SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Limpens Juul) "

Search: WFRF:(Limpens Juul)

  • Result 1-14 of 14
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Barrio, Isabel C., et al. (author)
  • Background invertebrate herbivory on dwarf birch (Betula glandulosa-nana complex) increases with temperature and precipitation across the tundra biome
  • 2017
  • In: Polar Biology. - : Springer. - 0722-4060 .- 1432-2056. ; 40:11, s. 2265-2278
  • Journal article (peer-reviewed)abstract
    • Chronic, low intensity herbivory by invertebrates, termed background herbivory, has been understudied in tundra, yet its impacts are likely to increase in a warmer Arctic. The magnitude of these changes is however hard to predict as we know little about the drivers of current levels of invertebrate herbivory in tundra. We assessed the intensity of invertebrate herbivory on a common tundra plant, the dwarf birch (Betula glandulosa-nana complex), and investigated its relationship to latitude and climate across the tundra biome. Leaf damage by defoliating, mining and gall-forming invertebrates was measured in samples collected from 192 sites at 56 locations. Our results indicate that invertebrate herbivory is nearly ubiquitous across the tundra biome but occurs at low intensity. On average, invertebrates damaged 11.2% of the leaves and removed 1.4% of total leaf area. The damage was mainly caused by external leaf feeders, and most damaged leaves were only slightly affected (12% leaf area lost). Foliar damage was consistently positively correlated with mid-summer (July) temperature and, to a lesser extent, precipitation in the year of data collection, irrespective of latitude. Our models predict that, on average, foliar losses to invertebrates on dwarf birch are likely to increase by 6-7% over the current levels with a 1 degrees C increase in summer temperatures. Our results show that invertebrate herbivory on dwarf birch is small in magnitude but given its prevalence and dependence on climatic variables, background invertebrate herbivory should be included in predictions of climate change impacts on tundra ecosystems.
  •  
2.
  •  
3.
  • Bengtsson, Fia, 1986-, et al. (author)
  • Environmental drivers of Sphagnum growth in peatlands across the Holarctic region
  • 2021
  • In: Journal of Ecology. - : John Wiley & Sons. - 0022-0477 .- 1365-2745. ; 109:1, s. 417-431
  • Journal article (peer-reviewed)abstract
    • The relative importance of global versus local environmental factors for growth and thus carbon uptake of the bryophyte genusSphagnum-the main peat-former and ecosystem engineer in northern peatlands-remains unclear. We measured length growth and net primary production (NPP) of two abundantSphagnumspecies across 99 Holarctic peatlands. We tested the importance of previously proposed abiotic and biotic drivers for peatland carbon uptake (climate, N deposition, water table depth and vascular plant cover) on these two responses. Employing structural equation models (SEMs), we explored both indirect and direct effects of drivers onSphagnumgrowth. Variation in growth was large, but similar within and between peatlands. Length growth showed a stronger response to predictors than NPP. Moreover, the smaller and denserSphagnum fuscumgrowing on hummocks had weaker responses to climatic variation than the larger and looserSphagnum magellanicumgrowing in the wetter conditions. Growth decreased with increasing vascular plant cover within a site. Between sites, precipitation and temperature increased growth forS. magellanicum. The SEMs indicate that indirect effects are important. For example, vascular plant cover increased with a deeper water table, increased nitrogen deposition, precipitation and temperature. These factors also influencedSphagnumgrowth indirectly by affecting moss shoot density. Synthesis. Our results imply that in a warmer climate,S. magellanicumwill increase length growth as long as precipitation is not reduced, whileS. fuscumis more resistant to decreased precipitation, but also less able to take advantage of increased precipitation and temperature. Such species-specific sensitivity to climate may affect competitive outcomes in a changing environment, and potentially the future carbon sink function of peatlands.
  •  
4.
  • Bragazza, Luca, et al. (author)
  • Atmospheric nitrogen deposition promotes carbon loss from peat bogs
  • 2006
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 103:51, s. 19386-19389
  • Journal article (peer-reviewed)abstract
    • Peat bogs have historically represented exceptional carbon (C) sinks because of their extremely low decomposition rates and consequent accumulation of plant remnants as peat. Among the factors favoring that peat accumulation, a major role is played by the chemical quality of plant litter itself, which is poor in nutrients and characterized by polyphenols with a strong inhibitory effect on microbial breakdown. Because bogs receive their nutrient supply solely from atmospheric deposition, the global increase of atmospheric nitrogen (N) inputs as a consequence of human activities could potentially alter the litter chemistry with important, but still unknown, effects on their C balance. Here we present data showing the decomposition rates of recently formed litter peat samples collected in nine European countries under a natural gradient of atmospheric N deposition from approximate to 0.2 to 2 g center dot m(-2)center dot yr(-1). We found that enhanced decomposition rates for material accumulated under higher atmospheric N supplies resulted in higher carbon dioxide (CO2) emissions and dissolved organic carbon release. The increased IN availability favored microbial decomposition (i) by removing N constraints on microbial metabolism and (ii) through a chemical amelioration of litter peat quality with a positive feedback on microbial enzymatic activity. Although some uncertainty remains about whether decay-resistant Sphagnum will continue to dominate litter peat, our data indicate that, even without such changes, increased N deposition poses a serious risk to our valuable peatland C sinks.
  •  
5.
  • Granath, Gustaf, et al. (author)
  • Environmental and taxonomic controls of carbon and oxygen stable isotope composition in Sphagnum across broad climatic and geographic ranges
  • 2018
  • In: Biogeosciences. - : Copernicus Publications. - 1726-4170 .- 1726-4189. ; 15:16, s. 5189-5202
  • Journal article (peer-reviewed)abstract
    • Rain-fed peatlands are dominated by peat mosses (Sphagnum sp.), which for their growth depend on nutrients, water and CO2 uptake from the atmosphere. As the isotopic composition of carbon (C-12(,)13) and oxygen (O-16(,)18) of these Sphagnum mosses are affected by environmental conditions, Sphagnum tissue accumulated in peat constitutes a potential long-term archive that can be used for climate reconstruction. However, there is inadequate understanding of how isotope values are influenced by environmental conditions, which restricts their current use as environmental and palaeoenvironmental indicators. Here we tested (i) to what extent C and O isotopic variation in living tissue of Sphagnum is speciesspecific and associated with local hydrological gradients, climatic gradients (evapotranspiration, temperature, precipitation) and elevation; (ii) whether the C isotopic signature can be a proxy for net primary productivity (NPP) of Sphagnum; and (iii) to what extent Sphagnum tissue delta O-18 tracks the delta O-18 isotope signature of precipitation. In total, we analysed 337 samples from 93 sites across North America and Eurasia us ing two important peat-forming Sphagnum species (S. magellanicum, S. fuscum) common to the Holarctic realm. There were differences in delta C-13 values between species. For S. magellanicum delta C-13 decreased with increasing height above the water table (HWT, R-2 = 17 %) and was positively correlated to productivity (R-2 = 7 %). Together these two variables explained 46 % of the between-site variation in delta C-13 values. For S. fuscum, productivity was the only significant predictor of delta C-13 but had low explanatory power (total R-2 = 6 %). For delta O-18 values, approximately 90 % of the variation was found between sites. Globally modelled annual delta O-18 values in precipitation explained 69 % of the between-site variation in tissue delta O-18. S. magellanicum showed lower delta O-18 enrichment than S. fuscum (-0.83 %0 lower). Elevation and climatic variables were weak predictors of tissue delta O-18 values after controlling for delta O-18 values of the precipitation. To summarize, our study provides evidence for (a) good predictability of tissue delta O-18 values from modelled annual delta O-18 values in precipitation, and (b) the possibility of relating tissue delta C-13 values to HWT and NPP, but this appears to be species-dependent. These results suggest that isotope composition can be used on a large scale for climatic reconstructions but that such models should be species-specific.
  •  
6.
  • Hagenberg, Liyenne Wu Chen, et al. (author)
  • Vegetation change on mountaintops in northern Sweden: Stable vascular-plant but reordering of lichen and bryophyte communities
  • 2022
  • In: Ecological Research. - : Wiley. - 0912-3814 .- 1440-1703. ; 37:6, s. 722-737
  • Journal article (peer-reviewed)abstract
    • Alpine ecosystems harbor remarkably diverse and distinct plant communities that are characteristically limited to harsh, and cold climatic conditions. As a result of thermal limitation to species occurrence, mountainous ecosystems are considered to be particularly sensitive to climate change. Our understanding of the impact of climate change is mainly based on vascular plants however, whereas cryptogams (i.e., lichens and bryophytes) are generally neglected or simply considered as one functional group. Here we aimed to improve our understanding of the drivers underlying temporal changes in vegetation of alpine ecosystems. To this end, we repeatedly surveyed the vegetation on four mountain summits along an elevational gradient in northern Sweden spanning a 19-year period. Our results show that the vascular plant communities remained relatively stable throughout the study period, despite fluctuations in terms of ground cover and species richness of shrubs and graminoids. In contrast, both lichens and bryophytes substantially decreased in cover and diversity, leading to alterations in community composition that were unrelated to vascular plant cover. Thermophilization of the vascular plant community was found only on the two intermediate summits. Our findings are only partially consistent with (long-term) climate-change impacts, and we argue that local non-climatic drivers such as herbivory might offset vegetation responses to warming. Hence, we underline the importance of considering local non-climatic drivers when evaluating temporal vegetation change in biologically complex systems.
  •  
7.
  • Lindén, Elin, et al. (author)
  • Circum-Arctic distribution of chemical anti-herbivore compounds suggests biome-wide trade-off in defence strategies in Arctic shrubs
  • 2022
  • In: Ecography. - : John Wiley & Sons. - 0906-7590 .- 1600-0587. ; :11
  • Journal article (peer-reviewed)abstract
    • Spatial variation in plant chemical defence towards herbivores can help us understand variation in herbivore top–down control of shrubs in the Arctic and possibly also shrub responses to global warming. Less defended, non-resinous shrubs could be more influenced by herbivores than more defended, resinous shrubs. However, sparse field measurements limit our current understanding of how much of the circum-Arctic variation in defence compounds is explained by taxa or defence functional groups (resinous/non-resinous). We measured circum-Arctic chemical defence and leaf digestibility in resinous (Betula glandulosa, B. nana ssp. exilis) and non-resinous (B. nana ssp. nana, B. pumila) shrub birches to see how they vary among and within taxa and functional groups. Using liquid chromatography–mass spectrometry (LC–MS) metabolomic analyses and in vitro leaf digestibility via incubation in cattle rumen fluid, we analysed defence composition and leaf digestibility in 128 samples from 44 tundra locations.We found biogeographical patterns in anti-herbivore defence where mean leaf triterpene concentrations and twig resin gland density were greater in resinous taxa and mean concentrations of condensing tannins were greater in non-resinous taxa. This indicates a biome-wide trade-off between triterpene- or tannin-dominated defences. However, we also found variations in chemical defence composition and resin gland density both within and among functional groups (resinous/non-resinous) and taxa, suggesting these categorisations only partly predict chemical herbivore defence. Complex tannins were the only defence compounds negatively related to in vitro digestibility, identifying this previously neglected tannin group as having a potential key role in birch anti-herbivore defence.We conclude that circum-Arctic variation in birch anti-herbivore defence can be partly derived from biogeographical distributions of birch taxa, although our detailed mapping of plant defence provides more information on this variation and can be used for better predictions of herbivore effects on Arctic vegetation.
  •  
8.
  • Magnússon, Rúna Í., et al. (author)
  • Extremely wet summer events enhance permafrost thaw for multiple years in Siberian tundra
  • 2022
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1
  • Journal article (peer-reviewed)abstract
    • Permafrost thaw can accelerate climate warming by releasing carbon from previously frozen soil in the form of greenhouse gases. Rainfall extremes have been proposed to increase permafrost thaw, but the magnitude and duration of this effect are poorly understood. Here we present empirical evidence showing that one extremely wet summer (+100 mm; 120% increase relative to average June-August rainfall) enhanced thaw depth by up to 35% in a controlled irrigation experiment in an ice-rich Siberian tundra site. The effect persisted over two subsequent summers, demonstrating a carry-over effect of extremely wet summers. Using soil thermal hydrological modelling, we show that rainfall extremes delayed autumn freeze-up and rainfall-induced increases in thaw were most pronounced for warm summers with mid-summer precipitation rainfall extremes. Our results suggest that, with rainfall and temperature both increasing in the Arctic, permafrost will likely degrade and disappear faster than is currently anticipated based on rising air temperatures alone. Thawing permafrost releases carbon that serves as a positive feedback on climate warming. Here the authors experimentally demonstrate that rainfall extremes in the Siberian tundra increase permafrost thaw for multiple years, especially if rainfall coincides with warm periods.
  •  
9.
  • Nijp, Jelmer J., et al. (author)
  • Including hydrological self-regulating processes in peatland models : effects on peatmoss drought projections
  • 2017
  • In: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 580, s. 1389-1400
  • Journal article (peer-reviewed)abstract
    • The water content of the topsoil is one of the key factors controlling biogeochemical processes, greenhouse gas emissions and biosphere - atmosphere interactions in many ecosystems, particularly in northern peatlands. In these wetland ecosystems, the water content of the photosynthetic active peatmoss layer is crucial for ecosystem functioning and carbon sequestration, and is sensitive to future shifts in rainfall and drought characteristics. Current peatland models differ in the degree in which hydrological feedbacks are included, but how this affects peatmoss drought projections is unknown. The aim of this paper was to systematically test whether the level of hydrological detail in models could bias projections of water content and drought stress for peatmoss in northern peatlands using downscaled projections for rainfall and potential evapotranspiration in the current (1991-2020) and future climate (2061-2090). We considered four model variants that either include or exclude moss (rain)water storage and peat volume change, as these are two central processes in the hydrological self-regulation of peatmoss carpets. Model performance was validated using field data of a peatland in northern Sweden. Including moss water storage as well as peat volume change resulted in a significant improvement of model performance, despite the extra parameters added. The best performance was achieved if both processes were included. Including moss water storage and peat volume change consistently reduced projected peatmoss drought frequency with >50%, relative to the model excluding both proces'ses. Projected peatmoss drought frequency in the growing season was 17% smaller under future climate than current climate, but was unaffected by including the hydrological self-regulating processes. Our results suggest that ignoring these two fine-scale processes important in hydrological self-regulation of northern peatlands will have large consequences for projected climate change impact on ecosystem processes related to topsoil water content, such as greenhouse gas emissions. (C) 2016 Elsevier B.V. All rights reserved.
  •  
10.
  • Serk, Henrik, 1980-, et al. (author)
  • Global CO2 fertilization of Sphagnum peat mosses via suppression of photorespiration during the twentieth century
  • 2021
  • In: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 11:1
  • Journal article (peer-reviewed)abstract
    • Natural peatlands contribute significantly to global carbon sequestration and storage of biomass, most of which derives from Sphagnum peat mosses. Atmospheric CO2 levels have increased dramatically during the twentieth century, from 280 to > 400 ppm, which has affected plant carbon dynamics. Net carbon assimilation is strongly reduced by photorespiration, a process that depends on the CO2 to O2 ratio. Here we investigate the response of the photorespiration to photosynthesis ratio in Sphagnum mosses to recent CO2 increases by comparing deuterium isotopomers of historical and contemporary Sphagnum tissues collected from 36 peat cores from five continents. Rising CO2 levels generally suppressed photorespiration relative to photosynthesis but the magnitude of suppression depended on the current water table depth. By estimating the changes in water table depth, temperature, and precipitation during the twentieth century, we excluded potential effects of these climate parameters on the observed isotopomer responses. Further, we showed that the photorespiration to photosynthesis ratio varied between Sphagnum subgenera, indicating differences in their photosynthetic capacity. The global suppression of photorespiration in Sphagnum suggests an increased net primary production potential in response to the ongoing rise in atmospheric CO2, in particular for mire structures with intermediate water table depths.
  •  
11.
  •  
12.
  • Weston, David J., et al. (author)
  • The Sphagnome Project : enabling ecological and evolutionary insights through a genus-level sequencing project
  • 2018
  • In: New Phytologist. - : Wiley. - 0028-646X .- 1469-8137. ; 217:1, s. 16-25
  • Journal article (other academic/artistic)abstract
    • Considerable progress has been made in ecological and evolutionary genetics with studies demonstrating how genes underlying plant and microbial traits can influence adaptation and even 'extend' to influence community structure and ecosystem level processes. Progress in this area is limited to model systems with deep genetic and genomic resources that often have negligible ecological impact or interest. Thus, important linkages between genetic adaptations and their consequences at organismal and ecological scales are often lacking. Here we introduce the Sphagnome Project, which incorporates genomics into a long-running history of Sphagnum research that has documented unparalleled contributions to peatland ecology, carbon sequestration, biogeochemistry, microbiome research, niche construction, and ecosystem engineering. The Sphagnome Project encompasses a genus-level sequencing effort that represents a new type of model system driven not only by genetic tractability, but by ecologically relevant questions and hypotheses.
  •  
13.
  • Wiedermann, Magdalena, 1975- (author)
  • Responses of peatland vegetation to enhanced nitrogen
  • 2008
  • Doctoral thesis (other academic/artistic)abstract
    • Human alteration of the global nitrogen (N) cycle has had major impacts on naturally N-limited ecosystems worldwide. Peatlands, dominated by peat mosses, Sphagnum species, represent one such sensitive ecosystem. I have studied how this ecosystem is affected by increased N availability, using a small-scale N fertilization experiment in combination with a gradient study of three peatlands with varying N deposition.I found both in the experiment and in the gradient a similar pattern of Sphagnum decline accompanied by an increase of vascular plants associated with enhanced N supply. For one common Sphagnum species - both in the experiment and in the gradient study - I also found an identical, linear increase in soluble amino acid N (NAA) accumulation. As soluble amino acids function as N storage compounds among Sphagna, NAA is a suitable measure for Sphagnum N status, and indicates accumulation of excess N not used for growth. My results show that NAA can be used as a sensitive indicator to signal N pollution before the slow, and gradual, regime shift from Sphagnum to vascular plant dominance is visible. In an N-uptake experiment using Sphagnum specimens from the three peatlands varying in N deposition, I found a reduced N-uptake by both investigated Sphagnum species from a high N deposition site, in south-western Sweden. This potential of Sphagna to adjust to high N loads through N uptake regulation will, however, not prevent tissue N accumulation, and as a result a shift from Sphagnum to vascular plant dominance.In general I found similar patterns of N induced changes both in Sphagnum tissue chemistry and vegetation structure in the experiment and along the gradient study. Thus, I conclude that long-term, small-scale field experiments seem to offer reliable estimates of both the direction and strength of key vegetation responses in Sphagnum dominated peatlands. This is likely related to the key role of Sphagna as ecosystem engineers.In the experiment I found a marked time lag in vegetation response to N application treatments. The closed Sphagnum carpet did not collapse until after eight years of continuous treatments. Another result was that dwarf shrubs, e.g. cranberry Vaccinium oxycoccos, first increased, but later declined due to severe attacks by fungal diseases. One important conclusion is that long-term, manipulative field experiments are necessary for our ability to understand how ecosystems will respond to environmental change.
  •  
14.
  • Zeh, Lilli, et al. (author)
  • Plant functional types and temperature control carbon input via roots in peatland soils
  • 2019
  • In: Plant and Soil. - : Springer. - 0032-079X .- 1573-5036. ; 438:1-2, s. 19-38
  • Journal article (peer-reviewed)abstract
    • Aims: Northern peatlands store large amounts of soil organic carbon (C) that can be very sensitive to ongoing global warming. Recently it has been shown that temperature-enhanced growth of vascular plants in these typically moss-dominated ecosystems may promote microbial peat decomposition by increased C input via root exudates. To what extent different plant functional types (PFT) and soil temperature interact in controlling root C input is still unclear. In this study we explored how root C input is related to the presence of ericoid shrubs (shrubs) and graminoid sedges (sedges) by means of a factorial plant clipping experiment (= PFT effect) in two peatlands located at different altitude (= temperature effect).Methods: By selective clipping of shrub and sedge shoots in mixed vegetation at two Alpine peatland sites we interrupted the above- to belowground translocation of C, thus temporarily inhibiting root C release. Subsequent measurements of soil respiration, dissolved organic carbon (DOC) concentration and stable isotope composition (13C) of DOC in pore water were used as proxies to estimate the above- to belowground transfer of C by different PFT.Results: We found that soil respiration rates and DOC concentrations temporarily decreased within 24 h after clipping, with the decrease in soil respiration being most pronounced at the 1.4 °C warmer peatland after clipping shrubs. The transient drop in DOC concentration coincided with a shift towards a heavier C isotope signature, indicating that the decrease was associated with inhibition of a light C source that we attribute to root exudates. Together these results imply that shrubs translocated more C into the peat than sedges, particularly at higher temperature.Conclusions: We showed that plant functional type and temperature interact in controlling root C input under field conditions in peatlands. Our results provide a mechanistic evidence that shrubs may potentially promote the release of stored soil C through root-derived C input.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-14 of 14
Type of publication
journal article (13)
doctoral thesis (1)
Type of content
peer-reviewed (12)
other academic/artistic (2)
Author/Editor
Limpens, Juul (13)
Heijmans, Monique M. ... (4)
Dorrepaal, Ellen (3)
Forbes, Bruce C. (3)
Nilsson, Mats (3)
Schmidt, Niels Marti ... (3)
show more...
Olofsson, Johan (3)
Speed, James D. M. (3)
Rydin, Håkan, 1953- (3)
Barrio, Isabel C. (3)
Soininen, Eeva M. (3)
Lindén, Elin (3)
Te Beest, Mariska (3)
Boike, Julia (3)
Bryant, John P. (3)
Buchwal, Agata (3)
Bueno, C. Guillermo (3)
Hallinger, Martin (3)
Hofgaard, Annika (3)
Holmgren, Milena (3)
Høye, Toke T. (3)
Huebner, Diane C. (3)
Kumpula, Timo (3)
Normand, Signe (3)
Vellak, Kai (2)
Natali, Susan M. (2)
Grogan, Paul (2)
Galka, Mariusz (2)
Alatalo, Juha M. (2)
Sokolov, Alexander (2)
Kaarlejärvi, Elina (2)
Myers-Smith, Isla (2)
Hik, David S. (2)
Rocha, Adrian (2)
Andersson, Tommi (2)
Asmus, Ashley (2)
Bråthen, Kari Anne (2)
Christie, Katherine ... (2)
Denisova, Yulia V. (2)
Egelkraut, Dagmar (2)
Ehrich, Dorothee (2)
Fishback, LeeAnn (2)
Gartzia, Maite (2)
Jónsdóttir, Ingibjor ... (2)
Lange, Cynthia Y. M. ... (2)
Lange, Jelena (2)
Lévesque, Esther (2)
Macias-Fauria, Marc (2)
van Nieukerken, Erik ... (2)
Post, Eric S. (2)
show less...
University
Umeå University (9)
Uppsala University (5)
Swedish University of Agricultural Sciences (5)
Lund University (2)
University of Gothenburg (1)
Stockholm University (1)
Language
English (14)
Research subject (UKÄ/SCB)
Natural sciences (13)
Agricultural Sciences (2)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view