SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Luan Jian'an) "

Search: WFRF:(Luan Jian'an)

  • Result 1-25 of 85
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Heid, Iris M, et al. (author)
  • Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution
  • 2010
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 42:11, s. 949-960
  • Journal article (peer-reviewed)abstract
    • Waist-hip ratio (WHR) is a measure of body fat distribution and a predictor of metabolic consequences independent of overall adiposity. WHR is heritable, but few genetic variants influencing this trait have been identified. We conducted a meta-analysis of 32 genome-wide association studies for WHR adjusted for body mass index (comprising up to 77,167 participants), following up 16 loci in an additional 29 studies (comprising up to 113,636 subjects). We identified 13 new loci in or near RSPO3, VEGFA, TBX15-WARS2, NFE2L3, GRB14, DNM3-PIGC, ITPR2-SSPN, LY86, HOXC13, ADAMTS9, ZNRF3-KREMEN1, NISCH-STAB1 and CPEB4 (P = 1.9 × 10⁻⁹ to P = 1.8 × 10⁻⁴⁰) and the known signal at LYPLAL1. Seven of these loci exhibited marked sexual dimorphism, all with a stronger effect on WHR in women than men (P for sex difference = 1.9 × 10⁻³ to P = 1.2 × 10⁻¹³). These findings provide evidence for multiple loci that modulate body fat distribution independent of overall adiposity and reveal strong gene-by-sex interactions.
  •  
2.
  • Justice, Anne E., et al. (author)
  • Protein-coding variants implicate novel genes related to lipid homeostasis contributing to body-fat distribution
  • 2019
  • In: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 51:3, s. 452-469
  • Journal article (peer-reviewed)abstract
    • Body-fat distribution is a risk factor for adverse cardiovascular health consequences. We analyzed the association of body-fat distribution, assessed by waist-to-hip ratio adjusted for body mass index, with 228,985 predicted coding and splice site variants available on exome arrays in up to 344,369 individuals from five major ancestries (discovery) and 132,177 European-ancestry individuals (validation). We identified 15 common (minor allele frequency, MAF >= 5%) and nine low-frequency or rare (MAF < 5%) coding novel variants. Pathway/gene set enrichment analyses identified lipid particle, adiponectin, abnormal white adipose tissue physiology and bone development and morphology as important contributors to fat distribution, while cross-trait associations highlight cardiometabolic traits. In functional follow-up analyses, specifically in Drosophila RNAi-knockdowns, we observed a significant increase in the total body triglyceride levels for two genes (DNAH10 and PLXND1). We implicate novel genes in fat distribution, stressing the importance of interrogating low-frequency and protein-coding variants.
  •  
3.
  •  
4.
  •  
5.
  • Beal, Jacob, et al. (author)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • In: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Journal article (peer-reviewed)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
6.
  • Berndt, Sonja I., et al. (author)
  • Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture
  • 2013
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 45:5, s. 501-U69
  • Journal article (peer-reviewed)abstract
    • Approaches exploiting trait distribution extremes may be used to identify loci associated with common traits, but it is unknown whether these loci are generalizable to the broader population. In a genome-wide search for loci associated with the upper versus the lower 5th percentiles of body mass index, height and waist-to-hip ratio, as well as clinical classes of obesity, including up to 263,407 individuals of European ancestry, we identified 4 new loci (IGFBP4, H6PD, RSRC1 and PPP2R2A) influencing height detected in the distribution tails and 7 new loci (HNF4G, RPTOR, GNAT2, MRPS33P4, ADCY9, HS6ST3 and ZZZ3) for clinical classes of obesity. Further, we find a large overlap in genetic structure and the distribution of variants between traits based on extremes and the general population and little etiological heterogeneity between obesity subgroups.
  •  
7.
  • Boeger, Carsten A., et al. (author)
  • CUBN Is a Gene Locus for Albuminuria
  • 2011
  • In: Journal of the American Society of Nephrology. - 1046-6673 .- 1533-3450. ; 22:3, s. 555-570
  • Journal article (peer-reviewed)abstract
    • Identification of genetic risk factors for albuminuria may alter strategies for early prevention of CKD progression, particularly among patients with diabetes. Little is known about the influence of common genetic variants on albuminuria in both general and diabetic populations. We performed a meta-analysis of data from 63,153 individuals of European ancestry with genotype information from genome-wide association studies (CKDGen Consortium) and from a large candidate gene study (CARe Consortium) to identify susceptibility loci for the quantitative trait urinary albumin-to-creatinine ratio (UACR) and the clinical diagnosis microalbuminuria. We identified an association between a missense variant (I2984V) in the CUBN gene, which encodes cubilin, and both UACR (P = 1.1 x 10(-11)) and microalbuminuria (P = 0.001). We observed similar associations among 6981 African Americans in the CARe Consortium. The associations between this variant and both UACR and microalbuminuria were significant in individuals of European ancestry regardless of diabetes status. Finally, this variant associated with a 41% increased risk for the development of persistent microalbuminuria during 20 years of follow-up among 1304 participants with type 1 diabetes in the prospective DCCT/EDIC Study. In summary, we identified a missense CUBN variant that associates with levels of albuminuria in both the general population and in individuals with diabetes.
  •  
8.
  •  
9.
  • Broadaway, K Alaine, et al. (author)
  • Loci for insulin processing and secretion provide insight into type 2 diabetes risk.
  • 2023
  • In: American Journal of Human Genetics. - : Elsevier. - 0002-9297 .- 1537-6605. ; 110:2, s. 284-299
  • Journal article (peer-reviewed)abstract
    • Insulin secretion is critical for glucose homeostasis, and increased levels of the precursor proinsulin relative to insulin indicate pancreatic islet beta-cell stress and insufficient insulin secretory capacity in the setting of insulin resistance. We conducted meta-analyses of genome-wide association results for fasting proinsulin from 16 European-ancestry studies in 45,861 individuals. We found 36 independent signals at 30 loci (p value < 5 × 10-8), which validated 12 previously reported loci for proinsulin and ten additional loci previously identified for another glycemic trait. Half of the alleles associated with higher proinsulin showed higher rather than lower effects on glucose levels, corresponding to different mechanisms. Proinsulin loci included genes that affect prohormone convertases, beta-cell dysfunction, vesicle trafficking, beta-cell transcriptional regulation, and lysosomes/autophagy processes. We colocalized 11 proinsulin signals with islet expression quantitative trait locus (eQTL) data, suggesting candidate genes, including ARSG, WIPI1, SLC7A14, and SIX3. The NKX6-3/ANK1 proinsulin signal colocalized with a T2D signal and an adipose ANK1 eQTL signal but not the islet NKX6-3 eQTL. Signals were enriched for islet enhancers, and we showed a plausible islet regulatory mechanism for the lead signal in the MADD locus. These results show how detailed genetic studies of an intermediate phenotype can elucidate mechanisms that may predispose one to disease.
  •  
10.
  • Cai, Lina, et al. (author)
  • Genome-wide association analysis of type 2 diabetes in the EPIC-InterAct study
  • 2020
  • In: Scientific Data. - : Nature Publishing Group. - 2052-4463. ; 7:1
  • Journal article (peer-reviewed)abstract
    • Type 2 diabetes (T2D) is a global public health challenge. Whilst the advent of genome-wide association studies has identified >400 genetic variants associated with T2D, our understanding of its biological mechanisms and translational insights is still limited. The EPIC-InterAct project, centred in 8 countries in the European Prospective Investigations into Cancer and Nutrition study, is one of the largest prospective studies of T2D. Established as a nested case-cohort study to investigate the interplay between genetic and lifestyle behavioural factors on the risk of T2D, a total of 12,403 individuals were identified as incident T2D cases, and a representative sub-cohort of 16,154 individuals was selected from a larger cohort of 340,234 participants with a follow-up time of 3.99 million person-years. We describe the results from a genome-wide association analysis between more than 8.9 million SNPs and T2D risk among 22,326 individuals (9,978 cases and 12,348 non-cases) from the EPIC-InterAct study. The summary statistics to be shared provide a valuable resource to facilitate further investigations into the genetics of T2D.
  •  
11.
  • Chambers, John C., et al. (author)
  • Genetic loci influencing kidney function and chronic kidney disease
  • 2010
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 42:5, s. 373-375
  • Journal article (peer-reviewed)abstract
    • Using genome-wide association, we identify common variants at 2p12-p13, 6q26, 17q23 and 19q13 associated with serum creatinine, a marker of kidney function (P = 10(-10) to 10(-15)). Of these, rs10206899 (near NAT8, 2p12-p13) and rs4805834 (near SLC7A9, 19q13) were also associated with chronic kidney disease (P = 5.0 x 10(-5) and P = 3.6 x 10(-4), respectively). Our findings provide insight into metabolic, solute and drug-transport pathways underlying susceptibility to chronic kidney disease.
  •  
12.
  • de Vries, Paul S., et al. (author)
  • Multiancestry Genome-Wide Association Study of Lipid Levels Incorporating Gene-Alcohol Interactions
  • 2019
  • In: American Journal of Epidemiology. - : Oxford University Press. - 0002-9262 .- 1476-6256. ; 188:6, s. 1033-1054
  • Journal article (peer-reviewed)abstract
    • A person's lipid profile is influenced by genetic variants and alcohol consumption, but the contribution of interactions between these exposures has not been studied. We therefore incorporated gene-alcohol interactions into a multiancestry genome-wide association study of levels of high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and triglycerides. We included 45 studies in stage 1 (genome-wide discovery) and 66 studies in stage 2 (focused follow-up), for a total of 394,584 individuals from 5 ancestry groups. Analyses covered the period July 2014-November 2017. Genetic main effects and interaction effects were jointly assessed by means of a 2-degrees-of-freedom (df) test, and a 1-df test was used to assess the interaction effects alone. Variants at 495 loci were at least suggestively associated (P < 1 x 10(-6)) with lipid levels in stage 1 and were evaluated in stage 2, followed by combined analyses of stage 1 and stage 2. In the combined analysis of stages 1 and 2, a total of 147 independent loci were associated with lipid levels at P < 5 x 10(-8) using 2-df tests, of which 18 were novel. No genome-wide-significant associations were found testing the interaction effect alone. The novel loci included several genes (proprotein convertase subtilisin/kexin type 5 (PCSK5), vascular endothelial growth factor B (VEGFB), and apolipoprotein B mRNA editing enzyme, catalytic polypeptide 1 (APOBEC1) complementation factor (A1CF)) that have a putative role in lipid metabolism on the basis of existing evidence from cellular and experimental models.
  •  
13.
  • Do, Ron, et al. (author)
  • Common variants associated with plasma triglycerides and risk for coronary artery disease
  • 2013
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 45:11, s. 1345-
  • Journal article (peer-reviewed)abstract
    • Triglycerides are transported in plasma by specific triglyceride-rich lipoproteins; in epidemiological studies, increased triglyceride levels correlate with higher risk for coronary artery disease (CAD). However, it is unclear whether this association reflects causal processes. We used 185 common variants recently mapped for plasma lipids (P < 5 x 10(-8) for each) to examine the role of triglycerides in risk for CAD. First, we highlight loci associated with both low-density lipoprotein cholesterol (LDL-C) and triglyceride levels, and we show that the direction and magnitude of the associations with both traits are factors in determining CAD risk. Second, we consider loci with only a strong association with triglycerides and show that these loci are also associated with CAD. Finally, in a model accounting for effects on LDL-C and/or high-density lipoprotein cholesterol (HDL-C) levels, the strength of a polymorphism's effect on triglyceride levels is correlated with the magnitude of its effect on CAD risk. These results suggest that triglyceride-rich lipoproteins causally influence risk for CAD.
  •  
14.
  • Ekelund, Ulf, 1960-, et al. (author)
  • Moderate to vigorous physical activity and sedentary time and cardiometabolic risk factors in children and adolescents
  • 2012
  • In: Journal of the American Medical Association (JAMA). - Chicago, USA : American Medical Association. - 0098-7484 .- 1538-3598. ; 307:7, s. 704-712
  • Journal article (peer-reviewed)abstract
    • Context: Sparse data exist on the combined associations between physical activity and sedentary time with cardiometabolic risk factors in healthy children.Objective: To examine the independent and combined associations between objectively measured time in moderate- to vigorous-intensity physical activity (MVPA) and sedentary time with cardiometabolic risk factors.Design, Setting, and Participants: Pooled data from 14 studies between 1998 and 2009 comprising 20 871 children (aged 4-18 years) from the International Children's Accelerometry Database. Time spent in MVPA and sedentary time were measured using accelerometry after reanalyzing raw data. The independent associations between time in MVPA and sedentary time, with outcomes, were examined using meta-analysis. Participants were stratified by tertiles of MVPA and sedentary time.Main Outcome Measures: Waist circumference, systolic blood pressure, fasting triglycerides, high-density lipoprotein cholesterol, and insulin.Results: Times (mean [SD] min/d) accumulated by children in MVPA and being sedentary were 30 (21) and 354 (96), respectively. Time in MVPA was significantly associated with all cardiometabolic outcomes independent of sex, age, monitor wear time, time spent sedentary, and waist circumference (when not the outcome). Sedentary time was not associated with any outcome independent of time in MVPA. In the combined analyses, higher levels of MVPA were associated with better cardiometabolic risk factors across tertiles of sedentary time. The differences in outcomes between higher and lower MVPA were greater with lower sedentary time. Mean differences in waist circumference between the bottom and top tertiles of MVPA were 5.6 cm (95% CI, 4.8-6.4 cm) for high sedentary time and 3.6 cm (95% CI, 2.8-4.3 cm) for low sedentary time. Mean differences in systolic blood pressure for high and low sedentary time were 0.7 mm Hg (95% CI, -0.07 to 1.6) and 2.5 mmHg (95% CI, 1.7-3.3), and for high-density lipoprotein cholesterol, differences were -2.6 mg/dL(95% CI, -1.4 to -3.9) and -4.5 mg/dL(95% CI, -3.3 to -5.6), respectively. Geometric mean differences for insulin and triglycerides showed similar variation. Those in the top tertile of MVPA accumulated more than 35 minutes per day in this intensity level compared with fewer than 18 minutes per day for those in the bottom tertile. In prospective analyses (N=6413 at 2.1 years' follow-up), MVPA and sedentary time were not associated with waist circumference at follow-up, but a higher waist circumference at baseline was associated with higher amounts of sedentary time at follow-up.Conclusion: Higher MVPA time by children and adolescents was associated with better cardiometabolic risk factors regardless of the amount of sedentary time.
  •  
15.
  • Ekelund, Ulf, et al. (author)
  • Physical activity and all-cause mortality across levels of overall and abdominal adiposity in European men and women : the European Prospective Investigation into Cancer and Nutrition Study (EPIC)
  • 2015
  • In: American Journal of Clinical Nutrition. - : Elsevier BV. - 0002-9165 .- 1938-3207. ; 101:3, s. 613-621
  • Journal article (peer-reviewed)abstract
    • Background: The higher risk of death resulting from excess adiposity may be attenuated by physical activity (PA). However, the theoretical number of deaths reduced by eliminating physical inactivity compared with overall and abdominal obesity remains unclear.Objective: We examined whether overall and abdominal adiposity modified the association between PA and all-cause mortality and estimated the population attributable fraction (PAF) and the years of life gained for these exposures.Design: This was a cohort study in 334,161 European men and women. The mean follow-up time was 12.4 y, corresponding to 4,154,915 person-years. Height, weight, and waist circumference (WC) were measured in the clinic. PA was assessed with a validated self-report instrument. The combined associations between PA, BMI, and WC with mortality were examined with Cox proportional hazards models, stratified by center and age group, and adjusted for sex, education, smoking, and alcohol intake. Center-specific PAF associated with inactivity, body mass index (BMI; in kg/m(2)) (>30), and WC (>= 102 cm for men, >= 88 cm for women) were calculated and combined in random-effects meta-analysis. Life-tables analyses were used to estimate gains in life expectancy for the exposures.Results: Significant interactions (PA x BMI and PA x WC) were observed, so HRs were estimated within BMI and WC strata. The hazards of all-cause mortality were reduced by 16-30% in moderately inactive individuals compared with those categorized as inactive in different strata of BMI and WC. Avoiding all inactivity would theoretically reduce all-cause mortality by 7.35% (95% CI: 5.88%, 8.83%). Corresponding estimates for avoiding obesity (BMI >30) were 3.66% (95% CI: 2.30%, 5.01%). The estimates for avoiding high WC were similar to those for physical inactivity.Conclusion: The greatest reductions in mortality risk were observed between the 2 lowest activity groups across levels of general and abdominal adiposity, which suggests that efforts to encourage even small increases in activity in inactive individuals may be beneficial to public health.
  •  
16.
  • Ekelund, Ulf, et al. (author)
  • Physical activity and gain in abdominal adiposity and body weight: prospective cohort study in 288,498 men and women.
  • 2011
  • In: The American journal of clinical nutrition. - : Elsevier BV. - 1938-3207 .- 0002-9165. ; 93, s. 826-835
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: The protective effect of physical activity (PA) on abdominal adiposity is unclear. OBJECTIVE: We examined whether PA independently predicted gains in body weight and abdominal adiposity. DESIGN: In a prospective cohort study [the EPIC (European Prospective Investigation into Cancer and Nutrition)], we followed 84,511 men and 203,987 women for 5.1 y. PA was assessed by a validated questionnaire, and individuals were categorized into 4 groups (inactive, moderately inactive, moderately active, and active). Body weight and waist circumference were measured at baseline and self-reported at follow-up. We used multilevel mixed-effects linear regression models and stratified our analyses by sex with adjustments for age, smoking status, alcohol consumption, educational level, total energy intake, duration of follow-up, baseline body weight, change in body weight, and waist circumference (when applicable). RESULTS: PA significantly predicted a lower waist circumference (in cm) in men (β = -0.045; 95% CI: -0.057, -0.034) and in women (β = -0.035; 95% CI: -0.056, -0.015) independent of baseline body weight, baseline waist circumference, and other confounding factors. The magnitude of associations was materially unchanged after adjustment for change in body weight. PA was not significantly associated with annual weight gain (in kg) in men (β = -0.008; 95% CI: -0.02, 0.003) and women (β = -0.01; 95% CI: -0.02, 0.0006). The odds of becoming obese were reduced by 7% (P < 0.001) and 10% (P < 0.001) for a one-category difference in baseline PA in men and women, respectively. CONCLUSION: Our results suggest that a higher level of PA reduces abdominal adiposity independent of baseline and changes in body weight and is thus a useful strategy for preventing chronic diseases and premature deaths.
  •  
17.
  • Erzurumluoglu, A. Mesut, et al. (author)
  • Meta-analysis of up to 622,409 individuals identifies 40 novel smoking behaviour associated genetic loci
  • 2020
  • In: Molecular Psychiatry. - : Nature Publishing Group. - 1359-4184 .- 1476-5578. ; 25:10, s. 2392-2409
  • Journal article (peer-reviewed)abstract
    • Smoking is a major heritable and modifiable risk factor for many diseases, including cancer, common respiratory disorders and cardiovascular diseases. Fourteen genetic loci have previously been associated with smoking behaviour-related traits. We tested up to 235,116 single nucleotide variants (SNVs) on the exome-array for association with smoking initiation, cigarettes per day, pack-years, and smoking cessation in a fixed effects meta-analysis of up to 61 studies (up to 346,813 participants). In a subset of 112,811 participants, a further one million SNVs were also genotyped and tested for association with the four smoking behaviour traits. SNV-trait associations with P < 5 × 10-8 in either analysis were taken forward for replication in up to 275,596 independent participants from UK Biobank. Lastly, a meta-analysis of the discovery and replication studies was performed. Sixteen SNVs were associated with at least one of the smoking behaviour traits (P < 5 × 10-8) in the discovery samples. Ten novel SNVs, including rs12616219 near TMEM182, were followed-up and five of them (rs462779 in REV3L, rs12780116 in CNNM2, rs1190736 in GPR101, rs11539157 in PJA1, and rs12616219 near TMEM182) replicated at a Bonferroni significance threshold (P < 4.5 × 10-3) with consistent direction of effect. A further 35 SNVs were associated with smoking behaviour traits in the discovery plus replication meta-analysis (up to 622,409 participants) including a rare SNV, rs150493199, in CCDC141 and two low-frequency SNVs in CEP350 and HDGFRP2. Functional follow-up implied that decreased expression of REV3L may lower the probability of smoking initiation. The novel loci will facilitate understanding the genetic aetiology of smoking behaviour and may lead to the identification of potential drug targets for smoking prevention and/or cessation.
  •  
18.
  • Evangelou, Evangelos, et al. (author)
  • Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits.
  • 2018
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 50:10, s. 1412-1425
  • Journal article (peer-reviewed)abstract
    • High blood pressure is a highly heritable and modifiable risk factor for cardiovascular disease. We report the largest genetic association study of blood pressure traits (systolic, diastolic and pulse pressure) to date in over 1 million people of European ancestry. We identify 535 novel blood pressure loci that not only offer new biological insights into blood pressure regulation but also highlight shared genetic architecture between blood pressure and lifestyle exposures. Our findings identify new biological pathways for blood pressure regulation with potential for improved cardiovascular disease prevention in the future.
  •  
19.
  • Feitosa, Mary F., et al. (author)
  • Novel genetic associations for blood pressure identified via gene-alcohol interaction in up to 570K individuals across multiple ancestries
  • 2018
  • In: PLOS ONE. - : Public library science. - 1932-6203. ; 13:6
  • Journal article (peer-reviewed)abstract
    • Heavy alcohol consumption is an established risk factor for hypertension; the mechanism by which alcohol consumption impact blood pressure (BP) regulation remains unknown. We hypothesized that a genome-wide association study accounting for gene-alcohol consumption interaction for BP might identify additional BP loci and contribute to the understanding of alcohol-related BP regulation. We conducted a large two-stage investigation incorporating joint testing of main genetic effects and single nucleotide variant (SNV)-alcohol consumption interactions. In Stage 1, genome-wide discovery meta-analyses in approximate to 131 K individuals across several ancestry groups yielded 3,514 SNVs (245 loci) with suggestive evidence of association (P <1.0 x 10(-5)). In Stage 2, these SNVs were tested for independent external replication in individuals across multiple ancestries. We identified and replicated (at Bonferroni correction threshold) five novel BP loci (380 SNVs in 21 genes) and 49 previously reported BP loci (2,159 SNVs in 109 genes) in European ancestry, and in multi-ancestry meta-analyses (P < 5.0 x 10(-8)). For African ancestry samples, we detected 18 potentially novel BP loci (P< 5.0 x 10(-8)) in Stage 1 that warrant further replication. Additionally, correlated meta-analysis identified eight novel BP loci (11 genes). Several genes in these loci (e.g., PINX1, GATA4, BLK, FTO and GABBR2 have been previously reported to be associated with alcohol consumption. These findings provide insights into the role of alcohol consumption in the genetic architecture of hypertension.
  •  
20.
  • Gaulton, Kyle J, et al. (author)
  • Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci.
  • 2015
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 47:12, s. 1415-1415
  • Journal article (peer-reviewed)abstract
    • We performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each distinct signal mapped predominantly to noncoding sequence, implying that association with T2D is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine mapping implicated rs10830963 as driving T2D association. We confirmed that the T2D risk allele for this SNP increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D risk allele increases islet MTNR1B expression. Our study demonstrates how integration of genetic and genomic information can define molecular mechanisms through which variants underlying association signals exert their effects on disease.
  •  
21.
  • Kanoni, Stavroula, et al. (author)
  • Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis.
  • 2022
  • In: Genome biology. - : Springer Science and Business Media LLC. - 1474-760X .- 1465-6906 .- 1474-7596. ; 23:1
  • Journal article (peer-reviewed)abstract
    • Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery.To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N=1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3-5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism.Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.
  •  
22.
  • Kato, Norihiro, et al. (author)
  • Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation
  • 2015
  • In: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 47:11, s. 1282-1293
  • Journal article (peer-reviewed)abstract
    • We carried out a trans-ancestry genome-wide association and replication study of blood pressure phenotypes among up to 320,251 individuals of East Asian, European and South Asian ancestry. We find genetic variants at 12 new loci to be associated with blood pressure (P = 3.9 × 10−11 to 5.0 × 10−21). The sentinel blood pressure SNPs are enriched for association with DNA methylation at multiple nearby CpG sites, suggesting that, at some of the loci identified, DNA methylation may lie on the regulatory pathway linking sequence variation to blood pressure. The sentinel SNPs at the 12 new loci point to genes involved in vascular smooth muscle (IGFBP3, KCNK3, PDE3A and PRDM6) and renal (ARHGAP24, OSR1, SLC22A7 and TBX2) function. The new and known genetic variants predict increased left ventricular mass, circulating levels of NT-proBNP, and cardiovascular and all-cause mortality (P = 0.04 to 8.6 × 10−6). Our results provide new evidence for the role of DNA methylation in blood pressure regulation.
  •  
23.
  • Kilpeläinen, Tuomas O, et al. (author)
  • Genetic variation near IRS1 associates with reduced adiposity and an impaired metabolic profile.
  • 2011
  • In: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 43:8, s. 753-60
  • Journal article (peer-reviewed)abstract
    • Genome-wide association studies have identified 32 loci influencing body mass index, but this measure does not distinguish lean from fat mass. To identify adiposity loci, we meta-analyzed associations between ∼2.5 million SNPs and body fat percentage from 36,626 individuals and followed up the 14 most significant (P < 10(-6)) independent loci in 39,576 individuals. We confirmed a previously established adiposity locus in FTO (P = 3 × 10(-26)) and identified two new loci associated with body fat percentage, one near IRS1 (P = 4 × 10(-11)) and one near SPRY2 (P = 3 × 10(-8)). Both loci contain genes with potential links to adipocyte physiology. Notably, the body-fat-decreasing allele near IRS1 is associated with decreased IRS1 expression and with an impaired metabolic profile, including an increased visceral to subcutaneous fat ratio, insulin resistance, dyslipidemia, risk of diabetes and coronary artery disease and decreased adiponectin levels. Our findings provide new insights into adiposity and insulin resistance.
  •  
24.
  • Kilpeläinen, Tuomas O, et al. (author)
  • Genome-wide meta-analysis uncovers novel loci influencing circulating leptin levels
  • 2016
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Journal article (peer-reviewed)abstract
    • Leptin is an adipocyte-secreted hormone, the circulating levels of which correlate closely with overall adiposity. Although rare mutations in the leptin (LEP) gene are well known to cause leptin deficiency and severe obesity, no common loci regulating circulating leptin levels have been uncovered. Therefore, we performed a genome-wide association study (GWAS) of circulating leptin levels from 32,161 individuals and followed up loci reaching P<10(-6) in 19,979 additional individuals. We identify five loci robustly associated (P<5 × 10(-8)) with leptin levels in/near LEP, SLC32A1, GCKR, CCNL1 and FTO. Although the association of the FTO obesity locus with leptin levels is abolished by adjustment for BMI, associations of the four other loci are independent of adiposity. The GCKR locus was found associated with multiple metabolic traits in previous GWAS and the CCNL1 locus with birth weight. Knockdown experiments in mouse adipose tissue explants show convincing evidence for adipogenin, a regulator of adipocyte differentiation, as the novel causal gene in the SLC32A1 locus influencing leptin levels. Our findings provide novel insights into the regulation of leptin production by adipose tissue and open new avenues for examining the influence of variation in leptin levels on adiposity and metabolic health.
  •  
25.
  • Lagou, Vasiliki, et al. (author)
  • Sex-dimorphic genetic effects and novel loci for fasting glucose and insulin variability
  • 2021
  • In: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 12:1
  • Journal article (peer-reviewed)abstract
    • Differences between sexes contribute to variation in the levels of fasting glucose and insulin. Epidemiological studies established a higher prevalence of impaired fasting glucose in men and impaired glucose tolerance in women, however, the genetic component underlying this phenomenon is not established. We assess sex-dimorphic (73,089/50,404 women and 67,506/47,806 men) and sex-combined (151,188/105,056 individuals) fasting glucose/fasting insulin genetic effects via genome-wide association study meta-analyses in individuals of European descent without diabetes. Here we report sex dimorphism in allelic effects on fasting insulin at IRS1 and ZNF12 loci, the latter showing higher RNA expression in whole blood in women compared to men. We also observe sex-homogeneous effects on fasting glucose at seven novel loci. Fasting insulin in women shows stronger genetic correlations than in men with waist-to-hip ratio and anorexia nervosa. Furthermore, waist-to-hip ratio is causally related to insulin resistance in women, but not in men. These results position dissection of metabolic and glycemic health sex dimorphism as a steppingstone for understanding differences in genetic effects between women and men in related phenotypes.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 85
Type of publication
journal article (85)
Type of content
peer-reviewed (85)
Author/Editor
Luan, Jian'an (86)
Wareham, Nicholas J. (67)
Langenberg, Claudia (53)
Loos, Ruth J F (45)
Boehnke, Michael (41)
McCarthy, Mark I (38)
show more...
Laakso, Markku (36)
Mohlke, Karen L (36)
Lind, Lars (35)
Barroso, Ines (35)
Zhao, Jing Hua (35)
Hayward, Caroline (35)
Morris, Andrew P. (35)
Salomaa, Veikko (34)
Gieger, Christian (34)
van Duijn, Cornelia ... (33)
Uitterlinden, André ... (32)
Chasman, Daniel I. (31)
Hofman, Albert (31)
Vollenweider, Peter (31)
Jackson, Anne U. (31)
Perola, Markus (30)
Rudan, Igor (30)
Deloukas, Panos (30)
Kuusisto, Johanna (30)
Scott, Robert A (30)
Tuomilehto, Jaakko (30)
Stefansson, Kari (30)
Lindgren, Cecilia M. (30)
Ridker, Paul M. (29)
Metspalu, Andres (29)
Esko, Tõnu (29)
Zhang, Weihua (29)
Rotter, Jerome I. (28)
Samani, Nilesh J. (28)
Jarvelin, Marjo-Riit ... (28)
Franks, Paul W. (27)
Hansen, Torben (27)
Thorleifsson, Gudmar (27)
Thorsteinsdottir, Un ... (27)
Munroe, Patricia B. (27)
Harris, Tamara B (27)
van der Harst, Pim (27)
Collins, Francis S. (27)
Mangino, Massimo (26)
Mahajan, Anubha (26)
Gudnason, Vilmundur (26)
Polasek, Ozren (26)
Boerwinkle, Eric (26)
Feitosa, Mary F. (26)
show less...
University
Lund University (58)
Uppsala University (51)
Umeå University (43)
Karolinska Institutet (37)
University of Gothenburg (16)
Stockholm University (4)
show more...
Högskolan Dalarna (3)
Örebro University (2)
Luleå University of Technology (1)
Stockholm School of Economics (1)
Chalmers University of Technology (1)
show less...
Language
English (85)
Research subject (UKÄ/SCB)
Medical and Health Sciences (78)
Natural sciences (12)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view