SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Mahabal A. A.) "

Search: WFRF:(Mahabal A. A.)

  • Result 1-25 of 44
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Ahumada, T., et al. (author)
  • Discovery and confirmation of the shortest gamma-ray burst from a collapsar
  • 2021
  • In: Nature Astronomy. - : Springer Nature. - 2397-3366. ; 5:9, s. 917-927
  • Journal article (peer-reviewed)abstract
    • Gamma-ray bursts (GRBs) are among the brightest and most energetic events in the Universe. The duration and hardness distribution of GRBs has two clusters1, now understood to reflect (at least) two different progenitors2. Short-hard GRBs (SGRBs; T90 < 2 s) arise from compact binary mergers, and long-soft GRBs (LGRBs; T90 > 2 s) have been attributed to the collapse of peculiar massive stars (collapsars)3. The discovery of SN 1998bw/GRB 980425 (ref. 4) marked the first association of an LGRB with a collapsar, and AT 2017gfo (ref. 5)/GRB 170817A/GW170817 (ref. 6) marked the first association of an SGRB with a binary neutron star merger, which also produced a gravitational wave. Here, we present the discovery of ZTF20abwysqy (AT2020scz), a fast-fading optical transient in the Fermi satellite and the Interplanetary Network localization regions of GRB 200826A; X-ray and radio emission further confirm that this is the afterglow. Follow-up imaging (at rest-frame 16.5 days) reveals excess emission above the afterglow that cannot be explained as an underlying kilonova, but which is consistent with being the supernova. Although the GRB duration is short (rest-frame T90 of 0.65 s), our panchromatic follow-up data confirm a collapsar origin. GRB 200826A is the shortest LGRB found with an associated collapsar; it appears to sit on the brink between a successful and a failed collapsar. Our discovery is consistent with the hypothesis that most collapsars fail to produce ultra-relativistic jets.
  •  
2.
  • Miller, A. A., et al. (author)
  • The Spectacular Ultraviolet Flash from the Peculiar Type Ia Supernova 2019yvq
  • 2020
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 898:1
  • Journal article (peer-reviewed)abstract
    • Early observations of Type Ia supernovae (SNe Ia) provide essential clues for understanding the progenitor system that gave rise to the terminal thermonuclear explosion. We present exquisite observations of SN 2019yvq, the second observed SN Ia, after iPTF 14atg, to display an early flash of emission in the ultraviolet (UV) and optical. Our analysis finds that SN 2019yvq was unusual, even when ignoring the initial flash, in that it was moderately underluminous for an SN Ia ( mag at peak) yet featured very high absorption velocities ( km s−1 for Si ii λ6355 at peak). We find that many of the observational features of SN 2019yvq, aside from the flash, can be explained if the explosive yield of radioactive 56Ni is relatively low (we measure ) and it and other iron-group elements are concentrated in the innermost layers of the ejecta. To explain both the UV/optical flash and peak properties of SN 2019yvq we consider four different models: interaction between the SN ejecta and a nondegenerate companion, extended clumps of 56Ni in the outer ejecta, a double-detonation explosion, and the violent merger of two white dwarfs. Each of these models has shortcomings when compared to the observations; it is clear additional tuning is required to better match SN 2019yvq. In closing, we predict that the nebular spectra of SN 2019yvq will feature either H or He emission, if the ejecta collided with a companion, strong [Ca ii] emission, if it was a double detonation, or narrow [O i] emission, if it was due to a violent merger.
  •  
3.
  • Blinov, D., et al. (author)
  • The RoboPol sample of optical polarimetric standards
  • 2023
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 677
  • Journal article (peer-reviewed)abstract
    • Context. Optical polarimeters are typically calibrated using measurements of stars with known and stable polarization parameters. However, there is a lack of such stars available across the sky. Many of the currently available standards are not suitable for medium and large telescopes due to their high brightness. Moreover, as we find, some of the polarimetric standards used are in fact variable or have polarization parameters that differ from their cataloged values. Aims. Our goal is to establish a sample of stable standards suitable for calibrating linear optical polarimeters with an accuracy down to 10-3 in fractional polarization. Methods. For 4 yr, we have been running a monitoring campaign of a sample of standard candidates comprised of 107 stars distributed across the northern sky. We analyzed the variability of the linear polarization of these stars, taking into account the non-Gaussian nature of fractional polarization measurements. For a subsample of nine stars, we also performed multiband polarization measurements. Results. We created a new catalog of 65 stars (see Table 2) that are stable, have small uncertainties of measured polarimetric parameters, and can be used as calibrators of polarimeters at medium and large telescopes.
  •  
4.
  • Fremling, C., et al. (author)
  • The Zwicky Transient Facility Bright Transient Survey. I. Spectroscopic Classification and the Redshift Completeness of Local Galaxy Catalogs
  • 2020
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 895:1
  • Journal article (peer-reviewed)abstract
    • The Zwicky Transient Facility (ZTF) is performing a three-day cadence survey of the visible northern sky (similar to 3 pi) with newly found transient candidates announced via public alerts. The ZTF Bright Transient Survey (BTS) is a large spectroscopic campaign to complement the photometric survey. BTS endeavors to spectroscopically classify all extragalactic transients with m(peak) <= 18.5 mag in either the g(ZTF) or r(ZTF) filters, and publicly announce said classifications. BTS discoveries are predominantly supernovae (SNe), making this the largest flux-limited SN survey to date. Here we present a catalog of 761 SNe, classified during the first nine months of ZTF (2018 April 1-2018 December 31). We report BTS SN redshifts from SN template matching and spectroscopic host-galaxy redshifts when available. We analyze the redshift completeness of local galaxy catalogs, the redshift completeness fraction (RCF; the ratio of SN host galaxies with known spectroscopic redshift prior to SN discovery to the total number of SN hosts). Of the 512 host galaxies with SNe Ia, 227 had previously known spectroscopic redshifts, yielding an RCF estimate of 44% 4%. The RCF decreases with increasing distance and decreasing galaxy luminosity (for z < 0.05, or similar to 200 Mpc, RCF 0.6). Prospects for dramatically increasing the RCF are limited to new multifiber spectroscopic instruments or wide-field narrowband surveys. Existing galaxy redshift catalogs are only similar to 50% complete at r 16.9 mag. Pushing this limit several magnitudes deeper will pay huge dividends when searching for electromagnetic counterparts to gravitational wave events or sources of ultra-high-energy cosmic rays or neutrinos.
  •  
5.
  • Hlozek, R., et al. (author)
  • Results of the Photometric LSST Astronomical Time-series Classification Challenge (PLAsTiCC)
  • 2023
  • In: Astrophysical Journal Supplement Series. - 0067-0049 .- 1538-4365. ; 267:2
  • Journal article (peer-reviewed)abstract
    • Next-generation surveys like the Legacy Survey of Space and Time (LSST) on the Vera C. Rubin Observatory (Rubin) will generate orders of magnitude more discoveries of transients and variable stars than previous surveys. To prepare for this data deluge, we developed the Photometric LSST Astronomical Time-series Classification Challenge (PLAsTiCC), a competition that aimed to catalyze the development of robust classifiers under LSST-like conditions of a nonrepresentative training set for a large photometric test set of imbalanced classes. Over 1000 teams participated in PLAsTiCC, which was hosted in the Kaggle data science competition platform between 2018 September 28 and 2018 December 17, ultimately identifying three winners in 2019 February. Participants produced classifiers employing a diverse set of machine-learning techniques including hybrid combinations and ensemble averages of a range of approaches, among them boosted decision trees, neural networks, and multilayer perceptrons. The strong performance of the top three classifiers on Type Ia supernovae and kilonovae represent a major improvement over the current state of the art within astronomy. This paper summarizes the most promising methods and evaluates their results in detail, highlighting future directions both for classifier development and simulation needs for a next-generation PLAsTiCC data set.
  •  
6.
  • Kasliwal, Mansi M., et al. (author)
  • Kilonova Luminosity Function Constraints Based on Zwicky Transient Facility Searches for 13 Neutron Star Merger Triggers during O3
  • 2020
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 905:2
  • Journal article (peer-reviewed)abstract
    • We present a systematic search for optical counterparts to 13 gravitational wave (GW) triggers involving at least one neutron star during LIGO/Virgo's third observing run (O3). We searched binary neutron star (BNS) and neutron star black hole (NSBH) merger localizations with the Zwicky Transient Facility (ZTF) and undertook follow-up with the Global Relay of Observatories Watching Transients Happen (GROWTH) collaboration. The GW triggers had a median localization area of 4480 deg(2), a median distance of 267 Mpc, and false-alarm rates ranging from 1.5 to 10(-25) yr(-1). The ZTF coverage in the g and r bands had a median enclosed probability of 39%, median depth of 20.8 mag, and median time lag between merger and the start of observations of 1.5 hr. The O3 follow-up by the GROWTH team comprised 340 UltraViolet/Optical/InfraRed (UVOIR) photometric points, 64 OIR spectra, and three radio images using 17 different telescopes. We find no promising kilonovae (radioactivity-powered counterparts), and we show how to convert the upper limits to constrain the underlying kilonova luminosity function. Initially, we assume that all GW triggers are bona fide astrophysical events regardless of false-alarm rate and that kilonovae accompanying BNS and NSBH mergers are drawn from a common population; later, we relax these assumptions. Assuming that all kilonovae are at least as luminous as the discovery magnitude of GW170817 (-16.1 mag), we calculate that our joint probability of detecting zero kilonovae is only 4.2%. If we assume that all kilonovae are brighter than -16.6 mag (the extrapolated peak magnitude of GW170817) and fade at a rate of 1 mag day(-1) (similar to GW170817), the joint probability of zero detections is 7%. If we separate the NSBH and BNS populations based on the online classifications, the joint probability of zero detections, assuming all kilonovae are brighter than -16.6 mag, is 9.7% for NSBH and 7.9% for BNS mergers. Moreover, no more than <57% (<89%) of putative kilonovae could be brighter than -16.6 mag assuming flat evolution (fading by 1 mag day(-1)) at the 90% confidence level. If we further take into account the online terrestrial probability for each GW trigger, we find that no more than <68% of putative kilonovae could be brighter than -16.6 mag. Comparing to model grids, we find that some kilonovae must have M-ej M, X-lan > 10(-4), or > 30 degrees to be consistent with our limits. We look forward to searches in the fourth GW observing run; even 17 neutron star mergers with only 50% coverage to a depth of -16 mag would constrain the maximum fraction of bright kilonovae to <25%.
  •  
7.
  • Bianco, Federica B., et al. (author)
  • Optimization of the Observing Cadence for the Rubin Observatory Legacy Survey of Space and Time : A Pioneering Process of Community-focused Experimental Design
  • 2022
  • In: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 258:1
  • Journal article (peer-reviewed)abstract
    • Vera C. Rubin Observatory is a ground-based astronomical facility under construction, a joint project of the National Science Foundation and the U.S. Department of Energy, designed to conduct a multipurpose 10 yr optical survey of the Southern Hemisphere sky: the Legacy Survey of Space and Time. Significant flexibility in survey strategy remains within the constraints imposed by the core science goals of probing dark energy and dark matter, cataloging the solar system, exploring the transient optical sky, and mapping the Milky Way. The survey's massive data throughput will be transformational for many other astrophysics domains and Rubin's data access policy sets the stage for a huge community of potential users. To ensure that the survey science potential is maximized while serving as broad a community as possible, Rubin Observatory has involved the scientific community at large in the process of setting and refining the details of the observing strategy. The motivation, history, and decision-making process of this strategy optimization are detailed in this paper, giving context to the science-driven proposals and recommendations for the survey strategy included in this Focus Issue.
  •  
8.
  • Burdge, Kevin B., et al. (author)
  • A 62-minute orbital period black widow binary in a wide hierarchical triple
  • 2022
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 605:7908, s. 41-45
  • Journal article (peer-reviewed)abstract
    • Over a dozen millisecond pulsars are ablating low-mass companions in close binary systems. In the original 'black widow', the eight-hour orbital period eclipsing pulsar PSR J1959+2048 (PSR B1957+20)(1), high-energy emission originating from the pulsar2 is irradiating and may eventually destroy(3) a low-mass companion. These systems are not only physical laboratories that reveal the interesting results of exposing a close companion star to the relativistic energy output of a pulsar, but are also believed to harbour some of the most massive neutron stars(4), allowing for robust tests of the neutron star equation of state. Here we report observations of ZTF J1406+1222, a wide hierarchical triple hosting a 62-minute orbital period black widow candidate, the optical flux of which varies by a factor of more than ten. ZTF J1406+1222 pushes the boundaries of evolutionary models(5), falling below the 80-minute minimum orbital period of hydrogen-rich systems. The wide tertiary companion is a rare low-metallicity cool subdwarf star, and the system has a Galactic halo orbit consistent with passing near the Galactic Centre, making it a probe of formation channels, neutron star kick physics(6) and binary evolution.
  •  
9.
  • Ho, Anna Y. Q., et al. (author)
  • A Search for Extragalactic Fast Blue Optical Transients in ZTF and the Rate of AT2018cow-like Transients
  • 2023
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 949:2
  • Journal article (peer-reviewed)abstract
    • We present a search for extragalactic fast blue optical transients (FBOTs) during Phase I of the Zwicky Transient Facility (ZTF). We identify 38 candidates with durations above half-maximum light 1 day < t (1/2) < 12 days, of which 28 have blue (g - r less than or similar to -0.2 mag) colors at peak light. Of the 38 transients (28 FBOTs), 19 (13) can be spectroscopically classified as core-collapse supernovae (SNe): 11 (8) H- or He-rich (Type II/IIb/Ib) SNe, 6 (4) interacting (Type IIn/Ibn) SNe, and 2 (1) H&He-poor (Type Ic/Ic-BL) SNe. Two FBOTs (published previously) had predominantly featureless spectra and luminous radio emission: AT2018lug (The Koala) and AT2020xnd (The Camel). Seven (five) did not have a definitive classification: AT 2020bdh showed tentative broad H alpha in emission, and AT 2020bot showed unidentified broad features and was 10 kpc offset from the center of an early-type galaxy. Ten (eight) have no spectroscopic observations or redshift measurements. We present multiwavelength (radio, millimeter, and/or X-ray) observations for five FBOTs (three Type Ibn, one Type IIn/Ibn, one Type IIb). Additionally, we search radio-survey (VLA and ASKAP) data to set limits on the presence of radio emission for 24 of the transients. All X-ray and radio observations resulted in nondetections; we rule out AT2018cow-like X-ray and radio behavior for five FBOTs and more luminous emission (such as that seen in the Camel) for four additional FBOTs. We conclude that exotic transients similar to AT2018cow, the Koala, and the Camel represent a rare subset of FBOTs and use ZTF's SN classification experiments to measure the rate to be at most 0.1% of the local core-collapse SN rate.
  •  
10.
  • Bellm, Eric C., et al. (author)
  • The Zwicky Transient Facility : System Overview, Performance, and First Results
  • 2019
  • In: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 131:995
  • Journal article (peer-reviewed)abstract
    • The Zwicky Transient Facility (ZTF) is a new optical time-domain survey that uses the Palomar 48 inch Schmidt telescope. A custom-built wide-field camera provides a 47 deg(2) field of view and 8 s readout time, yielding more than an order of magnitude improvement in survey speed relative to its predecessor survey, the Palomar Transient Factory. We describe the design and implementation of the camera and observing system. The ZTF data system at the Infrared Processing and Analysis Center provides near-real-time reduction to identify moving and varying objects. We outline the analysis pipelines, data products, and associated archive. Finally, we present on-sky performance analysis and first scientific results from commissioning and the early survey. ZTF's public alert stream will serve as a useful precursor for that of the Large Synoptic Survey Telescope.
  •  
11.
  • Bruch, Rachel J., et al. (author)
  • A Large Fraction of Hydrogen-rich Supernova Progenitors Experience Elevated Mass Loss Shortly Prior to Explosion
  • 2021
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 912:1
  • Journal article (peer-reviewed)abstract
    • Spectroscopic detection of narrow emission lines traces the presence of circumstellar mass distributions around massive stars exploding as core-collapse supernovae. Transient emission lines disappearing shortly after the supernova explosion suggest that the material spatial extent is compact and implies an increased mass loss shortly prior to explosion. Here, we present a systematic survey for such transient emission lines (Flash Spectroscopy) among Type II supernovae detected in the first year of the Zwicky Transient Facility survey. We find that at least six out of ten events for which a spectrum was obtained within two days of the estimated explosion time show evidence for such transient flash lines. Our measured flash event fraction (>30% at 95% confidence level) indicates that elevated mass loss is a common process occurring in massive stars that are about to explode as supernovae.
  •  
12.
  • Fremling, Christoffer, et al. (author)
  • SNIascore : Deep-learning Classification of Low-resolution Supernova Spectra
  • 2021
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 917:1
  • Journal article (peer-reviewed)abstract
    • We present SNIascore, a deep-learning-based method for spectroscopic classification of thermonuclear supernovae (SNe Ia) based on very low-resolution (R similar to 100) data. The goal of SNIascore is the fully automated classification of SNe Ia with a very low false-positive rate (FPR) so that human intervention can be greatly reduced in large-scale SN classification efforts, such as that undertaken by the public Zwicky Transient Facility (ZTF) Bright Transient Survey (BTS). We utilize a recurrent neural network architecture with a combination of bidirectional long short-term memory and gated recurrent unit layers. SNIascore achieves a SNIascore simultaneously performs binary classification and predicts the redshifts of secure SNe Ia via regression (with a typical uncertainty of z = 0.01 to z = 0.12). For the magnitude-limited ZTF BTS survey (approximate to 70% SNe Ia), deploying SNIascore reduces the amount of spectra in need of human classification or confirmation by approximate to 60%. Furthermore, SNIascore allows SN Ia classifications to be automatically announced in real time to the public immediately following a finished observation during the night.
  •  
13.
  • Kangas, Tuomas, et al. (author)
  • The Zwicky Transient Facility phase I sample of hydrogen-rich superluminous supernovae without strong narrow emission lines
  • 2022
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 516:1, s. 1193-1218
  • Journal article (peer-reviewed)abstract
    • We present a sample of 14 hydrogen-rich superluminous supernovae (SLSNe II) from the Zwicky Transient Facility (ZTF) between 2018 and 2020. We include all classified SLSNe with peaks M-g < -20 mag with observed broad but not narrow Balmer emission, corresponding to roughly 20 per cent of all hydrogen-rich SLSNe in ZTF phase I. We examine the light curves and spectra of SLSNe II and attempt to constrain their power source using light-curve models. The brightest events are photometrically and spectroscopically similar to the prototypical SN 2008es, while others are found spectroscopically more reminiscent of non-superluminous SNe II, especially SNe II-L. Ni-56 decay as the primary power source is ruled out. Light-curve models generally cannot distinguish between circumstellar interaction (CSI) and a magnetar central engine, but an excess of ultraviolet (UV) emission signifying CSI is seen in most of the SNe with UV data, at a wide range of photometric properties. Simultaneously, the broad H alpha profiles of the brightest SLSNe II can be explained through electron scattering in a symmetric circumstellar medium (CSM). In other SLSNe II without narrow lines, the CSM may be confined and wholly overrun by the ejecta. CSI, possibly involving mass lost in recent eruptions, is implied to be the dominant power source in most SLSNe II, and the diversity in properties is likely the result of different mass loss histories. Based on their radiated energy, an additional power source may be required for the brightest SLSNe II, however - possibly a central engine combined with CSI.
  •  
14.
  • Malz, A., et al. (author)
  • The Photometric LSST Astronomical Time-series Classification Challenge PLAsTiCC : Selection of a Performance Metric for Classification Probabilities Balancing Diverse Science Goals
  • 2019
  • In: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 158:5
  • Journal article (peer-reviewed)abstract
    • Classification of transient and variable light curves is an essential step in using astronomical observations to develop an understanding of the underlying physical processes from which they arise. However, upcoming deep photometric surveys, including the Large Synoptic Survey Telescope (LSST), will produce a deluge of low signal-to-noise data for which traditional type estimation procedures are inappropriate. Probabilistic classification is more appropriate for such data but is incompatible with the traditional metrics used on deterministic classifications. Furthermore, large survey collaborations like LSST intend to use the resulting classification probabilities for diverse science objectives, indicating a need for a metric that balances a variety of goals. We describe the process used to develop an optimal performance metric for an open classification challenge that seeks to identify probabilistic classifiers that can serve many scientific interests. The Photometric LSST Astronomical Time-series Classification Challenge (PLASTICC) aims to identify promising techniques for obtaining classification probabilities of transient and variable objects by engaging a broader community beyond astronomy. Using mock classification probability submissions emulating realistically complex archetypes of those anticipated of PLASTICC, we compare the sensitivity of two metrics of classification probabilities under various weighting schemes, finding that both yield results that are qualitatively consistent with intuitive notions of classification performance. We thus choose as a metric for PLASTICC a weighted modification of the cross-entropy because it can be meaningfully interpreted in terms of information content. Finally, we propose extensions of our methodology to ever more complex challenge goals and suggest some guiding principles for approaching the choice of a metric of probabilistic data products.
  •  
15.
  • Miller, A. A., et al. (author)
  • ZTF Early Observations of Type Ia Supernovae. II. First Light, the Initial Rise, and Time to Reach Maximum Brightness
  • 2020
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 902:1
  • Journal article (peer-reviewed)abstract
    • While it is clear that Type Ia supernovae (SNe) are the result of thermonuclear explosions in C/O white dwarfs (WDs), a great deal remains uncertain about the binary companion that facilitates the explosive disruption of the WD. Here, we present a comprehensive analysis of a large, unique data set of 127 SNe Ia with exquisite coverage by the Zwicky Transient Facility (ZTF). High-cadence (six observations per night) ZTF observations allow us to measure the SN rise time and examine its initial evolution. We develop a Bayesian framework to model the early rise as a power law in time, which enables the inclusion of priors in our model. For a volume-limited subset of normal SNe Ia, we find that the mean power-law index is consistent with 2 in the r(ZTF)-band (alpha(r) = 2.01 +/- 0.02), as expected in the expanding fireball model. There are, however, individual SNe that are clearly inconsistent with alpha(r) = 2. We estimate a mean rise time of 18.9 days (with a range extending from similar to 15 to 22 days), though this is subject to the adopted prior. We identify an important, previously unknown, bias whereby the rise times for higherredshift SNe within a flux-limited survey are systematically underestimated. This effect can be partially alleviated if the power-law index is fixed to alpha = 2, in which case we estimate a mean rise time of 21.7 days (with a range from similar to 18 to 23 days). The sample includes a handful of rare and peculiar SNe Ia. Finally, we conclude with a discussion of lessons learned from the ZTF sample that can eventually be applied to observations from the Vera C..Rubin Observatory.
  •  
16.
  • Srinivasaragavan, G. P., et al. (author)
  • PGIR 20eid (SN 2020qmp) : A Type IIP Supernova at 15.6 Mpc discovered by the Palomar Gattini-IR survey
  • 2022
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 660
  • Journal article (peer-reviewed)abstract
    • Aims. We present a detailed analysis of SN 2020qmp, a nearby Type IIP core-collapse supernova (CCSN) that was discovered by the Palomar Gattini-IR survey in the galaxy UGC07125 (distance of approximate to 15.6 +/- 4 Mpc). We illustrate how the multiwavelength study of this event helps our general understanding of stellar progenitors and circumstellar medium (CSM) interactions in CCSNe. We highlight the importance of near-infrared (NIR) surveys for detections of supernovae in dusty environments.Methods. We analyze data from observations in various bands: radio, NIR, optical, and X-rays. We use optical and NIR data for a spectroscopic and spectro-polarimetric study of the supernova and to model its light curve (LC). We obtain an estimate of the zero-age main-sequence (ZAMS) progenitor mass from the luminosity of the [OI] doublet lines (lambda lambda 6300, 6364) normalized to the decay power of Co-56. We also independently estimate the explosion energy and ZAMS progenitor mass through hydrodynamical LC modeling. From radio and X-ray observations, we derive the mass-loss rate and microphysical parameters of the progenitor star, and we investigate possible deviations from energy equipartition of magnetic fields and electrons in a standard CSM interaction model. Finally, we simulate a sample of CCSNe with plausible distributions of brightness and extinction, within 40 Mpc, and test what fraction of the sample is detectable at peak light by NIR surveys versus optical surveys.Results. SN 2020qmp displays characteristic hydrogen lines in its optical spectra as well as a plateau in its optical LC, hallmarks of a Type IIP supernova. We do not detect linear polarization during the plateau phase, with a 3 sigma upper limit of 0.78%. Through hydrodynamical LC modeling and an analysis of its nebular spectra, we estimate a ZAMS progenitor mass of around 11.0 M-circle dot and an explosion energy of around 0.8x10(51) erg. We find that the spectral energy distribution cannot be explained by a simple CSM interaction model, assuming a constant shock velocity and a steady mass-loss rate. In particular, the excess X-ray luminosity compared with the synchrotron radio luminosity suggests deviations from equipartition. Finally, we demonstrate the advantages of NIR surveys over optical surveys for the detection of dust-obscured CCSNe in the local Universe. Specifically, our simulations show that the WideField Infrared Transient Explorer will detect up to 14 more CCSNe (out of the 75 expected in its footprint) within 40 Mpc over five years than would an optical survey equivalent to the Zwicky Transient Facility.Conclusions. We have determined or constrained the main properties of SN 2020qmp and its progenitor, highlighting the value of multiwavelength follow-up observations of nearby CCSNe. We have shown that forthcoming NIR surveys will enable us to improve constraints on the local CCSN rate by detecting obscured supernovae that would be missed by optical searches.
  •  
17.
  • Yang, Sheng, et al. (author)
  • Is supernova SN 2020faa an iPTF14hls look-alike?
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 646
  • Journal article (peer-reviewed)abstract
    • Context. We present observations of ZTF20aatqesi (SN 2020faa). This Type II supernova (SN) displays a luminous light curve (LC) that started to rebrighten from an initial decline. We investigate this in relation to the famous SN iPTF14hls, which received a great deal of attention and multiple interpretations in the literature, but whose nature and source of energy still remain unknown.Aims. We demonstrate the great similarity between SN 2020faa and iPTF14hls during the first 6 months, and use this comparison to forecast the evolution of SN 2020faa and to reflect on the less well observed early evolution of iPTF14hls.Methods. We present and analyse our observational data, consisting mainly of optical LCs from the Zwicky Transient Facility in the gri bands and of a sequence of optical spectra. We construct colour curves and a bolometric lc, and we compare ejecta-velocity and black-body radius evolutions for the two supernovae (SNe) and for more typical Type II SNe.Results. The LCs show a great similarity with those of iPTF14hls over the first 6 months in luminosity, timescale, and colour. In addition, the spectral evolution of SN 2020faa is that of a Type II SN, although it probes earlier epochs than those available for iPTF14hls.Conclusions. The similar LC behaviour is suggestive of SN 2020faa being a new iPTF14hls. We present these observations now to advocate follow-up observations, since most of the more striking evolution of SN iPTF14hls came later, with LC undulations and a spectacular longevity. On the other hand, for SN 2020faa we have better constraints on the explosion epoch than we had for iPTF14hls, and we have been able to spectroscopically monitor it from earlier phases than was done for the more famous sibling.
  •  
18.
  • Andreoni, Igor, et al. (author)
  • Fast-transient Searches in Real Time with ZTFReST : Identification of Three Optically Discovered Gamma-Ray Burst Afterglows and New Constraints on the Kilonova Rate
  • 2021
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 918:2
  • Journal article (peer-reviewed)abstract
    • The most common way to discover extragalactic fast transients, which fade within a few nights in the optical, is via follow-up of gamma-ray burst and gravitational-wave triggers. However, wide-field surveys have the potential to identify rapidly fading transients independently of such external triggers. The volumetric survey speed of the Zwicky Transient Facility (ZTF) makes it sensitive to objects as faint and fast fading as kilonovae, the optical counterparts to binary neutron star mergers, out to almost 200 Mpc. We introduce an open-source software infrastructure, the ZTF REaltime Search and Triggering, ZTFReST, designed to identify kilonovae and fast transients in ZTF data. Using the ZTF alert stream combined with forced point-spread-function photometry, we have implemented automated candidate ranking based on their photometric evolution and fitting to kilonova models. Automated triggering, with a human in the loop for monitoring, of follow-up systems has also been implemented. In 13 months of science validation, we found several extragalactic fast transients independently of any external trigger, including two supernovae with post-shock cooling emission, two known afterglows with an associated gamma-ray burst (ZTF20abbiixp, ZTF20abwysqy), two known afterglows without any known gamma-ray counterpart (ZTF20aajnksq, ZTF21aaeyldq), and three new fast-declining sources (ZTF20abtxwfx, ZTF20acozryr, ZTF21aagwbjr) that are likely associated with GRB200817A, GRB201103B, and GRB210204A. However, we have not found any objects that appear to be kilonovae. We constrain the rate of GW170817-like kilonovae to R < 900 Gpc(-3) yr(-1) (95% confidence). A framework such as ZTFReST could become a prime tool for kilonova and fast-transient discovery with the Vera Rubin Observatory.
  •  
19.
  • Coughlin, Michael W., et al. (author)
  • 2900 Square Degree Search for the Optical Counterpart of Short Gamma-Ray Burst GRB 180523B with the Zwicky Transient Facility
  • 2019
  • In: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 131:998
  • Journal article (peer-reviewed)abstract
    • There is significant interest in the models for production of short gamma-ray bursts (GRBs). Until now, the number of known short GRBs with multi-wavelength afterglows has been small. While the Fermi GRB Monitor detects many GRBs relative to the Neil Gehrels Swift Observatory, the large localization regions makes the search for counterparts difficult. With the Zwicky Transient Facility (ZTF) recently achieving first light, it is now fruitful to use its combination of depth (m(AB) similar to 20.6), field of view (approximate to 47 square degrees), and survey cadence (every similar to 3 days) to perform Target of Opportunity observations. We demonstrate this capability on GRB 180523B, which was recently announced by the Fermi GRB Monitor as a short GRB. ZTF imaged approximate to 2900 square degrees of the localization region, resulting in the coverage of 61.6% of the enclosed probability over two nights to a depth of m(AB) similar to 20.5. We characterized 14 previously unidentified transients, and none were found to be consistent with a short GRB counterpart. This search with the ZTF shows it is an efficient camera for searching for coarsely localized short GRB and gravitational-wave counterparts, allowing for a sensitive search with minimal interruption to its nominal cadence.
  •  
20.
  • Frederick, Sara, et al. (author)
  • A Family Tree of Optical Transients from Narrow-line Seyfert 1 Galaxies
  • 2021
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 920:1
  • Journal article (peer-reviewed)abstract
    • The Zwicky Transient Facility (ZTF) has discovered five events (0.01 < z < 0.4) belonging to an emerging class of active galactic nuclei (AGNs) undergoing smooth, large-amplitude, and rapidly rising flares. This sample consists of several transients initially classified as supernovae with narrow spectral lines. However, upon closer inspection, all of the host galaxies display Balmer lines with FWHM(H beta) similar to 900-1400 km s(-1), characteristic of a narrow-line Seyfert 1 (NLSy1) galaxy. The transient events are long lived, over 400 days on average in the observed frame. We report UV and X-ray follow-up of the flares and observe persistent UV emission, with two of the five transients detected with luminous X-ray emission, ruling out a supernova interpretation. We compare the properties of this sample to previously reported flaring NLSy1 galaxies and find that they fall into three spectroscopic categories: 1) Balmer line profiles and Fe ii complexes typical of NLSy1s, 2) strong He ii profiles, and 3) He ii profiles including Bowen fluorescence features. The latter are members of the growing class of AGN flares attributed to enhanced accretion reported by Trakhtenbrot et al. We consider physical interpretations in the context of related transients from the literature. For example, two of the sources show high-amplitude rebrightening in the optical, ruling out a simple tidal disruption event scenario for those transients. We conclude that three of the sample belong to the Trakhtenbrot et al. class and two are tidal disruption events in NLSy1s. We also hypothesize as to why NLSy1s are preferentially the sites of such rapid enhanced flaring activity.
  •  
21.
  • Mahabal, Ashish, et al. (author)
  • Machine Learning for the Zwicky Transient Facility
  • 2019
  • In: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 131:997
  • Journal article (peer-reviewed)abstract
    • The Zwicky Transient Facility is a large optical survey in multiple filters producing hundreds of thousands of transient alerts per night. We describe here various machine learning (ML) implementations and plans to make the maximal use of the large data set by taking advantage of the temporal nature of the data, and further combining it with other data sets. We start with the initial steps of separating bogus candidates from real ones, separating stars and galaxies, and go on to the classification of real objects into various classes. Besides the usual methods (e.g., based on features extracted from light curves) we also describe early plans for alternate methods including the use of domain adaptation, and deep learning. In a similar fashion we describe efforts to detect fast moving asteroids. We also describe the use of the Zooniverse platform for helping with classifications through the creation of training samples, and active learning. Finally we mention the synergistic aspects of ZTF and LSST from the ML perspective.
  •  
22.
  • Nordin, J., et al. (author)
  • Transient processing and analysis using AMPEL : alert management, photometry, and evaluation of light curves
  • 2019
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 631
  • Journal article (peer-reviewed)abstract
    • Context. Both multi-messenger astronomy and new high-throughput wide-field surveys require flexible tools for the selection and analysis of astrophysical transients.Aims. Here we introduce the alert management, photometry, and evaluation of light curves (AMPEL) system, an analysis framework designed for high-throughput surveys and suited for streamed data. AMPEL combines the functionality of an alert broker with a generic framework capable of hosting user-contributed code; it encourages provenance and keeps track of the varying information states that a transient displays. The latter concept includes information gathered over time and data policies such as access or calibration levels.Methods. We describe a novel ongoing real-time multi-messenger analysis using AMPEL to combine IceCube neutrino data with the alert streams of the Zwicky Transient Facility (ZTF). We also reprocess the first four months of ZTF public alerts, and compare the yields of more than 200 different transient selection functions to quantify efficiencies for selecting Type Ia supernovae that were reported to the Transient Name Server (TNS).Results. We highlight three channels suitable for (1) the collection of a complete sample of extragalactic transients, (2) immediate follow-up of nearby transients, and (3) follow-up campaigns targeting young, extragalactic transients. We confirm ZTF completeness in that all TNS supernovae positioned on active CCD regions were detected.Conclusions. AMPEL can assist in filtering transients in real time, running alert reaction simulations, the reprocessing of full datasets as well as in the final scientific analysis of transient data. This is made possible by a novel way of capturing transient information through sequences of evolving states, and interfaces that allow new code to be natively applied to a full stream of alerts. This text also introduces a method by which users can design their own channels for inclusion in the AMPEL live instance that parses the ZTF stream and the real-time submission of high-quality extragalactic supernova candidates to the TNS.
  •  
23.
  • Perley, Daniel A., et al. (author)
  • The fast, luminous ultraviolet transient AT2018cow : extreme supernova, or disruption of a star by an intermediate-mass black hole?
  • 2019
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 484:1, s. 1031-1049
  • Journal article (peer-reviewed)abstract
    • Wide-field optical surveys have begun to uncover large samples of fast (t(rise) less than or similar to 5 d), luminous (M-peak < 18), blue transients. While commonly attributed to the breakout of a supernova shock into a dense wind, the great distances to the transients of this class found so far have hampered detailed investigation of their properties. We present photometry and spectroscopy from a comprehensive worldwide campaign to observe AT 2018cow (ATLAS 18qqn), the first fast-luminous optical transient to be found in real time at low redshift. Our first spectra (<2 days after discovery) are entirely featureless. A very broad absorption feature suggestive of near-relativistic velocities develops between 3 and 8 days, then disappears. Broad emission features of H and He develop after >10 days. The spectrum remains extremely hot throughout its evolution, and the photospheric radius contracts with time (receding below R < 10 (14) cm after 1 month). This behaviour does not match that of any known supernova, although a relativistic jet within a fallback supernova could explain some of the observed features. Alternatively, the transient could originate from the disruption of a star by an intermediate-mass black hole, although this would require long-lasting emission of highly super-Eddington thermal radiation. In either case, AT 2018cow suggests that the population of fast luminous transients represents a new class of astrophysical event. Intensive follow-up of this event in its late phases, and of any future events found at comparable distance, will be essential to better constrain their origins.
  •  
24.
  • Perley, Daniel A., et al. (author)
  • The Zwicky Transient Facility Bright Transient Survey. II. A Public Statistical Sample for Exploring Supernova Demographics
  • 2020
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 904:1
  • Journal article (peer-reviewed)abstract
    • We present a public catalog of transients from the Zwicky Transient Facility (ZTF) Bright Transient Survey, a magnitude-limited (m g or r filter) survey for extragalactic transients in the ZTF public stream. We introduce cuts on survey coverage, sky visibility around peak light, and other properties unconnected to the nature of the transient, and show that the resulting statistical sample is spectroscopically 97% complete at <18 mag, 93% complete at <18.5 mag, and 75% complete at <19 mag. We summarize the fundamental properties of this population, identifying distinct duration-luminosity correlations in a variety of supernova (SN) classes and associating the majority of fast optical transients with well-established spectroscopic SN types (primarily SN Ibn and II/IIb). We measure the Type Ia SN and core-collapse (CC) SN rates and luminosity functions, which show good consistency with recent work. About 7% of CC SNe explode in very low-luminosity galaxies (M-i > -16 mag), 10% in red-sequence galaxies, and 1% in massive ellipticals. We find no significant difference in the luminosity or color distributions between the host galaxies of SNe Type II and SNe Type Ib/c, suggesting that line-driven wind stripping does not play a major role in the loss of the hydrogen envelope from their progenitors. Future large-scale classification efforts with ZTF and other wide-area surveys will provide high-quality measurements of the rates, properties, and environments of all known types of optical transients and limits on the existence of theoretically predicted but as yet unobserved explosions.
  •  
25.
  • Stein, Robert, et al. (author)
  • A tidal disruption event coincident with a high-energy neutrino
  • 2021
  • In: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; :5, s. 510-518
  • Journal article (peer-reviewed)abstract
    • Cosmic neutrinos provide a unique window into the otherwise hidden mechanism of particle acceleration in astrophysical objects. The IceCube Collaboration recently reported the likely association of one high-energy neutrino with a flare from the relativistic jet of an active galaxy pointed towards the Earth. However a combined analysis of many similar active galaxies revealed no excess from the broader population, leaving the vast majority of the cosmic neutrino flux unexplained. Here we present the likely association of a radio-emitting tidal disruption event, AT2019dsg, with a second high-energy neutrino. AT2019dsg was identified as part of our systematic search for optical counterparts to high-energy neutrinos with the Zwicky Transient Facility. The probability of finding any coincident radio-emitting tidal disruption event by chance is 0.5%, while the probability of finding one as bright in bolometric energy flux as AT2019dsg is 0.2%. Our electromagnetic observations can be explained through a multizone model, with radio analysis revealing a central engine, embedded in a UV photosphere, that powers an extended synchrotron-emitting outflow. This provides an ideal site for petaelectronvolt neutrino production. Assuming that the association is genuine, our observations suggest that tidal disruption events with mildly relativistic outflows contribute to the cosmic neutrino flux. The tidal disruption event AT2019dsg is probably associated with a high-energy neutrino, suggesting that such events can contribute to the cosmic neutrino flux. The electromagnetic emission is explained in terms of a central engine, a photosphere and an extended synchrotron-emitting outflow.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 44

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view