SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Löndahl Jakob) "

Sökning: WFRF:(Löndahl Jakob)

  • Resultat 1-25 av 279
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Aaltonen, H. Laura, et al. (författare)
  • Airspace dimension assessment with nanoparticles as a proposed biomarker for emphysema
  • 2021
  • Ingår i: Thorax. - : BMJ. - 0040-6376 .- 1468-3296. ; 76:10, s. 1040-1043
  • Tidskriftsartikel (refereegranskat)abstract
    • Airspace dimension assessment with nanoparticles (AiDA) is a novel method to measure distal airspace radius non-invasively. In this study, AiDA radii were measured in 618 individuals from the population-based Swedish CArdiopulmonary BioImaging Study, SCAPIS. Subjects with emphysema detected by computed tomography were compared to non-emphysematous subjects. The 47 individuals with mainly mild-to-moderate visually detected emphysema had significantly larger AiDA radii, compared with non-emphysematous subjects (326±48 μm vs 291±36 μm); OR for emphysema per 10 μm: 1.22 (1.13-1.30, p<0.0001). Emphysema according to CT densitometry was similarly associated with larger radii compared with non-emphysematous CT examinations (316±41 μm vs 291 μm±26 μm); OR per 10 μm: 1.16 (1.08-1.24, p<0.0001). The results are in line with comparable studies. The results show that AiDA is a potential biomarker for emphysema in individuals in the general population.
  •  
3.
  •  
4.
  •  
5.
  • Ahlberg, Erik, et al. (författare)
  • "Vi klimatforskare stödjer Greta och skolungdomarna"
  • 2019
  • Ingår i: Dagens nyheter (DN debatt). - 1101-2447.
  • Tidskriftsartikel (populärvet., debatt m.m.)abstract
    • DN DEBATT 15/3. Sedan industrialiseringens början har vi använt omkring fyra femtedelar av den mängd fossilt kol som får förbrännas för att vi ska klara Parisavtalet. Vi har bara en femtedel kvar och det är bråttom att kraftigt reducera utsläppen. Det har Greta Thunberg och de strejkande ungdomarna förstått. Därför stödjer vi deras krav, skriver 270 klimatforskare.
  •  
6.
  • Alsved, Malin, et al. (författare)
  • Aerosolization and recovery of viable murine norovirus in an experimental setup
  • 2020
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Noroviruses are the major cause for viral acute gastroenteritis in the world. Despite the existing infection prevention strategies in hospitals, the disease continues to spread and causes extensive and numerous outbreaks. Hence, there is a need to investigate the possibility of airborne transmission of norovirus. In this study, we developed an experimental setup for studies on the infectivity of aerosolized murine norovirus (MNV), a model for the human norovirus. Two aerosol generation principles were evaluated: bubble bursting, a common natural aerosolization mechanism, and nebulization, a common aerosolization technique in laboratory studies. The aerosolization setup was characterized by physical and viral dilution factors, generated aerosol particle size distributions, and the viral infectivity after aerosolization. We found a lower physical dilution factor when using the nebulization generator than with the bubble bursting generator. The viral dilution factor of the system was higher than the physical dilution; however, when comparing the physical and viral dilution factors, bubble bursting generation was more efficient. The infectivity per virus was similar using either generation principle, suggesting that the generation itself had a minor impact on MNV infectivity and that instead, the effect of drying in air could be a major reason for infectivity losses.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Alsved, Malin, et al. (författare)
  • Airborne bacteria in hospital operating rooms during ongoing surgery
  • 2018
  • Konferensbidrag (refereegranskat)abstract
    • IntroductionPost-operative infections obtained from open-wound surgeries constitute an unnecessary load on both healthcare and affected patients. It is well established that increased air cleanliness reduces the number of post-operative infections. Therefore, the ventilation system is important in order to reduce the number of infectious particles in the air during surgery. Ventilation with high airflow, as in operating rooms, consumes a high amount of energy and it is thus desirable to find energy efficient solutions. ObjectivesThe purpose of this work was to evaluate air quality, energy efficiency and working environment comfort for three different ventilation techniques in operating rooms. MethodThe newly developed ventilation system temperature controlled airflow (TcAF) was compared with the conventionally used turbulent mixed airflow (TMA) and laminar airflow (LAF). In total, 750 air sample measurements were performed during 45 orthopaedic operations: 15 for each type of ventilation system [1]. The concentration of colony forming units (CFU)/m3 was measured at three locations in the rooms: close to the wound (<0.5 m), at the instrument table and peripherally in the room. The working environment comfort was evaluated in a questionnaire.ResultsOur study shows that both LAF and TcAF maintains CFU concentrations in the air during ongoing surgery significantly below 10 CFU/m3 at the wound and at the instrument table, and for TcAF also in the periphery of the room, see Figure 1. The median CFU concentration in TMA was at or above 10 CFU/m3 at all locations. TcAF used less than half the airflow to that of LAF, resulting in a 28% reduction in energy consumption. The working environment comfort was perceived less noisy and having less draft in the TcAF than the LAF ventilation.SummaryBoth the LAF and TcAF ventilation maintain high air cleanliness with low CFU concentrations throughout the operation. TMA is less efficient in removing bacteria from the air close to the patient.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  • Alsved, Malin, et al. (författare)
  • Droplet, aerosol and SARS-CoV-2 emissions during singing and talking
  • 2021
  • Konferensbidrag (refereegranskat)abstract
    • IntroductionAs the pandemic continues to spread, more knowledge is needed about the viral transmission routes. Several super spreading events during the Covid-19 pandemic have been linked to singing in choirs and talking loud. However, in the beginning of the pandemic there was only one study about emitted aerosols and droplets from singing, published in 1968, and only a handful on emissions from talking. Therefore, we conducted a study to measure the aerosol and droplet emissions from talking and singing. We also evaluated the emissions from singing when wearing a face mask.We have further developed our setup so that we collect the aerosol particles from Covid-19 infected patients that are talking and singing, and analyze our samples for SARS-CoV-2, the virus causing Covid-19.MethodTwelve healthy singers (7 professionals, 5 amateurs) were included in the first study part on quantifying the amount of emitted aerosols and droplets. The singers were singing or talking a short consonant rich text repeatedly at a constant pitch with their face in the opening of a funnel. The aerosol particle size and concentration was measured from the other end of the funnel using an aerodynamic particle sizer (APS, 3321, TSI Inc). In addition, the amount of un-evaporated droplets were captured with a high-speed camera and quantified using image analysis.During February and March 2021 we will collect aerosol particles from patients with confirmed Covid-19 that are singing and talking into a funnel. We will use a growth tube condensation collector, a BioSpot (Aerosol Devices), operating at 8 L min-1, and a NIOSH BC-251 cyclone sampler operating at 3.5 L min-1 (TISCH Environmental). The BioSpot collects the whole range of exhaled aerosol particles with high (95%) efficiency into liquid, and the NIOSH cyclone sampler collects particles into three size fractions: <1 µm (filter), 1-4 µm (liquid), >4 µm (liquid). The APS is again used to measure size and concentration of the emitted aerosol particles, so that emissions from infected test subjects can be compared with those of the healthy test subjects. Air samples will be analyzed for detection of SARS-CoV-2 genes, and if possible, SARS-CoV-2 infectivity in cell cultures.ResultsAerosol particle emissions from healthy test subjects were significantly higher during normal singing (median 690, range [320–2870] particles/s) than during normal talking (270 [120–1380] particles/s) (Wilcoxon’s signed rank test, p=0.002). Loud singing produced even more aerosol particles (980 [390–2870] particles/s) than normal singing (p=0.002). The amount of non-evaporated droplets detected by the high-speed camera setup showed similar results: more droplets during loud singing or talking. For both aerosol particle concentrations and droplet numbers, the levels were reduced by on average 70-80% when wearing a surgical face mask.ConclusionsSinging and talking give rise to high aerosol and droplet emissions from the respiratory tract. This is likely an important transmission route for Covid-19. In our upcoming part of the study we hope to determine how much SARS-CoV-2 that is emitted during these social activities.
  •  
16.
  • Alsved, Malin, et al. (författare)
  • Effect of Aerosolization and Drying on the Viability of Pseudomonas syringae Cells
  • 2018
  • Ingår i: Frontiers in Microbiology. - : Frontiers Media SA. - 1664-302X. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Airborne dispersal of microorganisms influences their biogeography, gene flow, atmospheric processes, human health and transmission of pathogens that affect humans, plants and animals. The extent of their impact depends essentially on cell-survival rates during the process of aerosolization. A central factor for cell-survival is water availability prior to and upon aerosolization. Also, the ability of cells to successfully cope with stress induced by drying determines their chances of survival. In this study, we used the ice-nucleation active, plant pathogenic Pseudomonas syringae strain R10.79 as a model organism to investigate the effect of drying on cell survival. Two forms of drying were simulated: drying of cells in small droplets aerosolized from a wet environment by bubble bursting and drying of cells in large droplets deposited on a surface. For drying of cells both in aerosol and surface droplets, the relative humidity (RH) was varied in the range between 10 and 90%. The fraction of surviving cells was determined by live/dead staining followed by flow cytometry. We also evaluated the effect of salt concentration in the water droplets on the survival of drying cells by varying the ionic strength between 0 and 700 mM using NaCl and sea salt. For both aerosol and surface drying, cell survival increased with decreasing RH (p < 0.01), and for surface drying, survival was correlated with increasing salt concentration (p < 0.001). Imaging cells with TEM showed shrunk cytoplasm and cell wall damage for a large fraction of aerosolized cells. Ultimately, we observed a 10-fold higher fraction of surviving cells when dried as aerosol compared to when dried on a surface. We conclude that the conditions, under which cells dry, significantly affect their survival and thus their success to spread through the atmosphere and colonize new environments as well as their ability to affect atmospheric processes.
  •  
17.
  •  
18.
  • Alsved, Malin, et al. (författare)
  • Exhaled respiratory particles during singing and talking
  • 2020
  • Ingår i: Aerosol Science and Technology. - : Informa UK Limited. - 1521-7388 .- 0278-6826. ; 54:11, s. 245-1248
  • Tidskriftsartikel (refereegranskat)abstract
    • Choir singing has been suspended in many countriesduring the Covid-19 pandemic due to incidental reportsof disease transmission. The mode of transmission has been attributed to exhaled droplets, but with the exception of a study on tuberculosis from1968, there is presently almost no scientific evidence ofincreased particle emissions from singing. A substantial number of studies have,however, investigated aerosols emitted from breathing,talking, coughing and sneezing. It has also been shown that justnormal breathing over time can generate more viablevirus aerosol than coughing, since the latter is a less fre-quent activity.Compared to talking, singing often involves continu-ous voicing, higher sound pressure, higher frequencies,deeper breaths, higher peak airflows and more articu-lated consonants. All these factors are likely to increaseexhaled emissions.The aim of this study was to investigate aerosol anddroplet emissions during singing, as compared to talking and breathing. We also examined the presence of SARS-CoV-2 in the air from breathing, talking and singing,and the efficacy of face masks to reduce emissions. In this study we defined aerosol particles as having a drysize in the range 0.5–10mm. Although debatable from anaerosol physics point of view, a cutoff diameter between5 and 10mm is normally used in medicine for classifica-tion of aerosol versus droplet route of transmission. Droplets are here defined as exhaled particles, frommicron size with no upper size limit, and measured dir-ectly at the mouth before complete evaporation, thuspartly in liquid phase.
  •  
19.
  • Alsved, Malin, et al. (författare)
  • Experimental and computational evaluation of airborne bacteria in hospital operating rooms with high airflows
  • 2018
  • Ingår i: Proceedings of The 5<sup>th</sup> Working &amp; Indoor Aerosols Conference 18-20 April 2018; Cassino, Italy.
  • Konferensbidrag (refereegranskat)abstract
    • Post-operative infections after surgery can be decreased by the use of efficient ventilation with clean air. In this study, we investigated three types of operating room ventilation: turbulent mixed airflow(TMA), laminar airflow (LAF) and a new type of ventilation named temperature controlled airflow(TcAF). Measurements of airborne bacteria were made during surgery and compared with values calculated by computational fluid dynamics (CFD). The results show that LAF and TcAF are most efficient in removing bacteria around the patient. With LAF, there are large differences in bacterial loads, depending on location in the room.
  •  
20.
  •  
21.
  •  
22.
  •  
23.
  •  
24.
  •  
25.
  • Alsved, Malin, et al. (författare)
  • Infectivity of exhaled SARS-CoV-2 aerosols is sufficient to transmit covid-19 within minutes
  • 2023
  • Ingår i: Scientific Reports. - 2045-2322. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Exhaled SARS-CoV-2-containing aerosols contributed significantly to the rapid and vast spread of covid-19. However, quantitative experimental data on the infectivity of such aerosols is missing. Here, we quantified emission rates of infectious viruses in exhaled aerosol from individuals within their first days after symptom onset from covid-19. Six aerosol samples from three individuals were culturable, of which five were successfully quantified using TCID50. The source strength of the three individuals was highest during singing, when they exhaled 4, 36, or 127 TCID50/s, respectively. Calculations with an indoor air transmission model showed that if an infected individual with this emission rate entered a room, a susceptible person would inhale an infectious dose within 6 to 37 min in a room with normal ventilation. Thus, our data show that exhaled aerosols from a single person can transmit covid-19 to others within minutes at normal indoor conditions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 279
Typ av publikation
konferensbidrag (135)
tidskriftsartikel (92)
annan publikation (41)
bokkapitel (4)
forskningsöversikt (3)
rapport (1)
visa fler...
doktorsavhandling (1)
licentiatavhandling (1)
patent (1)
visa färre...
Typ av innehåll
refereegranskat (199)
populärvet., debatt m.m. (59)
övrigt vetenskapligt/konstnärligt (21)
Författare/redaktör
Löndahl, Jakob (279)
Swietlicki, Erik (82)
Pagels, Joakim (64)
Alsved, Malin (55)
Bohgard, Mats (50)
Rissler, Jenny (41)
visa fler...
Medstrand, Patrik (39)
Wollmer, Per (37)
Gudmundsson, Anders (34)
Fraenkel, Carl-Johan (34)
Massling, Andreas (32)
Wierzbicka, Aneta (32)
Jakobsson, Jonas (29)
Thuresson, Sara (29)
Boman, Christoffer (22)
Widell, Anders (21)
Isaxon, Christina (21)
Blomberg, Anders (20)
Sandström, Thomas (19)
Loft, Steffen (18)
Kristensson, Adam (15)
Hussein, Tareq (15)
Nicklasson, Hanna (14)
Santl-Temkiv, Tina (14)
Aaltonen, H. Laura (12)
Nielsen, Jörn (11)
Dahl, Andreas (10)
Roldin, Pontus (10)
Petersson Sjögren, M ... (9)
Eriksson, Axel (9)
Svenningsson, Birgit ... (9)
Fors, Erik (9)
Nygren, David (8)
Svensson, Tobias (8)
Ramstorp, Matts (8)
Ketzel, Matthias (8)
Assarsson, Eva (8)
Sadrizadeh, Sasan (7)
Dierschke, Katrin (7)
Stroh, Emilie (6)
Civilis, Anette (6)
Ekolind, Peter (6)
Sasinovich, Sviatasl ... (6)
Diaz, Sandra (5)
Tammelin, Ann (5)
Erichsen Andersson, ... (5)
Larsson, P A (5)
Bengtsson, Agneta (5)
Sjögren, Staffan (5)
Boor, Brandon E. (5)
visa färre...
Lärosäte
Lunds universitet (275)
Karolinska Institutet (9)
Göteborgs universitet (8)
Umeå universitet (7)
RISE (7)
Kungliga Tekniska Högskolan (3)
visa fler...
Stockholms universitet (3)
Uppsala universitet (2)
Chalmers tekniska högskola (1)
visa färre...
Språk
Engelska (218)
Svenska (61)
Forskningsämne (UKÄ/SCB)
Teknik (125)
Medicin och hälsovetenskap (107)
Naturvetenskap (106)
Humaniora (2)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy