SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Lammer H.) "

Search: WFRF:(Lammer H.)

  • Result 1-25 of 31
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Tinetti, Giovanna, et al. (author)
  • The EChO science case
  • 2015
  • In: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 40:2-3, s. 329-391
  • Journal article (peer-reviewed)abstract
    • The discovery of almost two thousand exoplanets has revealed an unexpectedly diverse planet population. We see gas giants in few-day orbits, whole multi-planet systems within the orbit of Mercury, and new populations of planets with masses between that of the Earth and Neptune-all unknown in the Solar System. Observations to date have shown that our Solar System is certainly not representative of the general population of planets in our Milky Way. The key science questions that urgently need addressing are therefore: What are exoplanets made of? Why are planets as they are? How do planetary systems work and what causes the exceptional diversity observed as compared to the Solar System? The EChO (Exoplanet Characterisation Observatory) space mission was conceived to take up the challenge to explain this diversity in terms of formation, evolution, internal structure and planet and atmospheric composition. This requires in-depth spectroscopic knowledge of the atmospheres of a large and well-defined planet sample for which precise physical, chemical and dynamical information can be obtained. In order to fulfil this ambitious scientific program, EChO was designed as a dedicated survey mission for transit and eclipse spectroscopy capable of observing a large, diverse and well-defined planet sample within its 4-year mission lifetime. The transit and eclipse spectroscopy method, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allows us to measure atmospheric signals from the planet at levels of at least 10(-4) relative to the star. This can only be achieved in conjunction with a carefully designed stable payload and satellite platform. It is also necessary to provide broad instantaneous wavelength coverage to detect as many molecular species as possible, to probe the thermal structure of the planetary atmospheres and to correct for the contaminating effects of the stellar photosphere. This requires wavelength coverage of at least 0.55 to 11 mu m with a goal of covering from 0.4 to 16 mu m. Only modest spectral resolving power is needed, with R similar to 300 for wavelengths less than 5 mu m and R similar to 30 for wavelengths greater than this. The transit spectroscopy technique means that no spatial resolution is required. A telescope collecting area of about 1 m(2) is sufficiently large to achieve the necessary spectro-photometric precision: for the Phase A study a 1.13 m(2) telescope, diffraction limited at 3 mu m has been adopted. Placing the satellite at L2 provides a cold and stable thermal environment as well as a large field of regard to allow efficient time-critical observation of targets randomly distributed over the sky. EChO has been conceived to achieve a single goal: exoplanet spectroscopy. The spectral coverage and signal-to-noise to be achieved by EChO, thanks to its high stability and dedicated design, would be a game changer by allowing atmospheric composition to be measured with unparalleled exactness: at least a factor 10 more precise and a factor 10 to 1000 more accurate than current observations. This would enable the detection of molecular abundances three orders of magnitude lower than currently possible and a fourfold increase from the handful of molecules detected to date. Combining these data with estimates of planetary bulk compositions from accurate measurements of their radii and masses would allow degeneracies associated with planetary interior modelling to be broken, giving unique insight into the interior structure and elemental abundances of these alien worlds. EChO would allow scientists to study exoplanets both as a population and as individuals. The mission can target super-Earths, Neptune-like, and Jupiter-like planets, in the very hot to temperate zones (planet temperatures of 300-3000 K) of F to M-type host stars. The EChO core science would be delivered by a three-tier survey. The EChO Chemical Census: This is a broad survey of a few-hundred exoplanets, which allows us to explore the spectroscopic and chemical diversity of the exoplanet population as a whole. The EChO Origin: This is a deep survey of a subsample of tens of exoplanets for which significantly higher signal to noise and spectral resolution spectra can be obtained to explain the origin of the exoplanet diversity (such as formation mechanisms, chemical processes, atmospheric escape). The EChO Rosetta Stones: This is an ultra-high accuracy survey targeting a subsample of select exoplanets. These will be the bright "benchmark" cases for which a large number of measurements would be taken to explore temporal variations, and to obtain two and three dimensional spatial information on the atmospheric conditions through eclipse-mapping techniques. If EChO were launched today, the exoplanets currently observed are sufficient to provide a large and diverse sample. The Chemical Census survey would consist of > 160 exoplanets with a range of planetary sizes, temperatures, orbital parameters and stellar host properties. Additionally, over the next 10 years, several new ground- and space-based transit photometric surveys and missions will come on-line (e.g. NGTS, CHEOPS, TESS, PLATO), which will specifically focus on finding bright, nearby systems. The current rapid rate of discovery would allow the target list to be further optimised in the years prior to EChO's launch and enable the atmospheric characterisation of hundreds of planets.
  •  
2.
  • Coustenis, A., et al. (author)
  • TandEM : Titan and Enceladus mission
  • 2009
  • In: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 23:3, s. 893-946
  • Journal article (peer-reviewed)abstract
    • TandEM was proposed as an L-class (large) mission in response to ESA's Cosmic Vision 2015-2025 Call, and accepted for further studies, with the goal of exploring Titan and Enceladus. The mission concept is to perform in situ investigations of two worlds tied together by location and properties, whose remarkable natures have been partly revealed by the ongoing Cassini-Huygens mission. These bodies still hold mysteries requiring a complete exploration using a variety of vehicles and instruments. TandEM is an ambitious mission because its targets are two of the most exciting and challenging bodies in the Solar System. It is designed to build on but exceed the scientific and technological accomplishments of the Cassini-Huygens mission, exploring Titan and Enceladus in ways that are not currently possible (full close-up and in situ coverage over long periods of time). In the current mission architecture, TandEM proposes to deliver two medium-sized spacecraft to the Saturnian system. One spacecraft would be an orbiter with a large host of instruments which would perform several Enceladus flybys and deliver penetrators to its surface before going into a dedicated orbit around Titan alone, while the other spacecraft would carry the Titan in situ investigation components, i.e. a hot-air balloon (MontgolfiSre) and possibly several landing probes to be delivered through the atmosphere.
  •  
3.
  • Orsini, S., et al. (author)
  • Inner southern magnetosphere observation of Mercury via SERENA ion sensors in BepiColombo mission
  • 2022
  • In: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 13:1
  • Journal article (peer-reviewed)abstract
    • Mercury’s southern inner magnetosphere is an unexplored region as it was not observed by earlier space missions. In October 2021, BepiColombo mission has passed through this region during its first Mercury flyby. Here, we describe the observations of SERENA ion sensors nearby and inside Mercury’s magnetosphere. An intermittent high-energy signal, possibly due to an interplanetary magnetic flux rope, has been observed downstream Mercury, together with low energy solar wind. Low energy ions, possibly due to satellite outgassing, were detected outside the magnetosphere. The dayside magnetopause and bow-shock crossing were much closer to the planet than expected, signature of a highly eroded magnetosphere. Different ion populations have been observed inside the magnetosphere, like low latitude boundary layer at magnetopause inbound and partial ring current at dawn close to the planet. These observations are important for understanding the weak magnetosphere behavior so close to the Sun, revealing details never reached before.
  •  
4.
  • Lammer, H., et al. (author)
  • Geophysical and Atmospheric Evolution of Habitable Planets
  • 2010
  • In: Astrobiology. - : Mary Ann Liebert Inc. - 1531-1074 .- 1557-8070. ; 10:1, s. 45-68
  • Journal article (peer-reviewed)abstract
    • The evolution of Earth-like habitable planets is a complex process that depends on the geodynamical and geophysical environments. In particular, it is necessary that plate tectonics remain active over billions of years. These geophysically active environments are strongly coupled to a planet's host star parameters, such as mass, luminosity and activity, orbit location of the habitable zone, and the planet's initial water inventory. Depending on the host star's radiation and particle flux evolution, the composition in the thermosphere, and the availability of an active magnetic dynamo, the atmospheres of Earth-like planets within their habitable zones are differently affected due to thermal and nonthermal escape processes. For some planets, strong atmospheric escape could even effect the stability of the atmosphere.
  •  
5.
  • Rauer, H., et al. (author)
  • The PLATO 2.0 mission
  • 2014
  • In: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 38:1-2, s. 249-330
  • Journal article (peer-reviewed)abstract
    • PLATO 2.0 has recently been selected for ESA's M3 launch opportunity (2022/24). Providing accurate key planet parameters (radius, mass, density and age) in statistical numbers, it addresses fundamental questions such as: How do planetary systems form and evolve? Are there other systems with planets like ours, including potentially habitable planets? The PLATO 2.0 instrument consists of 34 small aperture telescopes (32 with 25 s readout cadence and 2 with 2.5 s cadence) providing a wide field-of-view (2232 deg(2)) and a large photometric magnitude range (4-16 mag). It focuses on bright (4-11 mag) stars in wide fields to detect and characterize planets down to Earth-size by photometric transits, whose masses can then be determined by ground-based radial-velocity follow-up measurements. Asteroseismology will be performed for these bright stars to obtain highly accurate stellar parameters, including masses and ages. The combination of bright targets and asteroseismology results in high accuracy for the bulk planet parameters: 2 %, 4-10 % and 10 % for planet radii, masses and ages, respectively. The planned baseline observing strategy includes two long pointings (2-3 years) to detect and bulk characterize planets reaching into the habitable zone (HZ) of solar-like stars and an additional step-and-stare phase to cover in total about 50 % of the sky. PLATO 2.0 will observe up to 1,000,000 stars and detect and characterize hundreds of small planets, and thousands of planets in the Neptune to gas giant regime out to the HZ. It will therefore provide the first large-scale catalogue of bulk characterized planets with accurate radii, masses, mean densities and ages. This catalogue will include terrestrial planets at intermediate orbital distances, where surface temperatures are moderate. Coverage of this parameter range with statistical numbers of bulk characterized planets is unique to PLATO 2.0. The PLATO 2.0 catalogue allows us to e. g.: - complete our knowledge of planet diversity for low-mass objects, - correlate the planet mean density-orbital distance distribution with predictions from planet formation theories,- constrain the influence of planet migration and scattering on the architecture of multiple systems, and - specify how planet and system parameters change with host star characteristics, such as type, metallicity and age. The catalogue will allow us to study planets and planetary systems at different evolutionary phases. It will further provide a census for small, low-mass planets. This will serve to identify objects which retained their primordial hydrogen atmosphere and in general the typical characteristics of planets in such a low-mass, low-density range. Planets detected by PLATO 2.0 will orbit bright stars and many of them will be targets for future atmosphere spectroscopy exploring their atmospheres. Furthermore, the mission has the potential to detect exomoons, planetary rings, binary and Trojan planets. The planetary science possible with PLATO 2.0 is complemented by its impact on stellar and galactic science via asteroseismology as well as light curves of all kinds of variable stars, together with observations of stellar clusters of different ages. This will allow us to improve stellar models and study stellar activity. A large number of well-known ages from red giant stars will probe the structure and evolution of our Galaxy. Asteroseismic ages of bright stars for different phases of stellar evolution allow calibrating stellar age-rotation relationships. Together with the results of ESA's Gaia mission, the results of PLATO 2.0 will provide a huge legacy to planetary, stellar and galactic science.
  •  
6.
  • Brunkwall, J., et al. (author)
  • Endovascular Repair of Acute Uncomplicated Aortic Type B Dissection Promotes Aortic Remodelling: 1 Year Results of the ADSORB Trial
  • 2014
  • In: European Journal of Vascular and Endovascular Surgery. - : Elsevier BV. - 1532-2165 .- 1078-5884. ; 48:3, s. 285-291
  • Journal article (peer-reviewed)abstract
    • Objectives: Uncomplicated acute type B aortic dissection (AD) treated conservatively has a 10% 30-day mortality and up to 25% need intervention within 4 years. In complicated AD, stent grafts have been encouraging. The aim of the present prospective randomised trial was to compare best medical treatment (BMT) with BMT and Gore TAG stent graft in patients with uncomplicated AD. The primary endpoint was a combination of incomplete/no false lumen thrombosis, aortic dilatation, or aortic rupture at 1 year. Methods: The AD history had to be less than 14 days, and exclusion criteria were rupture, impending rupture, malperfusion. Of the 61 patients randomised, 80% were DeBakey type IIIB. Results: Thirty-one patients were randomised to the BMT group and 30 to the BMT+TAG group. Mean age was 63 years for both groups. The left subclavian artery was completely covered in 47% and in part in 17% of the cases. During the first 30 days, no deaths occurred in either group, but there were three crossovers from the BMT to the BMT TAG group, all due to progression of disease within 1 week. There were two withdrawals from the BMT+TAG group. At the 1-year follow up there had been another two failures in the BMT group: one malperfusion and one aneurysm formation (p = .056 for all). One death occurred in the BMT TAG group. For the overall endpoint BMT+TAG was significantly different from BMT only (p < .001). Incomplete false lumen thrombosis, was found in 13 (43%) of the TAG+BMT group and 30 (97%) of the BMT group (p < .001). The false lumen reduced in size in the BMT+TAG group (p < .001) whereas in the BMT group it increased. The true lumen increased in the BMT TAG (p < .001) whereas in the BMT group it remained unchanged. The overall transverse diameter was the same at the beginning and after 1 year in the BMT group (42.1 mm), but in the BMT+TAG it decreased (38.8 mm; p = .062). Conclusions: Uncomplicated AD can be safely treated with the Gore TAG device. Remodelling with thrombosis of the false lumen and reduction of its diameter is induced by the stent graft, but long term results are needed. (C) 2014 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.
  •  
7.
  • Cabrera, J., et al. (author)
  • Transiting exoplanets from the CoRoT space mission: XXVII. CoRoT-28b, a planet orbiting an evolved star, and CoRoT-29b, a planet showing an asymmetric transit
  • 2015
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 579
  • Journal article (peer-reviewed)abstract
    • © ESO, 2015. Context. We present the discovery of two transiting extrasolar planets by the satellite CoRoT. Aims. We aim at a characterization of the planetary bulk parameters, which allow us to further investigate the formation and evolution of the planetary systems and the main properties of the host stars. Methods. We used the transit light curve to characterize the planetary parameters relative to the stellar parameters. The analysis of HARPS spectra established the planetary nature of the detections, providing their masses. Further photometric and spectroscopic ground-based observations provided stellar parameters (log g, Teff, vsini) to characterize the host stars. Our model takes the geometry of the transit to constrain the stellar density into account, which when linked to stellar evolutionary models, determines the bulk parameters of the star. Because of the asymmetric shape of the light curve of one of the planets, we had to include the possibility in our model that the stellar surface was not strictly spherical. Results. We present the planetary parameters of CoRoT-28b, a Jupiter-sized planet (mass 0.484 ± 0.087 MJup; radius 0.955 ± 0.066 RJup) orbiting an evolved star with an orbital period of 5.208 51 ± 0.000 38 days, and CoRoT-29b, another Jupiter-sized planet (mass 0.85 ± 0.20 MJup; radius 0.90 ± 0.16 RJup) orbiting an oblate star with an orbital period of 2.850 570 ± 0.000 006 days. The reason behind the asymmetry of the transit shape is not understood at this point. Conclusions. These two new planetary systems have very interesting properties and deserve further study, particularly in the case of the star CoRoT-29.
  •  
8.
  • Malbet, F., et al. (author)
  • High precision astrometry mission for the detection and characterization of nearby habitable planetary systems with the Nearby Earth Astrometric Telescope (NEAT)
  • 2012
  • In: Experimental Astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 34:2, s. 385-413
  • Journal article (peer-reviewed)abstract
    • A complete census of planetary systems around a volume-limited sample of solar-type stars (FGK dwarfs) in the Solar neighborhood (d a parts per thousand currency signaEuro parts per thousand 15 pc) with uniform sensitivity down to Earth-mass planets within their Habitable Zones out to several AUs would be a major milestone in extrasolar planets astrophysics. This fundamental goal can be achieved with a mission concept such as NEAT-the Nearby Earth Astrometric Telescope. NEAT is designed to carry out space-borne extremely-high-precision astrometric measurements at the 0.05 mu as (1 sigma) accuracy level, sufficient to detect dynamical effects due to orbiting planets of mass even lower than Earth's around the nearest stars. Such a survey mission would provide the actual planetary masses and the full orbital geometry for all the components of the detected planetary systems down to the Earth-mass limit. The NEAT performance limits can be achieved by carrying out differential astrometry between the targets and a set of suitable reference stars in the field. The NEAT instrument design consists of an off-axis parabola single-mirror telescope (D = 1 m), a detector with a large field of view located 40 m away from the telescope and made of 8 small movable CCDs located around a fixed central CCD, and an interferometric calibration system monitoring dynamical Young's fringes originating from metrology fibers located at the primary mirror. The mission profile is driven by the fact that the two main modules of the payload, the telescope and the focal plane, must be located 40 m away leading to the choice of a formation flying option as the reference mission, and of a deployable boom option as an alternative choice. The proposed mission architecture relies on the use of two satellites, of about 700 kg each, operating at L2 for 5 years, flying in formation and offering a capability of more than 20,000 reconfigurations. The two satellites will be launched in a stacked configuration using a Soyuz ST launch vehicle. The NEAT primary science program will encompass an astrometric survey of our 200 closest F-, G- and K-type stellar neighbors, with an average of 50 visits each distributed over the nominal mission duration. The main survey operation will use approximately 70% of the mission lifetime. The remaining 30% of NEAT observing time might be allocated, for example, to improve the characterization of the architecture of selected planetary systems around nearby targets of specific interest (low-mass stars, young stars, etc.) discovered by Gaia, ground-based high-precision radial-velocity surveys, and other programs. With its exquisite, surgical astrometric precision, NEAT holds the promise to provide the first thorough census for Earth-mass planets around stars in the immediate vicinity of our Sun.
  •  
9.
  • Brain, D., et al. (author)
  • A comparison of global models for the solar wind interaction with Mars
  • 2010
  • In: Icarus. - : Elsevier BV. - 0019-1035 .- 1090-2643. ; 206:1, s. 139-151
  • Journal article (peer-reviewed)abstract
    • We present initial results from the first community-wide effort to compare global plasma interaction model results for Mars. Seven modeling groups participated in this activity, using MHD, multi-fluid, and hybrid assumptions in their simulations. Moderate solar wind and solar EUV conditions were chosen, and the conditions were implemented in the models and run to steady state. Model output was compared in three ways to determine how pressure was partitioned and conserved in each model, the location and asymmetry of plasma boundaries and pathways for planetary ion escape, and the total escape flux of planetary oxygen ions. The two participating MHD models provided similar results, while the five sets of multi-fluid and hybrid results were different in many ways. All hybrid results, however, showed two main channels for oxygen ion escape (a pickup ion 'plume' in the hemisphere toward which the solar wind convection electric field is directed, and a channel in the opposite hemisphere of the central magnetotail), while the MHD models showed one (a roughly symmetric channel in the central magnetotail). Most models showed a transition from an upstream region dominated by plasma dynamic pressure to a magnetosheath region dominated by thermal pressure to a low altitude region dominated by magnetic pressure. However, calculated escape rates for a single ion species varied by roughly an order of magnitude for similar input conditions, suggesting that the uncertainties in both the current and integrated escape over martian history as determined by models are large. These uncertainties are in addition to those associated with the evolution of the Sun, the martian dynamo, and the early atmosphere, highlighting the challenges we face in constructing Mars' past using models.
  •  
10.
  • Cockell, C.S., et al. (author)
  • Darwin - an experimental astronomy mission to search for extrasolar planets
  • 2009
  • In: Experimental Astronomy. - 0922-6435 .- 1572-9508. ; 23:1, s. 435-461
  • Journal article (peer-reviewed)abstract
    • As a response to ESA call for mission concepts for its Cosmic Vision 2015–2025 plan, we propose a mission called Darwin. Its primary goal is the study of terrestrial extrasolar planets and the search for life on them. In this paper, we describe different characteristics of the instrument.
  •  
11.
  • Grenfell, J. L., et al. (author)
  • Co-Evolution of Atmospheres, Life, and Climate
  • 2010
  • In: Astrobiology. - : Mary Ann Liebert Inc. - 1531-1074 .- 1557-8070. ; 10:1, s. 77-88
  • Journal article (peer-reviewed)abstract
    • After Earth's origin, our host star, the Sun, was shining 20-25% less brightly than today. Without greenhouse-like conditions to warm the atmosphere, our early planet would have been an ice ball, and life may never have evolved. But life did evolve, which indicates that greenhouse gases must have been present on early Earth to warm the planet. Evidence from the geological record indicates an abundance of the greenhouse gas CO2. CH4 was probably present as well; and, in this regard, methanogenic bacteria, which belong to a diverse group of anaerobic prokaryotes that ferment CO2 plus H-2 to CH4, may have contributed to modification of the early atmosphere. Molecular oxygen was not present, as is indicated by the study of rocks from that era, which contain iron carbonate rather than iron oxide. Multicellular organisms originated as cells within colonies that became increasingly specialized. The development of photosynthesis allowed the Sun's energy to be harvested directly by life-forms. The resultant oxygen accumulated in the atmosphere and formed the ozone layer in the upper atmosphere. Aided by the absorption of harmful UV radiation in the ozone layer, life colonized Earth's surface. Our own planet is a very good example of how life-forms modified the atmosphere over the planets' lifetime. We show that these facts have to be taken into account when we discover and characterize atmospheres of Earth-like exoplanets. If life has originated and evolved on a planet, then it should be expected that a strong co-evolution occurred between life and the atmosphere, the result of which is the planet's climate.
  •  
12.
  • Lammer, H., et al. (author)
  • What makes a planet habitable?
  • 2009
  • In: The Astronomy and Astrophysics Review. - : Springer Science and Business Media LLC. - 0935-4956 .- 1432-0754. ; 17:2, s. 181-249
  • Research review (peer-reviewed)abstract
    • This work reviews factors which are important for the evolution of habitable Earth-like planets such as the effects of the host star dependent radiation and particle fluxes on the evolution of atmospheres and initial water inventories. We discuss the geodynamical and geophysical environments which are necessary for planets where plate tectonics remain active over geological time scales and for planets which evolve to one-plate planets. The discoveries of methane-ethane surface lakes on Saturn's large moon Titan, subsurface water oceans or reservoirs inside the moons of Solar System gas giants such as Europa, Ganymede, Titan and Enceladus and more than 335 exoplanets, indicate that the classical definition of the habitable zone concept neglects more exotic habitats and may fail to be adequate for stars which are different from our Sun. A classification of four habitat types is proposed. Class I habitats represent bodies on which stellar and geophysical conditions allow Earth-analog planets to evolve so that complex multi-cellular life forms may originate. Class II habitats includes bodies on which life may evolve but due to stellar and geophysical conditions that are different from the class I habitats, the planets rather evolve toward Venus- or Mars-type worlds where complex life-forms may not develop. Class III habitats are planetary bodies where subsurface water oceans exist which interact directly with a silicate-rich core, while class IV habitats have liquid water layers between two ice layers, or liquids above ice. Furthermore, we discuss from the present viewpoint how life may have originated on early Earth, the possibilities that life may evolve on such Earth-like bodies and how future space missions may discover manifestations of extraterrestrial life.
  •  
13.
  • Alibert, Y., et al. (author)
  • Origin and Formation of Planetary Systems
  • 2010
  • In: Astrobiology. - : Mary Ann Liebert Inc. - 1531-1074 .- 1557-8070. ; 10:1, s. 19-32
  • Journal article (peer-reviewed)abstract
    • To estimate the occurrence of terrestrial exoplanets and maximize the chance of finding them, it is crucial to understand the formation of planetary systems in general and that of terrestrial planets in particular. We show that a reliable formation theory should not only explain the formation of the Solar System, with small terrestrial planets within a few AU and gas giants farther out, but also the newly discovered exoplanetary systems with close-in giant planets. Regarding the presently known exoplanets, we stress that our current knowledge is strongly biased by the sensitivity limits of current detection techniques (mainly the radial velocity method). With time and improved detection methods, the diversity of planets and orbits in exoplanetary systems will definitely increase and help to constrain the formation theory further. In this work, we review the latest state of planetary formation in relation to the origin and evolution of habitable terrestrial planets.
  •  
14.
  • Brack, A., et al. (author)
  • Origin and Evolution of Life on Terrestrial Planets
  • 2010
  • In: Astrobiology. - : Mary Ann Liebert Inc. - 1531-1074 .- 1557-8070. ; 10:1, s. 69-76
  • Journal article (peer-reviewed)abstract
    • The ultimate goal of terrestrial planet-finding missions is not only to discover terrestrial exoplanets inside the habitable zone (HZ) of their host stars but also to address the major question as to whether life may have evolved on a habitable Earth-like exoplanet outside our Solar System. We note that the chemical evolution that finally led to the origin of life on Earth must be studied if we hope to understand the principles of how life might evolve on other terrestrial planets in the Universe. This is not just an anthropocentric point of view: the basic ingredients of terrestrial life, that is, reduced carbon-based molecules and liquid H2O, have very specific properties. We discuss the origin of life from the chemical evolution of its precursors to the earliest life-forms and the biological implications of the stellar radiation and energetic particle environments. Likewise, the study of the biological evolution that has generated the various life-forms on Earth provides clues toward the understanding of the interconnectedness of life with its environment.
  •  
15.
  • Cockell, C.S., et al. (author)
  • Habitability : a review
  • 2016
  • In: Astrobiology. - : Mary Ann Liebert Inc. - 1531-1074 .- 1557-8070. ; 16:1, s. 89-117
  • Journal article (peer-reviewed)abstract
    • Habitability is a widely used word in the geoscience, planetary science, and astrobiology literature, but what does it mean? In this review on habitability, we define it as the ability of an environment to support the activity of at least one known organism. We adopt a binary definition of “habitability” and a “habitable environment.” An environment either can or cannot sustain a given organism. However, environments such as entire planets might be capable of supporting more or less species diversity or biomass compared with that of Earth. A clarity in understanding habitability can be obtained by defining instantaneous habitability as the conditions at any given time in a given environment required to sustain the activity of at least one known organism, and continuous planetary habitability as the capacity of a planetary body to sustain habitable conditions on some areas of its surface or within its interior over geological timescales. We also distinguish between surface liquid water worlds (such as Earth) that can sustain liquid water on their surfaces and interior liquid water worlds, such as icy moons and terrestrial-type rocky planets with liquid water only in their interiors. This distinction is important since, while the former can potentially sustain habitable conditions for oxygenic photosynthesis that leads to the rise of atmospheric oxygen and potentially complex multicellularity and intelligence over geological timescales, the latter are unlikely to. Habitable environments do not need to contain life. Although the decoupling of habitability and the presence of life may be rare on Earth, it may be important for understanding the habitability of other planetary bodies
  •  
16.
  • Dvorak, R., et al. (author)
  • Dynamical Habitability of Planetary Systems
  • 2010
  • In: Astrobiology. - : Mary Ann Liebert Inc. - 1531-1074 .- 1557-8070. ; 10:1, s. 33-43
  • Journal article (peer-reviewed)abstract
    • The problem of the stability of planetary systems, a question that concerns only multiplanetary systems that host at least two planets, is discussed. The problem of mean motion resonances is addressed prior to discussion of the dynamical structure of the more than 350 known planets. The difference with regard to our own Solar System with eight planets on low eccentricity is evident in that 60% of the known extrasolar planets have orbits with eccentricity e > 0.2. We theoretically highlight the studies concerning possible terrestrial planets in systems with a Jupiter-like planet. We emphasize that an orbit of a particular nature only will keep a planet within the habitable zone around a host star with respect to the semimajor axis and its eccentricity. In addition, some results are given for individual systems (e.g., Gl777A) with regard to the stability of orbits within habitable zones. We also review what is known about the orbits of planets in double-star systems around only one component ( e. g., gamma Cephei) and around both stars (e.g., eclipsing binaries).
  •  
17.
  • Fridlund, M., et al. (author)
  • A Roadmap for the Detection and Characterization of Other Earths
  • 2010
  • In: Astrobiology. - : Mary Ann Liebert Inc. - 1531-1074 .- 1557-8070. ; 10:1, s. 113-119
  • Journal article (peer-reviewed)abstract
    • The European Space Agency and other space agencies such as NASA recognize that the question with regard to life beyond Earth in general, and the associated issue of the existence and study of exoplanets in particular, is of paramount importance for the 21(st) century. The new Cosmic Vision science plan, Cosmic Vision 2015-2025, which is built around four major themes, has as its first theme: "What are the conditions for planet formation and the emergence of life?'' This main theme is addressed through further questions: (1) How do gas and dust give rise to stars and planets? (2) How will the search for and study of exoplanets eventually lead to the detection of life outside Earth (biomarkers*)? (3) How did life in the Solar System arise and evolve? Although ESA has busied itself with these issues since the beginning of the Darwin study in 1996, it has become abundantly clear that, as these topics have evolved, only a very large effort, addressed from the ground and from space with the utilization of different instruments and space missions, can provide the empirical results required for a complete understanding. The good news is that the problems can be addressed and solved within a not-too-distant future. In this short essay, we present the present status of a roadmap related to projects that are related to the key long-term goal of understanding and characterizing exoplanets, in particular Earthlike planets.
  •  
18.
  • Fridlund, M., et al. (author)
  • The Search for Worlds Like Our Own
  • 2010
  • In: Astrobiology. - : Mary Ann Liebert Inc. - 1531-1074 .- 1557-8070. ; 10:1, s. 5-17
  • Journal article (peer-reviewed)abstract
    • The direct detection of Earth-like exoplanets orbiting nearby stars and the characterization of such planets particularly, their evolution, their atmospheres, and their ability to host life-constitute a significant problem. The quest for other worlds as abodes of life has been one of mankind's great questions for several millennia. For instance, as stated by Epicurus similar to 300 BC: "Other worlds, with plants and other living things, some of them similar and some of them different from ours, must exist.'' Demokritos from Abdera (460-370 BC), the man who invented the concept of indivisible small parts-atoms-also held the belief that other worlds exist around the stars and that some of these worlds may be inhabited by life-forms. The idea of the plurality of worlds and of life on them has since been held by scientists like Johannes Kepler and William Herschel, among many others. Here, one must also mention Giordano Bruno. Born in 1548, Bruno studied in France and came into contact with the teachings of Nicolas Copernicus. He wrote the book De l'Infinito, Universo e Mondi in 1584, in which he claimed that the Universe was infinite, that it contained an infinite amount of worlds like Earth, and that these worlds were inhabited by intelligent beings. At the time, this was extremely controversial, and eventually Bruno was arrested by the church and burned at the stake in Rome in 1600, as a heretic, for promoting this and other equally confrontational issues (though it is unclear exactly which idea was the one that ultimately brought him to his end). In all the aforementioned cases, the opinions and results were arrived at through reasoning-not by experiment. We have only recently acquired the technological capability to observe planets orbiting stars other than our Sun; acquisition of this capability has been a remarkable feat of our time. We show in this introduction to the Habitability Primer that mankind is at the dawning of an age when, by way of the scientific method and 21(st)-century technology, we will be able to answer this fascinating controversial issue that has persisted for at least 2500 years.
  •  
19.
  • Kaltenegger, L., et al. (author)
  • Deciphering Spectral Fingerprints of Habitable Exoplanets
  • 2010
  • In: Astrobiology. - : Mary Ann Liebert Inc. - 1531-1074 .- 1557-8070. ; 10:1, s. 89-102
  • Journal article (peer-reviewed)abstract
    • We discuss how to read a planet's spectrum to assess its habitability and search for the signatures of a biosphere. After a decade rich in giant exoplanet detections, observation techniques have advanced to a level where we now have the capability to find planets of less than 10 Earth masses (M-Earth) (so-called "super Earths''), which may be habitable. How can we characterize those planets and assess whether they are habitable? This new field of exoplanet search has shown an extraordinary capacity to combine research in astrophysics, chemistry, biology, and geophysics into a new and exciting interdisciplinary approach to understanding our place in the Universe. The results of a first-generation mission will most likely generate an amazing scope of diverse planets that will set planet formation, evolution, and our planet into an overall context.
  •  
20.
  • Kaltenegger, L., et al. (author)
  • Stellar Aspects of Habitability-Characterizing Target Stars for Terrestrial Planet-Finding Missions
  • 2010
  • In: Astrobiology. - : Mary Ann Liebert Inc. - 1531-1074 .- 1557-8070. ; 10:1, s. 103-112
  • Journal article (peer-reviewed)abstract
    • We present and discuss the criteria for selecting potential target stars suitable for the search for Earth-like planets, with a special emphasis on the stellar aspects of habitability. Missions that search for terrestrial exoplanets will explore the presence and habitability of Earth-like exoplanets around several hundred nearby stars, mainly F, G, K, and M stars. The evaluation of the list of potential target systems is essential in order to develop mission concepts for a search for terrestrial exoplanets. Using the Darwin All Sky Star Catalogue (DASSC), we discuss the selection criteria, configuration-dependent subcatalogues, and the implication of stellar activity for habitability.
  •  
21.
  • Lammer, H., et al. (author)
  • Exoplanet status report: Observation, characterization and evolution of exoplanets and their host stars
  • 2010
  • In: Solar System Research. - 1608-3423 .- 0038-0946. ; 44:4, s. 290-310
  • Journal article (peer-reviewed)abstract
    • After the discovery of more than 400 planets beyond our Solar System, the characterization of exoplanets as well as their host stars can be considered as one of the fastest growing fields in space science during the past decade. The characterization of exoplanets can only be carried out in a well coordinated interdisciplinary way which connects planetary science, solar/stellar physics and astrophysics. We present a status report on the characterization of exoplanets and their host stars by reviewing the relevant space- and ground-based projects. One finds that the previous strategy changed from space mission concepts which were designed to search, find and characterize Earth-like rocky exoplanets to: A statistical study of planetary objects in order to get information about their abundance, an identification of potential target and finally its analysis. Spectral analysis of exoplanets is mandatory, particularly to identify bio-signatures on Earth-like planets. Direct characterization of exoplanets should be done by spectroscopy, both in the visible and in the infrared spectral range. The way leading to the direct detection and characterization of exoplanets is then paved by several questions, either concerning the pre-required science or the associated observational strategy.
  •  
22.
  • Lammer, H., et al. (author)
  • The Science of Exoplanets and Their Systems
  • 2013
  • In: Astrobiology. - : Mary Ann Liebert Inc. - 1531-1074 .- 1557-8070. ; 13:9, s. 793-813
  • Journal article (peer-reviewed)abstract
    • A scientific forum on The Future Science of Exoplanets and Their Systems, sponsored by Europlanet(*) and the International Space Science Institute (ISSI)(dagger) and co-organized by the Center for Space and Habitability (CSH)(double dagger) of the University of Bern, was held during December 5 and 6, 2012, in Bern, Switzerland. It gathered 24 well-known specialists in exoplanetary, Solar System, and stellar science to discuss the future of the fast-expanding field of exoplanetary research, which now has nearly 1000 objects to analyze and compare and will develop even more quickly over the coming years. The forum discussions included a review of current observational knowledge, efforts for exoplanetary atmosphere characterization and their formation, water formation, atmospheric evolution, habitability aspects, and our understanding of how exoplanets interact with their stellar and galactic environment throughout their history. Several important and timely research areas of focus for further research efforts in the field were identified by the forum participants. These scientific topics are related to the origin and formation of water and its delivery to planetary bodies and the role of the disk in relation to planet formation, including constraints from observations as well as star-planet interaction processes and their consequences for atmosphere-magnetosphere environments, evolution, and habitability. The relevance of these research areas is outlined in this report, and possible themes for future ISSI workshops are identified that may be proposed by the international research community over the coming 2-3 years.
  •  
23.
  • Langlais, B., et al. (author)
  • Mars environment and magnetic orbiter model payload
  • 2009
  • In: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 23:3, s. 761-783
  • Journal article (peer-reviewed)abstract
    • Mars Environment and Magnetic Orbiter was proposed as an answer to the Cosmic Vision Call of Opportunity as a M-class mission. The MEMO mission is designed to study the strong interconnections between the planetary interior, atmosphere and solar conditions essential to understand planetary evolution, the appearance of life and its sustainability. MEMO provides a high-resolution, complete, mapping of the magnetic field (below an altitude of about 250 km), with an yet unachieved full global coverage. This is combined with an in situ characterization of the high atmosphere and remote sensing of the middle and lower atmospheres, with an unmatched accuracy. These measurements are completed by an improved detection of the gravity field signatures associated with carbon dioxide cycle and to the tidal deformation. In addition the solar wind, solar EUV/UV and energetic particle fluxes are simultaneously and continuously monitored. The challenging scientific objectives of the MEMO mission proposal are fulfilled with the appropriate scientific instruments and orbit strategy. MEMO is composed of a main platform, placed on a elliptical (130 x 1,000 km), non polar (77A degrees inclination) orbit, and of an independent, higher apoapsis (10,000 km) and low periapsis (300 km) micro-satellite. These orbital parameters are designed so that the scientific return of MEMO is maximized, in terms of measurement altitude, local time, season and geographical coverage. MEMO carry several suites of instruments, made of an 'exospheric-upper atmosphere' package, a 'magnetic field' package, and a 'low-middle atmosphere' package. Nominal mission duration is one Martian year.
  •  
24.
  • Schneider, J., et al. (author)
  • The Far Future of Exoplanet Direct Characterization
  • 2010
  • In: Astrobiology. - : Mary Ann Liebert Inc. - 1531-1074 .- 1557-8070. ; 10:1, s. 121-126
  • Journal article (peer-reviewed)abstract
    • We describe future steps in the direct characterization of habitable exoplanets subsequent to medium and large mission projects currently underway and investigate the benefits of spectroscopic and direct imaging approaches. We show that, after third- and fourth-generation missions have been conducted over the course of the next 100 years, a significant amount of time will lapse before we will have the capability to observe directly the morphology of extrasolar organisms.
  •  
25.
  • Szabo, P. S., et al. (author)
  • Experimental Insights Into Space Weathering of Phobos : Laboratory Investigation of Sputtering by Atomic and Molecular Planetary Ions
  • 2020
  • In: Journal of Geophysical Research - Planets. - : AMER GEOPHYSICAL UNION. - 2169-9097 .- 2169-9100. ; 125:12
  • Journal article (peer-reviewed)abstract
    • Investigating the space weathering of the Martian moon Phobos represents an important step toward understanding the development from its origin to its present-day appearance. Depending on Phobos' orbital position, its surface is continuously sputtered by the solar wind and planetary ions that originate in the Martian atmosphere. Based on Mars Atmosphere and Volatile Evolution measurements, it has been proposed that sputtering by planetary O+ and O-2(+) ions dominates in the Martian tail region, where the planet mostly shadows Phobos from the solar wind. In these models, uncertainties for sputtering yield inputs still exist due to the lack of sufficient analog experiments. Therefore, sputtering measurements with O+, O-2(+), C+, and CO2+ ions between 1 and 5 keV were performed using augite samples as Phobos analogs. The experimental results for O+ irradiations show smaller mass changes than predicted by SDTrimSP simulations, which probably can be attributed to O implantation enabled by the Fe content of the target. Sputtering with O-2(+) and CO2+ in the low keV range shows no deviations in the sputtering yields attributable to molecular effects. Therefore, CO2+ ions will most likely be negligible for the sputtering of Phobos according to the current understanding of ion fluxes on the Martian moon. Ultimately, our experiments suggest that the sputtering contribution on Phobos by O ions is about 50% smaller than previously assumed. This does not change the qualitative outcome from previous modeling stating that planetary O ions are by far the dominant sputtering contribution on Phobos in the Martian tail region.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 31

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view