SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Lidman K) "

Search: WFRF:(Lidman K)

  • Result 1-25 of 80
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • de Jong, R. S., et al. (author)
  • 4MOST : Project overview and information for the First Call for Proposals
  • 2019
  • In: The Messenger. - : European Southern Observatory. - 0722-6691. ; 175, s. 3-11
  • Journal article (other academic/artistic)abstract
    • We introduce the 4-metre Multi-Object Spectroscopic Telescope (4MOST), a new high-multiplex, wide-field spectroscopic survey facility under development for the four-metre-class Visible and Infrared Survey Telescope for Astronomy (VISTA) at Paranal. Its key specifications are: a large field of view (FoV) of 4.2 square degrees and a high multiplex capability, with 1624 fibres feeding two low-resolution spectrographs (R = λ/Δλ ~ 6500), and 812 fibres transferring light to the high-resolution spectrograph (R ~ 20 000). After a description of the instrument and its expected performance, a short overview is given of its operational scheme and planned 4MOST Consortium science; these aspects are covered in more detail in other articles in this edition of The Messenger. Finally, the processes, schedules, and policies concerning the selection of ESO Community Surveys are presented, commencing with a singular opportunity to submit Letters of Intent for Public Surveys during the first five years of 4MOST operations.
  •  
2.
  • Dawson, K. S., et al. (author)
  • An Intensive Hubble Space Telescope Survey for z>1 Type Ia Supernovae by Targeting Galaxy Clusters
  • 2009
  • In: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 138, s. 1271-1283
  • Journal article (peer-reviewed)abstract
    • We present a new survey strategy to discover and study high-redshift Type Ia supernovae (SNe Ia) using the Hubble Space Telescope (HST). By targeting massive galaxy clusters at 0.9 < z < 1.5, we obtain a twofold improvement in the efficiency of finding SNe compared to an HST field survey and a factor of 3 improvement in the total yield of SN detections in relatively dust-free red-sequence galaxies. In total, sixteen SNe were discovered at z>0.95, nine of which were in galaxy clusters. This strategy provides an SN sample that can be used to decouple the effects of host-galaxy extinction and intrinsic color in high-redshift SNe, thereby reducing one of the largest systematic uncertainties in SN cosmology. Based on observations made with the NASA/ESA Hubble Space Telescope and obtained from the data archive at the Space Telescope Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc. under the NASA contract NAS 5-26555. The observations are associated with program 10496.
  •  
3.
  •  
4.
  • Andreoni, I., et al. (author)
  • Follow Up of GW170817 and Its Electromagnetic Counterpart by Australian-Led Observing Programmes
  • 2017
  • In: Publications Astronomical Society of Australia. - : Cambridge University Press (CUP). - 1323-3580 .- 1448-6083. ; 34
  • Research review (peer-reviewed)abstract
    • The discovery of the first electromagnetic counterpart to a gravitational wave signal has generated follow-up observations by over 50 facilities world-wide, ushering in the new era of multi-messenger astronomy. In this paper, we present follow-up observations of the gravitational wave event GW170817 and its electromagnetic counterpart SSS17a/DLT17ck (IAU label AT2017gfo) by 14 Australian telescopes and partner observatories as part of Australian-based and Australian-led research programs. We report early- to late-time multi-wavelength observations, including optical imaging and spectroscopy, mid-infrared imaging, radio imaging, and searches for fast radio bursts. Our optical spectra reveal that the transient source emission cooled from approximately 6 400 K to 2 100 K over a 7-d period and produced no significant optical emission lines. The spectral profiles, cooling rate, and photometric light curves are consistent with the expected outburst and subsequent processes of a binary neutron star merger. Star formation in the host galaxy probably ceased at least a Gyr ago, although there is evidence for a galaxy merger. Binary pulsars with short (100 Myr) decay times are therefore unlikely progenitors, but pulsars like PSR B1534+12 with its 2.7 Gyr coalescence time could produce such a merger. The displacement (similar to 2.2 kpc) of the binary star system from the centre of the main galaxy is not unusual for stars in the host galaxy or stars originating in the merging galaxy, and therefore any constraints on the kick velocity imparted to the progenitor are poor.
  •  
5.
  • Suzuki, N., et al. (author)
  • THE HUBBLE SPACE TELESCOPE CLUSTER SUPERNOVA SURVEY. V. IMPROVING THE DARK- ENERGY CONSTRAINTS ABOVE z > 1 AND BUILDING AN EARLY-TYPE-HOSTED SUPERNOVA SAMPLE
  • 2012
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 746:1
  • Journal article (peer-reviewed)abstract
    • We present Advanced Camera for Surveys, NICMOS, and Keck adaptive-optics-assisted photometry of 20 Type Ia supernovae (SNe Ia) from the Hubble Space Telescope (HST) Cluster Supernova Survey. The SNe Ia were discovered over the redshift interval 0.623 < z < 1.415. Of these SNe Ia, 14 pass our strict selection cuts and are used in combination with the world's sample of SNe Ia to derive the best current constraints on dark energy. Of our new SNe Ia, 10 are beyond redshift z = 1, thereby nearly doubling the statistical weight of HST-discovered SNe Ia beyond this redshift. Our detailed analysis corrects for the recently identified correlation between SN Ia luminosity and host galaxy mass and corrects the NICMOS zero point at the count rates appropriate for very distant SNe Ia. Adding these SNe improves the best combined constraint on dark-energy density,rho(DE)(z), at redshifts 1.0 < z < 1.6 by 18% (including systematic errors). For a flat. CDM universe, we find Omega(A) = 0.729 +/- 0.014 (68% confidence level (CL) including systematic errors). For a flat wCDM model, we measure a constant dark-energy equation-of-state parameter w = -1.013(-0.073)(+0.068) (68% CL). Curvature is constrained to similar to 0.7% in the owCDM model and to similar to 2% in a model in which dark energy is allowed to vary with parameters w(0) and w(a). Further tightening the constraints on the time evolution of dark energy will require several improvements, including high-quality multi-passband photometry of a sample of several dozenz > 1 SNe Ia. We describe how such a sample could be efficiently obtained by targeting cluster fields with WFC3 on board HST. The updated supernova Union2.1 compilation of 580 SNe is available at http://supernova.lbl.gov/Union.
  •  
6.
  • Barbary, K., et al. (author)
  • Discovery of an Unusual Optical Transient with the Hubble Space Telescope
  • 2009
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 690, s. 1358-1362
  • Journal article (peer-reviewed)abstract
    • We present observations of SCP 06F6, an unusual optical transient discovered during the Hubble Space Telescope Cluster Supernova Survey. The transient brightened over a period of ~100 days, reached a peak magnitude of ~ 21.0 in both i 775 and z 850, and then declined over a similar timescale. There is no host galaxy or progenitor star detected at the location of the transient to a 3σ upper limit of i 775 >= 26.4 and z 850 >= 26.1, giving a corresponding lower limit on the flux increase of a factor of ~ 120. Multiple spectra show five broad absorption bands between 4100 Å and 6500 Å, and a mostly featureless continuum longward of 6500 Å. The shape of the light curve is inconsistent with microlensing. The transient's spectrum, in addition to being inconsistent with all known supernova types, does not match any spectrum in the Sloan Digital Sky Survey database. We suggest that the transient may be one of a new class. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute (STScI). STScI is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under the NASA contract NAS 5-26555. The observations are associated with program GO-10496. Based in part on observations obtained at the European Southern Observatory under ESO program 077.A-0110. Based in part on observations collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA.
  •  
7.
  • Barbary, K., et al. (author)
  • THE HUBBLE SPACE TELESCOPE CLUSTER SUPERNOVA SURVEY. II. THE TYPE Ia SUPERNOVA RATE IN HIGH-REDSHIFT GALAXY CLUSTERS
  • 2012
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 745:1, s. 32-
  • Journal article (peer-reviewed)abstract
    • We report a measurement of the Type Ia supernova (SN Ia) rate in galaxy clusters at 0.9 < z < 1.46 from the Hubble Space Telescope Cluster Supernova Survey. This is the first cluster SN Ia rate measurement with detected z > 0.9 SNe. Finding 8 +/- 1 cluster SNe Ia, we determine an SN Ia rate of 0.50(-0.19)(+0.23) (stat) (+0.10)(-0.09) (sys) h(70)(2) SNuB (SNuB equivalent to 10(-12) SNe (L-1)circle dot(,B) yr(-1)). In units of stellar mass, this translates to 0.36(-0.13)(+0.16) (stat) (+0.07)(-0.06) (sys) h(70)(2) SNuM (SNuM = 10(-12) SNe M-1 circle dot yr(-1)). This represents a factor of approximate to 5 +/- 2 increase over measurements of the cluster rate at z < 0.2. We parameterize the late-time SN Ia delay time distribution (DTD) with a power law: Psi(t) t(s). Under the approximation of a single-burst cluster formation redshift of z(f) = 3, our rate measurement in combination with lower-redshift cluster SN Ia rates constrains s = -1.41(-0.40)(+0.47), consistent with measurements of the DTD in the field. This measurement is generally consistent with expectations for the double degenerate scenario and inconsistent with some models for the single degenerate scenario predicting a steeper DTD at large delay times. We check for environmental dependence and the influence of younger stellar populations by calculating the rate specifically in cluster red-sequence galaxies and in morphologically early-type galaxies, finding results similar to the full cluster rate. Finally, the upper limit of one hostless cluster SN Ia detected in the survey implies that the fraction of stars in the intra-cluster medium is less than 0.47 (95% confidence), consistent with measurements at lower redshifts.
  •  
8.
  • Barbary, K., et al. (author)
  • THE HUBBLE SPACE TELESCOPE CLUSTER SUPERNOVA SURVEY. VI. THE VOLUMETRIC TYPE Ia SUPERNOVA RATE
  • 2012
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 745:1
  • Journal article (peer-reviewed)abstract
    • We present a measurement of the volumetric Type Ia supernova (SN Ia) rate out to z similar or equal to 1.6 from the Hubble Space Telescope Cluster Supernova Survey. In observations spanning 189 orbits with the Advanced Camera for Surveys we discovered 29 SNe, of which approximately 20 are SNe Ia. Twelve of these SNe Ia are located in the foregrounds and backgrounds of the clusters targeted in the survey. Using these new data, we derive the volumetric SN Ia rate in four broad redshift bins, finding results consistent with previous measurements at z greater than or similar to 1 and strengthening the case for an SN Ia rate that is greater than or similar to 0.6 x 10(-4) h(70)(3) yr(-1) Mpc(-3) at z similar to 1 and flattening out at higher redshift. We provide SN candidates and efficiency calculations in a form that makes it easy to rebin and combine these results with other measurements for increased statistics. Finally, we compare the assumptions about host-galaxy dust extinction used in different high-redshift rate measurements, finding that different assumptions may induce significant systematic differences between measurements.
  •  
9.
  •  
10.
  • Huang, X., et al. (author)
  • HUBBLE SPACE TELESCOPE DISCOVERY OF A z=3.9 MULTIPLY IMAGED GALAXY BEHIND THE COMPLEX CLUSTER LENS WARPS J1415.1+36 AT z=1.026
  • 2009
  • In: ASTROPHYS J LETT. ; 707:1, s. l12-L16
  • Journal article (peer-reviewed)abstract
    • We report the discovery of a multiply lensed Ly alpha emitter at z = 3.90 behind the massive cluster WARPS J1415.1+3612 at z = 1.026. Images taken by the Hubble Space Telescope using the Advanced Camera for Surveys reveal a complex lensing system that produces a prominent, highly magnified arc and a triplet of smaller arcs grouped tightly around a spectroscopically confirmed cluster member. Spectroscopic observations using the Faint Object Camera and Spectrograph on Subaru confirm strong Lya emission in the source galaxy and provide the redshifts for more than 21 cluster members with a velocity dispersion of 807 +/- 185 km s(-1). Assuming a singular isothermal sphere profile, the mass within the Einstein ring (7.13 +/- 0.'' 38) corresponds to a central velocity dispersion of 686(-19)(+15) km s(-1) for the cluster, consistent with the value estimated from cluster member redshifts. Our mass profile estimate from combining strong lensing and dynamical analyses is in good agreement with both X-ray and weak lensing results.
  •  
11.
  • Amanullah, Rahman, et al. (author)
  • Spectra and Hubble Space Telescope Light Curves of Six Type Ia Supernovae at 0.511 < z < 1.12 and the Union2 Compilation
  • 2010
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 716, s. 712-738
  • Journal article (peer-reviewed)abstract
    • We report on work to increase the number of well-measured Type Ia supernovae (SNe Ia) at high redshifts. Light curves, including high signal-to-noise Hubble Space Telescope data, and spectra of six SNe Ia that were discovered during 2001, are presented. Additionally, for the two SNe with z > 1, we present ground-based J-band photometry from Gemini and the Very Large Telescope. These are among the most distant SNe Ia for which ground-based near-IR observations have been obtained. We add these six SNe Ia together with other data sets that have recently become available in the literature to the Union compilation. We have made a number of refinements to the Union analysis chain, the most important ones being the refitting of all light curves with the SALT2 fitter and an improved handling of systematic errors. We call this new compilation, consisting of 557 SNe, the Union2 compilation. The flat concordance ΛCDM model remains an excellent fit to the Union2 data with the best-fit constant equation-of-state parameter w = -0.997+0.050 -0.054(stat)+0.077 -0.082(stat + sys together) for a flat universe, or w = -1.038+0.056 -0.059(stat)+0.093 -0.097(stat + sys together) with curvature. We also present improved constraints on w(z). While no significant change in w with redshift is detected, there is still considerable room for evolution in w. The strength of the constraints depends strongly on redshift. In particular, at z >~ 1, the existence and nature of dark energy are only weakly constrained by the data. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute (STScI). STScI is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under the NASA contract NAS 5-26555. The observations are associated with programs HST-GO-08585 and HST-GO-09075. Based, in part, on observations obtained at the ESO La Silla Paranal Observatory (ESO programs 67.A-0361 and 169.A-0382). Based, in part, on observations obtained at the Cerro-Tololo Inter-American Observatory (CTIO), National Optical Astronomy Observatory (NOAO). Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT). Based, in part, on observations obtained at the Gemini Observatory (Gemini programs GN-2001A-SV-19 and GN-2002A-Q-31). Based, in part on observations obtained at the Subaru Telescope. Based, in part, on data that were obtained at the W. M. Keck Observatory.
  •  
12.
  • Rubin, D., et al. (author)
  • A CALIBRATION OF NICMOS CAMERA 2 FOR LOW COUNT RATES
  • 2015
  • In: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 149:5
  • Journal article (peer-reviewed)abstract
    • NICMOS 2 observations are crucial for constraining distances to most of the existing sample of z > 1 SNe Ia. Unlike conventional calibration programs, these observations involve long exposure times and low count rates. Reciprocity failure is known to exist in HgCdTe devices and a correction for this effect has already been implemented for high and medium count rates. However, observations at faint count rates rely on extrapolations. Here instead, we provide a new zero-point calibration directly applicable to faint sources. This is obtained via inter-calibration of NIC2 F110W/F160W with the Wide Field Camera 3 (WFC3) in the low count-rate regime using z similar to 1 elliptical galaxies as tertiary calibrators. These objects have relatively simple near-IR spectral energy distributions, uniform colors, and their extended nature gives a superior signal-to-noise ratio at the same count rate than would stars. The use of extended objects also allows greater tolerances on point-spread function profiles. We find space telescope magnitude zero points (after the installation of the NICMOS cooling system, NCS) of 25.296 +/- 0.022 for F110W and 25.803 +/- 0.023 for F160W, both in agreement with the calibration extrapolated from count rates greater than or similar to 1000 times larger (25.262 and 25.799). Before the installation of the NCS, we find 24.843 +/- 0.025 for F110W and 25.498 +/- 0.021 for F160W, also in agreement with the high-count-rate calibration (24.815 and 25.470). We also check the standard bandpasses of WFC3 and NICMOS 2 using a range of stars and galaxies at different colors and find mild tension for WFC3, limiting the accuracy of the zero points. To avoid human bias, our cross-calibration was blinded in that the fitted zero-point differences were hidden until the analysis was finalized.
  •  
13.
  • Rubin, D., et al. (author)
  • The Discovery of a Gravitationally Lensed Supernova Ia at Redshift 2.22
  • 2018
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 866:1
  • Journal article (peer-reviewed)abstract
    • We present the discovery and measurements of a gravitationally lensed supernova (SN) behind the galaxy cluster MOO J1014+0038. Based on multi-band Hubble Space Telescope and Very Large Telescope (VLT) photometry of the supernova, and VLT spectroscopy of the host galaxy, we find a 97.5% probability that this SN is a SN Ia, and a 2.5% chance of a CC SN. Our typing algorithm combines the shape and color of the light curve with the expected rates of each SN type in the host galaxy. With a redshift of 2.2216, this is the highest redshift SN. Ia discovered with a spectroscopic host-galaxy redshift. A further distinguishing feature is that the lensing cluster, at redshift 1.23, is the most distant to date to have an amplified SN. The SN lies in the middle of the color and light-curve shape distributions found at lower redshift, disfavoring strong evolution to z = 2.22. We estimate an amplification due to gravitational lensing of 2.8(-0.5)(+0.6) (1.10 +/- 0.23 mag)-compatible with the value estimated from the weak-lensing-derived mass and the mass-concentration relation from Lambda CDM simulations-making it the most amplified SN Ia discovered behind a galaxy cluster.
  •  
14.
  •  
15.
  • Zenteno, A., et al. (author)
  • A joint SZ-X-ray-optical analysis of the dynamical state of 288 massive galaxy clusters
  • 2020
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 495:1, s. 705-725
  • Journal article (peer-reviewed)abstract
    • We use imaging from the first three years of the Dark Energy Survey to characterize the dynamical state of 288 galaxy clusters at 0.1 less than or similar to z less than or similar to 0.9 detected in the South Pole Telescope (SPT) Sunyaev-Zeldovich (SZ) effect survey (SPT-SZ). We examine spatial offsets between the position of the brightest cluster galaxy (BCG) and the centre of the gas distribution as traced by the SPT-SZ centroid and by the X-ray centroid/peak position from Chandra and XMM data. We show that the radial distribution of offsets provides no evidence that SPT SZ-selected cluster samples include a higher fraction of mergers than X-ray-selected cluster samples. We use the offsets to classify the dynamical state of the clusters, selecting the 43 most disturbed clusters, with half of those at z greater than or similar to 0.5, a region seldom explored previously. We find that Schechter function fits to the galaxy population in disturbed clusters and relaxed clusters differ at z > 0.55 but not at lower redshifts. Disturbed clusters at z > 0.55 have steeper faint-end slopes and brighter characteristic magnitudes. Within the same redshift range, we find that the BCGs in relaxed clusters tend to be brighter than the BCGs in disturbed samples, while in agreement in the lower redshift bin. Possible explanations includes a higher merger rate, and a more efficient dynamical friction at high redshift. The red-sequence population is less affected by the cluster dynamical state than the general galaxy population.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  •  
21.
  •  
22.
  • Hsiao, E. Y., et al. (author)
  • Carnegie Supernova Project-II : The Near-infrared Spectroscopy Program
  • 2019
  • In: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 131:995
  • Journal article (peer-reviewed)abstract
    • Shifting the focus of Type Ia supernova (SN Ia) cosmology to the near infrared (NIR) is a promising way to significantly reduce the systematic errors, as the strategy minimizes our reliance on the empirical width-luminosity relation and uncertain dust laws. Observations in the NIR are also crucial for our understanding of the origins and evolution of these events, further improving their cosmological utility. Any future experiments in the rest-frame NIR will require knowledge of the SN Ia NIR spectroscopic diversity, which is currently based on a small sample of observed spectra. Along with the accompanying paper, Phillips et al., we introduce the Carnegie Supernova Project-II (CSP-II), to follow-up nearby SNe Ia in both the optical and the NIR. In particular, this paper focuses on the CSP-II NIR spectroscopy program, describing the survey strategy, instrumental setups, data reduction, sample characteristics, and future analyses on the data set. In collaboration with the Harvard-Smithsonian Center for Astrophysics (CfA) Supernova Group, we obtained 661 NIR spectra of 157 SNe Ia. Within this sample, 451 NIR spectra of 90 SNe Ia have corresponding CSP-II follow-up light curves. Such a sample will allow detailed studies of the NIR spectroscopic properties of SNe Ia, providing a different perspective on the properties of the unburned material; the radioactive and stable nickel produced; progenitor magnetic fields; and searches for possible signatures of companion stars.
  •  
23.
  • Nobili, Serena, et al. (author)
  • Constraining Dust and Color Variations of High-z SNe Using NICMOS on the Hubble Space Telescope
  • 2009
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 700, s. 1415-1427
  • Journal article (peer-reviewed)abstract
    • We present data from the Supernova Cosmology Project for five high redshift Type Ia supernovae (SNe Ia) that were obtained using the NICMOS infrared camera on the Hubble Space Telescope. We add two SNe from this sample to a rest-frame I-band Hubble diagram, doubling the number of high redshift supernovae on this diagram. This I-band Hubble diagram is consistent with a flat universe (ΩM, ΩΛ) = (0.29, 0.71). A homogeneous distribution of large grain dust in the intergalactic medium (replenishing dust) is incompatible with the data and is excluded at the 5σ confidence level, if the SN host galaxy reddening is corrected assuming RV = 1.75. We use both optical and infrared observations to compare photometric properties of distant SNe Ia with those of nearby objects. We find generally good agreement with the expected color evolution for all SNe except the highest redshift SN in our sample (SN 1997ek at z = 0.863) which shows a peculiar color behavior. We also present spectra obtained from ground-based telescopes for type identification and determination of redshift. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the association of Universities for Research in Astronomy, Inc. under the NASA contract NAS 5-26555. The observations are associated with program GO-07850.
  •  
24.
  •  
25.
  • Nordin, J., et al. (author)
  • Lensed Type Ia supernovae as probes of cluster mass models
  • 2014
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 440:3, s. 2742-2754
  • Journal article (peer-reviewed)abstract
    • Using three magnified Type Ia supernovae (SNe Ia) detected behind CLASH (Cluster Lensing and Supernovae with Hubble) clusters, we perform a first pilot study to see whether standardizable candles can be used to calibrate cluster mass maps created from strong lensing observations. Such calibrations will be crucial when next-generation Hubble Space Telescope cluster surveys (e.g. Frontier) provide magnification maps that will, in turn, form the basis for the exploration of the high-redshift Universe. We classify SNe using combined photometric and spectroscopic observations, finding two of the three to be clearly of Type Ia and the third probable. The SNe exhibit significant amplification, up to a factor of 1.7 at similar to 5 Sigma significance (SN-L2). We conducted this as a blind study to avoid fine-tuning of parameters, finding a mean amplification difference between SNe and the cluster lensing models of 0.09 +/- 0.09(stat) +/- 0.05(sys) mag. This impressive agreement suggests no tension between cluster mass models and high-redshift-standardized SNe Ia. However, the measured statistical dispersion of Sigma(mu) = 0.21 mag appeared large compared to the dispersion expected based on statistical uncertainties (0.14). Further work with the SN and cluster lensing models, post-unblinding, reduced the measured dispersion to Sigma(mu) = 0.12. An explicit choice should thus be made as to whether SNe are used unblinded to improve the model, or blinded to test the model. As the lensed SN samples grow larger, this technique will allow improved constraints on assumptions regarding e.g. the structure of the dark matter halo.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 80

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view