN 2019wxt spectroscopically resembled a type Ib supernova, and analysis of the optical-near-infrared evolution rapidly led to the conclusion that while it could not be associated with S191213g, it nevertheless represented an extreme outcome of stellar evolution. By modelling the light curve, we estimated an ejecta mass of only ∼0.1 M·, with 56Ni comprising ∼20% of this. We were broadly able to reproduce its spectral evolution with a composition dominated by helium and oxygen, with trace amounts of calcium. We considered various progenitor channels that could give rise to the observed properties of SN 2019wxt and concluded that an ultra-stripped origin in a binary system is the most likely explanation. Disentangling genuine electromagnetic counterparts to GW events from transients such as SN 2019wxt soon after discovery is challenging: in a bid to characterise this level of contamination, we estimated the rate of events with a volumetric rate density comparable to that of SN 2019wxt and found that around one such event per week can occur within the typical GW localisation area of O4 alerts out to a luminosity distance of 500 Mpc, beyond which it would become fainter than the typical depth of current electromagnetic follow-up campaigns.
  •  
4.
  • Nicholl, M., et al. (author)
  • Slowly fading super-luminous supernovae that are not pair-instability explosions
  • 2013
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 502:7471, s. 346-
  • Journal article (peer-reviewed)abstract
    • Super-luminous supernovae(1-4) that radiate more than 1044 ergs per second at their peak luminosity have recently been discovered in faint galaxies at redshifts of 0.1-4. Some evolve slowly, resembling models of 'pair-instability' supernovae(5,6). Such models involve stars with original masses 140-260 times that of the Sun that now have carbon-oxygen cores of 65-130 solar masses. In these stars, the photons that prevent gravitational collapse are converted to electron-positron pairs, causing rapid contraction and thermonuclear explosions. Many solar masses of Ni-56 are synthesized; this isotope decays to Fe-56 via Co-56, powering bright light curves(7,8). Such massive progenitors are expected to have formed from metal-poor gas in the early Universe(9). Recently, supernova 2007bi in a galaxy at redshift 0.127 (about 12 billion years after the Big Bang) with a metallicity one-third that of the Sun was observed to look like a fading pair-instability supernova(1,10). Here we report observations of two slow-to-fade super-luminous supernovae that show relatively fast rise times and blue colours, which are incompatible with pair-instability models. Their late-time light-curve and spectral similarities to supernova 2007bi call the nature of that event into question. Our early spectra closely resemble typical fast-declining super-luminous supernovae(2,11,12), which are not powered by radio-activity. Modelling our observations with 10-16 solar masses of magnetar-energized(13,14) ejecta demonstrates the possibility of a common explosion mechanism. The lack of unambiguous nearby pair-instability events suggests that their local rate of occurrence is less than 6 x 10(-6) times that of the core-collapse rate.
  •  
5.
  • Smartt, S. J., et al. (author)
  • A kilonova as the electromagnetic counterpart to a gravitational-wave source
  • 2017
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 551:7678, s. 75-
  • Journal article (peer-reviewed)abstract
    • Gravitational waves were discovered with the detection of binary black-hole mergers(1) and they should also be detectable from lower-mass neutron-star mergers. These are predicted to eject material rich in heavy radioactive isotopes that can power an electromagnetic signal. This signal is luminous at optical and infrared wavelengths and is called a kilonova(2-5). The gravitational-wave source GW170817 arose from a binary neutron-star merger in the nearby Universe with a relatively well confined sky position and distance estimate(6). Here we report observations and physical modelling of a rapidly fading electromagnetic transient in the galaxy NGC 4993, which is spatially coincident with GW170817 and with a weak, short.-ray burst(7,8). The transient has physical parameters that broadly match the theoretical predictions of blue kilonovae from neutron-star mergers. The emitted electromagnetic radiation can be explained with an ejected mass of 0.04 +/- 0.01 solar masses, with an opacity of less than 0.5 square centimetres per gram, at a velocity of 0.2 +/- 0.1 times light speed. The power source is constrained to have a power-law slope of -1.2 +/- 0.3, consistent with radioactive powering from r-process nuclides. (The r-process is a series of neutron capture reactions that synthesise many of the elements heavier than iron.) We identify line features in the spectra that are consistent with light r-process elements (atomic masses of 90-140). As it fades, the transient rapidly becomes red, and a higher-opacity, lanthanide-rich ejecta component may contribute to the emission. This indicates that neutron-star mergers produce gravitational waves and radioactively powered kilonovae, and are a nucleosynthetic source of the r-process elements.
  •  
6.
  • Smartt, S. J., et al. (author)
  • PESSTO : survey description and products from the first data release by the Public ESO Spectroscopic Survey of Transient Objects
  • 2015
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 579
  • Journal article (peer-reviewed)abstract
    • Context. The Public European Southern Observatory Spectroscopic Survey of Transient Objects (PESSTO) began as a public spectroscopic survey in April 2012. PESSTO classifies transients from publicly available sources and wide-field surveys, and selects science targets for detailed spectroscopic and photometric follow-up. PESSTO runs for nine months of the year, January - April and August - December inclusive, and typically has allocations of 10 nights per month. Aims. We describe the data reduction strategy and data products that are publicly available through the ESO archive as the Spectroscopic Survey data release 1 (SSDR1). Methods. PESSTO uses the New Technology Telescope with the instruments EFOSC2 and SOFI to provide optical and NIR spectroscopy and imaging. We target supernovae and optical transients brighter than 20.5(m) for classification. Science targets are selected for follow-up based on the PESSTO science goal of extending knowledge of the extremes of the supernova population. We use standard EFOSC2 set-ups providing spectra with resolutions of 13-18 angstrom between 3345-9995 angstrom. A subset of the brighter science targets are selected for SOFI spectroscopy with the blue and red grisms (0.935-2.53 mu m and resolutions 23-33 angstrom) and imaging with broadband JHK(s) filters. Results. This first data release (SSDR1) contains flux calibrated spectra from the first year (April 2012-2013). A total of 221 confirmed supernovae were classified, and we released calibrated optical spectra and classifications publicly within 24 h of the data being taken (via WISeREP). The data in SSDR1 replace those released spectra. They have more reliable and quantifiable flux calibrations, correction for telluric absorption, and are made available in standard ESO Phase 3 formats. We estimate the absolute accuracy of the flux calibrations for EFOSC2 across the whole survey in SSDR1 to be typically similar to 15%, although a number of spectra will have less reliable absolute flux calibration because of weather and slit losses. Acquisition images for each spectrum are available which, in principle, can allow the user to refine the absolute flux calibration. The standard NIR reduction process does not produce high accuracy absolute spectrophotometry but synthetic photometry with accompanying JHK(s) imaging can improve this. Whenever possible, reduced SOFI images are provided to allow this. Conclusions. Future data releases will focus on improving the automated flux calibration of the data products. The rapid turnaround between discovery and classification and access to reliable pipeline processed data products has allowed early science papers in the first few months of the survey.
  •  
7.
  • Ovejas, J. D., et al. (author)
  • Halo effects in the low-energy scattering of 15 C with heavy targets
  • 2020
  • In: Acta Physica Polonica, Series B.. - 1509-5770 .- 0587-4254. ; 51:3, s. 731-736
  • Journal article (peer-reviewed)abstract
    • The neutron-rich carbon isotope 15C was postulated to be a halo nucleus (Sn = 1215 keV, S2n = 9395 keV) according to different high-energy experiments. If so, it would be the only halo nucleus exhibiting a "pure" s-wave structure of the ground state. At low collision energies, the effect of this halo structure should manifest as a strong absorption pattern in the angular distribution of the elastic cross section, with a total suppression of the nuclear rainbow due to the large neutron transfer and breakup probabilities, enhanced by the halo configuration. The IS619 experiment, carried out at the HIE-ISOLDE facility at CERN (Switzerland), is the first dynamical study of this nucleus at energies around the Coulomb barrier. It aims to probe the halo structure via the measurement of the elastic cross section on a high-Z 208Pb target. Preliminary results of the elastic cross section are discussed and compared to Optical Model calculations.
  •  
8.
  • Scolnic, D. M., et al. (author)
  • The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample
  • 2018
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 859:2
  • Journal article (peer-reviewed)abstract
    • We present optical light curves, redshifts, and classifications for 365 spectroscopically confirmed Type Ia supernovae (SNe Ia) discovered by the Pan-STARRS1 (PS1) Medium Deep Survey. We detail improvements to the PS1 SN photometry, astrometry, and calibration that reduce the systematic uncertainties in the PS1 SN Ia distances. We combine the subset of 279 PS1 SNe Ia (0.03 < z < 0.68) with useful distance estimates of SNe Ia from the Sloan Digital Sky Survey (SDSS), SNLS, and various low-z and Hubble Space Telescope samples to form the largest combined sample of SNe Ia, consisting of a total of 1048 SNe Ia in the range of 0.01 < z < 2.3, which we call the Pantheon Sample. When combining Planck 2015 cosmic microwave background (CMB) measurements with the Pantheon SN sample, we find Omega(m) = 0.307 +/- 0.012 and w = -1.026 +/- 0.041 for the wCDM model. When the SN and CMB constraints are combined with constraints from BAO and local H-0 measurements, the analysis yields the most precise measurement of dark energy to date: w(0) = -1.007 +/- 0.089 and w(a) = -0.222 +/- 0.407 for the w(0)w(a) CDM model. Tension with a cosmological constant previously seen in an analysis of PS1 and low-z SNe has diminished after an increase of 2x in the statistics of the PS1 sample, improved calibration and photometry, and stricter light-curve quality cuts. We find that the systematic uncertainties in our measurements of dark energy are almost as large as the statistical uncertainties, primarily due to limitations of modeling the low-redshift sample. This must be addressed for future progress in using SNe Ia to measure dark energy.
  •  
9.
  • Magee, M. R., et al. (author)
  • The type Iax supernova, SN 2015H A white dwarf deflagration candidate
  • 2016
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 589
  • Journal article (peer-reviewed)abstract
    • We present results based on observations of SN 2015H which belongs to the small group of objects similar to SN 2002cx, otherwise known as type Iax supernovae. The availability of deep pre-explosion imaging allowed us to place tight constraints on the explosion epoch. Our observational campaign began approximately one day post-explosion, and extended over a period of about 150 days post maximum light, making it one of the best observed objects of this class to date. We find a peak magnitude of M-r = 17.27 +/- 0.07, and a (Delta m(15))(r) = 0.69 +/- 0.04. Comparing our observations to synthetic spectra generated from simulations of deflagrations of Chandrasekhar mass carbon-oxygen white dwarfs, we find reasonable agreement with models of weak deflagrations that result in the ejection of similar to 0.2 M-circle dot of material containing similar to 0.07 M-circle dot of Ni-56. The model light curve however, evolves more rapidly than observations, suggesting that a higher ejecta mass is to be favoured. Nevertheless, empirical modelling of the pseudo-bolometric light curve suggests that less than or similar to 0.6 M-circle dot of material was ejected, implying that the white dwarf is not completely disrupted, and that a bound remnant is a likely outcome.
  •  
10.
  • Pastorello, A., et al. (author)
  • Ultra-bright Optical Transients are Linked with Type Ic Supernovae
  • 2010
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 724, s. L16-L21
  • Journal article (peer-reviewed)abstract
    • Recent searches by unbiased, wide-field surveys have uncovered a group of extremely luminous optical transients. The initial discoveries of SN 2005ap by the Texas Supernova Search and SCP-06F6 in a deep Hubble pencil beam survey were followed by the Palomar Transient Factory confirmation of host redshifts for other similar transients. The transients share the common properties of high optical luminosities (peak magnitudes ~-21 to -23), blue colors, and a lack of H or He spectral features. The physical mechanism that produces the luminosity is uncertain, with suggestions ranging from jet-driven explosion to pulsational pair instability. Here, we report the most detailed photometric and spectral coverage of an ultra-bright transient (SN 2010gx) detected in the Pan-STARRS 1 sky survey. In common with other transients in this family, early-time spectra show a blue continuum and prominent broad absorption lines of O II. However, about 25 days after discovery, the spectra developed type Ic supernova features, showing the characteristic broad Fe II and Si II absorption lines. Detailed, post-maximum follow-up may show that all SN 2005ap and SCP-06F6 type transients are linked to supernovae Ic. This poses problems in understanding the physics of the explosions: there is no indication from late-time photometry that the luminosity is powered by 56Ni, the broad light curves suggest very large ejected masses, and the slow spectral evolution is quite different from typical Ic timescales. The nature of the progenitor stars and the origin of the luminosity are intriguing and open questions.
  •  
11.
  • Valenti, S., et al. (author)
  • PESSTO spectroscopic classification of La Silla-Quest Transients
  • 2012
  • Reports (other academic/artistic)abstract
    • PESSTO is the "Public ESO Spectroscopic Survey of Transient Objects" (http://www.pessto.org) using the ESO New Technology Telescope (NTT) at La Silla and the EFOSC2 (optical) and SOFI (near-IR) spectrographs. It is one of two currently running public spectroscopic surveys at ESO. The survey details are as follows: - PESSTO has 90 nights per year on the NTT: 9 lunations (August to April), 10 nights per lunation (we are not observing May-July).
  •  
12.
  • Botticella, M. T., et al. (author)
  • Supernova 2009kf : An Ultraviolet Bright Type IIP Supernova Discovered with Pan-STARRS 1 and GALEX
  • 2010
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 717, s. L52-L56
  • Journal article (peer-reviewed)abstract
    • We present photometric and spectroscopic observations of a luminous Type IIP Supernova (SN) 2009kf discovered by the Pan-STARRS 1 (PS1) survey and also detected by the Galaxy Evolution Explorer. The SN shows a plateau in its optical and bolometric light curves, lasting approximately 70 days in the rest frame, with an absolute magnitude of M V = -18.4 mag. The P-Cygni profiles of hydrogen indicate expansion velocities of 9000 km s-1 at 61 days after discovery which is extremely high for a Type IIP SN. SN 2009kf is also remarkably bright in the near-ultraviolet (NUV) and shows a slow evolution 10-20 days after optical discovery. The NUV and optical luminosity at these epochs can be modeled with a blackbody with a hot effective temperature (T ~ 16,000 K) and a large radius (R ~ 1 × 1015 cm). The bright bolometric and NUV luminosity, the light curve peak and plateau duration, the high velocities, and temperatures suggest that 2009kf is a Type IIP SN powered by a larger than normal explosion energy. Recently discovered high-z SNe (0.7 < z < 2.3) have been assumed to be IIn SNe, with the bright UV luminosities due to the interaction of SN ejecta with a dense circumstellar medium. UV-bright SNe similar to SN 2009kf could also account for these high-z events, and its absolute magnitude M NUV = -21.5 ± 0.5 mag suggests such SNe could be discovered out to z ~ 2.5 in the PS1 survey.
  •  
13.
  • Brennan, S. J., et al. (author)
  • Photometric and spectroscopic evolution of the interacting transient AT 2016jbu(Gaia16cfr)
  • 2022
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 513:4, s. 5642-5665
  • Journal article (peer-reviewed)abstract
    • We present the results from a high-cadence, multiwavelength observation campaign of AT 2016jbu (aka Gaia16cfr), an interacting transient. This data set complements the current literature by adding higher cadence as well as extended coverage of the light-curve evolution and late-time spectroscopic evolution. Photometric coverage reveals that AT 2016jbu underwent significant photometric variability followed by two luminous events, the latter of which reached an absolute magnitude of MV ∼ −18.5 mag. This is similar to the transient SN 2009ip whose nature is still debated. Spectra are dominated by narrow emission lines and show a blue continuum during the peak of the second event. AT 2016jbu shows signatures of a complex, non-homogeneous circumstellar material (CSM). We see slowly evolving asymmetric hydrogen line profiles, with velocities of 500 km s−1 seen in narrow emission features from a slow-moving CSM, and up to 10 000 km s−1 seen in broad absorption from some high-velocity material. Late-time spectra (∼+1 yr) show a lack of forbidden emission lines expected from a core-collapse supernova and are dominated by strong emission from H, He I, and Ca II. Strong asymmetric emission features, a bumpy light curve, and continually evolving spectra suggest an inhibit nebular phase. We compare the evolution of H α among SN 2009ip-like transients and find possible evidence for orientation angle effects. The light-curve evolution of AT 2016jbu suggests similar, but not identical, circumstellar environments to other SN 2009ip-like transients.
  •  
14.
  • Brennan, S. J., et al. (author)
  • Progenitor, environment, and modelling of the interacting transient AT 2016jbu (Gaia16cfr)
  • 2022
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 513:4, s. 5666-5685
  • Journal article (peer-reviewed)abstract
    • We present the bolometric light curve, identification and analysis of the progenitor candidate, and preliminary modelling of AT 2016jbu (Gaia16cfr). We find a progenitor consistent with a ∼ 22–25 M⊙ yellow hypergiant surrounded by a dusty circumstellar shell, in agreement with what has been previously reported. We see evidence for significant photometric variability in the progenitor, as well as strong Hα emission consistent with pre-existing circumstellar material. The age of the environment, as well as the resolved stellar population surrounding AT 2016jbu, supports a progenitor age of >10 Myr, consistent with a progenitor mass of ∼22 M⊙. A joint analysis of the velocity evolution of AT 2016jbu and the photospheric radius inferred from the bolometric light curve shows the transient is consistent with two successive outbursts/explosions. The first outburst ejected material with velocity ∼650 km s−1, while the second, more energetic event ejected material at ∼4500 km s−1. Whether the latter is the core collapse of the progenitor remains uncertain. We place a limit on the ejected 56Ni mass of <0.016 M⊙. Using the Binary Population And Spectral Synthesis (BPASS) code, we explore a wide range of possible progenitor systems and find that the majority of these are in binaries, some of which are undergoing mass transfer or common-envelope evolution immediately prior to explosion. Finally, we use the SuperNova Explosion Code (SNEC) to demonstrate that the low-energy explosions within some of these binary systems, together with sufficient circumstellar material, can reproduce the overall morphology of the light curve of AT 2016jbu.
  •  
15.
  • Kankare, E., et al. (author)
  • Core-collapse supernova subtypes in luminous infrared galaxies
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 649
  • Journal article (peer-reviewed)abstract
    • The fraction of core-collapse supernovae (CCSNe) occurring in the central regions of galaxies is not well constrained at present. This is partly because large-scale transient surveys operate at optical wavelengths, making it challenging to detect transient sources that occur in regions susceptible to high extinction factors. Here we present the discovery and follow-up observations of two CCSNe that occurred in the luminous infrared galaxy (LIRG) NGC 3256. The first, SN 2018ec, was discovered using the ESO HAWK-I /GRAAL adaptive optics seeing enhancer, and was classified as a Type Ic with a host galaxy extinction of AV = 2:1+0:3 0:1 mag. The second, AT 2018cux, was discovered during the course of follow-up observations of SN 2018ec, and is consistent with a subluminous Type IIP classification with an AV = 2:1 +/- 0:4 mag of host extinction. A third CCSN, PSN J10275082 4354034 in NGC 3256, was previously reported in 2014, and we recovered the source in late-time archival Hubble Space Telescope imaging. Based on template light curve fitting, we favour a Type IIn classification for it with modest host galaxy extinction of AV = 0:3+0:4 0:3 mag. We also extend our study with follow-up data of the recent Type IIb SN 2019lqo and Type Ib SN 2020fkb that occurred in the LIRG system Arp 299 with host extinctions of AV = 2:1 +0:1 0 :3 and AV = 0:4 +0:1 0 :2 mag, respectively. Motivated by the above, we inspected, for the first time, a sample of 29 CCSNe located within a projected distance of 2.5 kpc from the host galaxy nuclei in a sample of 16 LIRGs. We find, if star formation within these galaxies is modelled assuming a global starburst episode and normal IMF, that there is evidence of a correlation between the starburst age and the CCSN subtype. We infer that the two subgroups of 14 H-poor (Type IIb /Ib /Ic /Ibn) and 15 H-rich (Type II /IIn) CCSNe have di fferent underlying progenitor age distributions, with the H-poor progenitors being younger at 3 sigma significance. However, we note that the currently available sample sizes of CCSNe and host LIRGs are small, and the statistical comparisons between subgroups do not take into account possible systematic or model errors related to the estimated starburst ages.
  •  
16.
  • Mattila, S., et al. (author)
  • A dust-enshrouded tidal disruption event with a resolved radio jet in a galaxy merger
  • 2018
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 361:6401, s. 482-485
  • Journal article (peer-reviewed)abstract
    • Tidal disruption events (TDEs) are transient flares produced when a star is ripped apart by the gravitational field of a supermassive black hole (SMBH). We have observed a transient source in the western nucleus of the merging galaxy pair Arp 299 that radiated >1.5 × 1052erg at infrared and radio wavelengths but was not luminous at optical or x-ray wavelengths. We interpret this as a TDE with much of its emission reradiated at infrared wavelengths by dust. Efficient reprocessing by dense gas and dust may explain the difference between theoretical predictions and observed luminosities of TDEs. The radio observations resolve an expanding and decelerating jet, probing the jet formation and evolution around a SMBH.
  •  
17.
  • Ovejas, J. D., et al. (author)
  • Study of the scattering of 15C at energies around the Coulomb barrier
  • 2020
  • In: Journal of Physics: Conference Series. - : IOP Publishing. - 1742-6588 .- 1742-6596. ; 1643:1
  • Conference paper (peer-reviewed)abstract
    • The neutron rich carbon isotope 15C is the only known case of an almost "pure"2s1/2 single-neutron halo ground state configuration. At collision energies around the Coulomb barrier the reaction dynamics is expected to be dominated by single neutron transfer and breakup. To investigate these effects, we have measured the scattering of 15C with a 208Pb target at 65 MeV at the HIE-ISOLDE facility in CERN (Geneva, Switzerland). The preliminary data demonstrates the presence of a strong long-range absorption pattern in the angular distribution of the elastic cross section. The results are discussed in the framework of Optical Model calculations.
  •  
18.
  • Smartt, S. J., et al. (author)
  • A SEARCH FOR AN OPTICAL COUNTERPART TO THE GRAVITATIONAL-WAVE EVENT GW151226
  • 2016
  • In: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 827:2
  • Journal article (peer-reviewed)abstract
    • We present a search for an electromagnetic counterpart of the gravitational-wave source GW151226. Using the Pan-STARRS1 telescope we mapped out 290 square degrees in the optical i(P1) filter, starting 11.5 hr after the LIGO information release and lasting for an additional 28 days. The first observations started 49.5 hr after the time of the GW151226 detection. We typically reached sensitivity limits of i(P1) = 20.3-20.8 and covered 26.5% of the LIGO probability skymap. We supplemented this with ATLAS survey data, reaching 31% of the probability region to shallower depths of m similar or equal to 19. We found 49 extragalactic transients (that are not obviously active galactic nuclei), including a faint transient in a galaxy at 7 Mpc (a luminous blue variable outburst) plus a rapidly decaying M-dwarf flare. Spectral classification of 20 other transient events showed them all to be supernovae. We found an unusual transient, PS15dpn, with an explosion date temporally coincident with GW151226, that evolved into a type Ibn supernova. The redshift of the transient is secure at z = 0.1747 +/- 0.0001 and we find it unlikely to be linked, since the luminosity distance has a negligible probability of being consistent with that of GW151226. In the 290 square degrees surveyed we therefore do not find a likely counterpart. However we show that our survey strategy would be sensitive to NS-NS mergers producing kilonovae at D-L less than or similar to 100 Mpc, which is promising for future LIGO/Virgo searches.
  •  
19.
  • Távora, V.G., et al. (author)
  • Strong coupling effects on near-barrier 15C + 208Pb elastic scattering
  • 2024
  • In: Physics Letters B. - 0370-2693. ; 855
  • Journal article (peer-reviewed)abstract
    • The presence of a neutron halo in 15C has been demonstrated in several reaction experiments at intermediate energies. In the present study, the dynamical effects of this structure are observed for the first time at Coulomb barrier energies in the 15C + 208Pb quasi-elastic scattering at MeV, measured at the HIE-ISOLDE facility, CERN using the high-granularity detector array GLORIA. A combined continuum discretised coupled channels and coupled reaction channels calculation describes the data well and significant coupling effects due both to breakup and single-neutron stripping are identified.
  •  
20.
  • Távora, V. G., et al. (author)
  • Strong coupling effects on near-barrier 15C + 208Pb elastic scattering
  • 2024
  • In: Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics. - 0370-2693. ; 855
  • Journal article (peer-reviewed)abstract
    • The presence of a neutron halo in 15C has been demonstrated in several reaction experiments at intermediate energies. In the present study, the dynamical effects of this structure are observed for the first time at Coulomb barrier energies in the 15C + 208Pb quasi-elastic scattering at Elab=65 MeV, measured at the HIE-ISOLDE facility, CERN using the high-granularity detector array GLORIA. A combined continuum discretised coupled channels and coupled reaction channels calculation describes the data well and significant coupling effects due both to breakup and single-neutron stripping are identified.
  •  
21.
  • Blagorodnova, N., et al. (author)
  • COMMON ENVELOPE EJECTION FOR A LUMINOUS RED NOVA IN M101
  • 2017
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 834:2
  • Journal article (peer-reviewed)abstract
    • We present the results of optical, near-infrared, and mid-infrared observations of M101 OT2015-1 (PSN J14021678+ 5426205), a luminous red transient in the Pinwheel galaxy (M101), spanning a total of 16 years. The light curve showed two distinct peaks with absolute magnitudes M-r <= -12.4 and M-r similar or equal to -12, on 2014 November 11 and 2015 February 17, respectively. The spectral energy distributions during the second maximum show a cool outburst temperature of approximate to 3700 K and low expansion velocities (approximate to -300 km s(-1)) for the H I, Ca II, Ba II, and K I lines. From archival data spanning 15-8 years before the outburst, we find a single source consistent with the optically discovered transient, which we attribute to being the progenitor; it has properties consistent with being an F-type yellow supergiant with L similar to 8.7 x 10(4) L-circle dot, T-eff approximate to 7000. K, and an estimated mass of M1= 18 +/- 1 M-circle dot. This star has likely just finished the H-burning phase in the core, started expanding, and is now crossing the Hertzsprung gap. Based on the combination of observed properties, we argue that the progenitor is a binary system, with the more evolved system overfilling the Roche lobe. Comparison with binary evolution models suggests that the outburst was an extremely rare phenomenon, likely associated with the ejection of the common envelope of a massive star. The initial mass of the primary fills the gap between the merger candidates V838 Mon (5-10 M-circle dot) and NGC. 4490-OT. (30M(circle dot)).
  •  
22.
  • Gall, E. E. E., et al. (author)
  • An updated Type II supernova Hubble diagram
  • 2018
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 611
  • Journal article (peer-reviewed)abstract
    • We present photometry and spectroscopy of nine Type II-P/L supernovae (SNe) with redshifts in the 0.045 less than or similar to z less than or similar to 0.335 range, with a view to re-examining their utility as distance indicators. Specifically, we apply the expanding photosphere method (EPM) and the standardized candle method (SCM) to each target, and find that both methods yield distances that are in reasonable agreement with each other. The current record-holder for the highest-redshift spectroscopically confirmed supernova (SN) II-P is PS1-13bni (z = 0.335(-0 .012)(+ 0.009)), and illustrates the promise of Type II SNe as cosmological tools. We updated existing EPM and SCM Hubble diagrams by adding our sample to those previously published. Within the context of Type II SN distance measuring techniques, we investigated two related questions. First, we explored the possibility of utilising spectral lines other than the traditionally used Fe II lambda 5169 to infer the photospheric velocity of SN ejecta. Using local well-observed objects, we derive an epoch-dependent relation between the strong Balmer line and Fe II lambda 5169 velocities that is applicable 30 to 40 days post-explosion. Motivated in part by the continuum of key observables such as rise time and decline rates exhibited from II-P to II-L SNe, we assessed the possibility of using Hubble-flow Type II-L SNe as distance indicators. These yield similar distances as the Type II-P SNe. Although these initial results are encouraging, a significantly larger sample of SNe II-L would be required to draw definitive conclusions.
  •  
23.
  • Kangas, T., et al. (author)
  • Supernova 2013fc in a circumnuclear ring of a luminous infrared galaxy : the big brother of SN 1998S
  • 2016
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 456:1, s. 323-346
  • Journal article (peer-reviewed)abstract
    • We present photometric and spectroscopic observations of SN 2013fc, a bright type II supernova (SN) in a circumnuclear star-forming ring in the luminous infrared galaxy ESO 154-G010, observed as part of the Public ESO Spectroscopic Survey of Transient Objects. SN 2013fc is both photometrically and spectroscopically similar to the well-studied type IIn SN 1998S and to the bright type II-L SN 1979C. It exhibits an initial linear decline, followed by a short plateau phase and a tail phase with a decline too fast for Co-56 decay with full. gamma-ray trapping. Initially, the spectrum was blue and featureless. Later on, a strong broad (similar to 8000 km s(-1)) H alpha emission profile became prominent. We apply a STARLIGHT stellar population model fit to the SN location (observed when the SN had faded) to estimate a high extinction of A(V) = 2.9 +/- 0.2 mag and an age of 10(+ 3) (- 2) Myr for the underlying cluster. We compare the SN to SNe 1998S and 1979C and discuss its possible progenitor star considering the similarities to these events. With a peak brightness of B = - 20.46 +/- 0.21 mag, SN 2013fc is 0.9 mag brighter than SN 1998S and of comparable brightness to SN 1979C. We suggest that SN 2013fc was consistent with a massive red supergiant (RSG) progenitor. Recent mass loss probably due to a strong RSG wind created the circumstellar matter illuminated through its interaction with the SN ejecta. We also observe a near- infrared excess, possibly due to newly condensed dust.
  •  
24.
  • Kankare, E., et al. (author)
  • A population of highly energetic transient events in the centres of active galaxies
  • 2017
  • In: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; 1:12, s. 865-871
  • Journal article (peer-reviewed)abstract
    • Recent all-sky surveys have led to the discovery of new types of transients. These include stars disrupted by the central supermassive black hole, and supernovae that are 10-100 times more energetic than typical ones. However, the nature of even more energetic transients that apparently occur in the innermost regions of their host galaxies is hotly debated1-3. Here we report the discovery of the most energetic of these to date: PS1-10adi, with a total radiated energy of similar to 2.3 x 10(52) erg. The slow evolution of its light curve and persistently narrow spectral lines over similar to 3 yr are inconsistent with known types of recurring black hole variability. The observed properties imply powering by shock interaction between expanding material and large quantities of surrounding dense matter. Plausible sources of this expanding material are a star that has been tidally disrupted by the central black hole, or a supernova. Both could satisfy the energy budget. For the former, we would be forced to invoke a new and hitherto unseen variant of a tidally disrupted star, while a supernova origin relies principally on environmental effects resulting from its nuclear location. Remarkably, we also discover that PS1-10adi is not an isolated case. We therefore surmise that this new population of transients has previously been overlooked due to incorrect association with underlying central black hole activity.
  •  
25.
  • Kotak, R., et al. (author)
  • Dust and The Type II-Plateau Supernova 2004et
  • 2009
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 704:1, s. 306-323
  • Journal article (peer-reviewed)abstract
    • We present mid-infrared (MIR) observations of the Type II-plateau supernova (SN) 2004et, obtained with the Spitzer Space Telescope between 64 and 1406 days past explosion. Late-time optical spectra are also presented. For the period 300-795 days past explosion, we argue that the spectral energy distribution (SED) of SN 2004et comprises (1) a hot component due to emission from optically thick gas, as well as free-bound radiation; (2) a warm component due to newly formed, radioactively heated dust in the ejecta; and (3) a cold component due to an IR echo from the interstellar-medium dust of the host galaxy, NGC 6946. There may also have been a small contribution to the IR SED due to free-free emission from ionized gas in the ejecta. We reveal the first-ever spectroscopic evidence for silicate dust formed in the ejecta of a supernova. This is supported by our detection of a large, but progressively declining, mass of SiO. However, we conclude that the mass of directly detected ejecta dust grew to no more than a few times 10-4 M sun. We also provide evidence that the ejecta dust formed in comoving clumps of fixed size. We argue that, after about two years past explosion, the appearance of wide, box-shaped optical line profiles was due to the impact of the ejecta on the progenitor circumstellar medium and that the subsequent formation of a cool, dense shell was responsible for a later rise in the MIR flux. This study demonstrates the rich, multifaceted ways in which a typical core-collapse supernova and its progenitor can produce and/or interact with dust grains. The work presented here adds to the growing number of studies that do not support the contention that SNe are responsible for the large mass of observed dust in high-redshift galaxies.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 70

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view