SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Martín Pintado J.) "

Search: WFRF:(Martín Pintado J.)

  • Result 1-25 of 35
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Tabiri, S, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
2.
  • Bravo, L, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
3.
  • Glasbey, JC, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
4.
  • de Graauw, Th., et al. (author)
  • The Herschel-Heterodyne Instrument for the Far-Infrared (HIFI)
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518, s. L6-
  • Journal article (peer-reviewed)abstract
    • Aims: This paper describes the Heterodyne Instrument for the Far-Infrared (HIFI) that was launched onboard ESA's Herschel Space Observatory in May 2009. Methods: The instrument is a set of 7 heterodyne receivers that are electronically tuneable, covering 480-1250 GHz with SIS mixers and the 1410-1910 GHz range with hot electron bolometer (HEB) mixers. The local oscillator (LO) subsystem comprises a Ka-band synthesizer followed by 14 chains of frequency multipliers and 2 chains for each frequency band. A pair of auto-correlators and a pair of acousto-optical spectrometers process the two IF signals from the dual-polarization, single-pixel front-ends to provide instantaneous frequency coverage of 2 × 4 GHz, with a set of resolutions (125 kHz to 1 MHz) that are better than 0.1 km s-1. Results: After a successful qualification and a pre-launch TB/TV test program, the flight instrument is now in-orbit and completed successfully the commissioning and performance verification phase. The in-orbit performance of the receivers matches the pre-launch sensitivities. We also report on the in-orbit performance of the receivers and some first results of HIFI's operations. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
  •  
5.
  • Gupta, H., et al. (author)
  • Detection of OH+ and H2O+ towards Orion KL
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L47-
  • Journal article (peer-reviewed)abstract
    • We report observations of the reactive molecular ions OH+, H2O+, and H3O+ towards Orion KL with Herschel/HIFI. All three N = 1-0 fine-structure transitions of OH+ at 909, 971, and 1033 GHz and both fine-structure components of the doublet ortho-H2O+ 111-000 transition at 1115 and 1139 GHz were detected; an upper limit was obtained for H3O+. OH+ and H2O+ are observed purely in absorption, showing a narrow component at the source velocity of 9 km s-1, and a broad blueshifted absorption similar to that reported recently for HF and para-H218O, and attributed to the low velocity outflow of Orion KL. We estimate column densities of OH+ and H2O+ for the 9 km s-1 component of 9 ± 3 × 1012 cm-2 and 7 ± 2 × 1012 cm-2, and those in the outflow of 1.9 ± 0.7 × 1013 cm-2 and 1.0 ± 0.3 × 1013 cm-2. Upper limits of 2.4 × 1012 cm-2 and 8.7 × 1012 cm-2 were derived for the column densities of ortho and para-H3O+ from transitions near 985 and 1657 GHz. The column densities of the three ions are up to an order of magnitude lower than those obtained from recent observations of W31C and W49N. The comparatively low column densities may be explained by a higher gas density despite the assumption of a very high ionization rate.
  •  
6.
  •  
7.
  • Lis, D. C., et al. (author)
  • Herschel/HIFI measurements of the ortho/para ratio in water towards Sagittarius B2(M) and W31C
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521:1, s. Article Number: L26 -
  • Journal article (peer-reviewed)abstract
    • We present Herschel/HIFI observations of the fundamental rotational transitions of ortho- and para-H216O and H218O in absorption towards Sagittarius B2(M) and W31C. The ortho/para ratio in water in the foreground clouds on the line of sight towards these bright continuum sources is generally consistent with the statistical high-temperature ratio of 3, within the observational uncertainties. However, somewhat unexpectedly, we derive a low ortho/para ratio of 2.35 +/- 0.35, corresponding to a spin temperature of similar to 27 K, towards Sagittarius B2(M) at velocities of the expanding molecular ring. Water molecules in this region appear to have formed with, or relaxed to, an ortho/para ratio close to the value corresponding to the local temperature of the gas and dust.
  •  
8.
  • Rolffs, R., et al. (author)
  • Reversal of infall in SgrB2(M) revealed by Herschel/HIFI observations of HCN lines at THz frequencies
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521:1, s. Article Number: L46 -
  • Journal article (peer-reviewed)abstract
    • Aims. To investigate the accretion and feedback processes in massive star formation, we analyze the shapes of emission lines from hot molecular cores, whose asymmetries trace infall and expansion motions. Methods. The high-mass star forming region SgrB2(M) was observed with Herschel/HIFI (HEXOS key project) in various lines of HCN and its isotopologues, complemented by APEX data. The observations are compared to spherically symmetric, centrally heated models with density power-law gradient and different velocity fields (infall or infall+expansion), using the radiative transfer code RATRAN. Results. The HCN line profiles are asymmetric, with the emission peak shifting from blue to red with increasing J and decreasing line opacity (HCN to (HCN)-C-13). This is most evident in the HCN 12-11 line at 1062 GHz. These line shapes are reproduced by a model whose velocity field changes from infall in the outer part to expansion in the inner part. Conclusions. The qualitative reproduction of the HCN lines suggests that infall dominates in the colder, outer regions, but expansion dominates in the warmer, inner regions. We are thus witnessing the onset of feedback in massive star formation, starting to reverse the infall and finally disrupting the whole molecular cloud. To obtain our result, the THz lines uniquely covered by HIFI were critically important.
  •  
9.
  • Gerin, M., et al. (author)
  • Interstellar CH absorption in the diffuse interstellar medium along the sight-lines to G10.6-0.4 (W31C), W49N, and W51
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521:1, s. Article Number: L16-
  • Journal article (peer-reviewed)abstract
    • We report the detection of the ground state N, J = 1, 3/2 -> 1, 1/2 doublet of the methylidyne radical CH at similar to 532 GHz and similar to 536 GHz with the Herschel/ HIFI instrument along the sight-line to the massive star-forming regions G10.6-0.4 (W31C), W49N, and W51. While the molecular cores associated with these massive star-forming regions show emission lines, clouds in the diffuse interstellar medium are detected in absorption against the strong submillimeter background. The combination of hyperfine structure with emission and absorption results in complex profiles, with overlap of the different hyperfine components. The opacities of most of the CH absorption features are linearly correlated with those of CCH, CN, and HCO+ in the same velocity intervals. In specific narrow velocity intervals, the opacities of CN and HCO+ deviate from the mean trends, giving rise to more opaque absorption features. We propose that CCH can be used as another tracer of the molecular gas in the absence of better tracers, with [CCH]/[H2] similar to 3.2 +/- 1.1 x 10-8. The observed [CN]/[CH], [CCH]/[CH] abundance ratios suggest that the bulk of the diffuse matter along the lines of sight has gas densities nH = n(H) + 2n(H2) ranging between 100 and 1000 cm-3).
  •  
10.
  • Falgarone, E., et al. (author)
  • CH+(1-0) and 13CH+(1-0) absorption lines in the direction of massive star-forming regions
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521:1
  • Journal article (peer-reviewed)abstract
    • We report the detection of the ground-state rotational transition of the methylidyne cation CH+ and its isotopologue (CH+)-C-13 toward the remote massive star-forming regions W33A, W49N, and W51 with the HIFI instrument onboard the Herschel satellite. Both lines are seen only in absorption against the dust continuum emission of the star-forming regions. The CH+ absorption is saturated over almost the entire velocity ranges sampled by the lines-of-sight that include gas associated with the star-forming regions (SFR) and Galactic foreground material. The CH+ column densities are inferred from the optically thin components. A lower limit of the isotopic ratio [(CH+)-C-12]/[(CH+)-C-13]> 35.5 is derived from the absorptions of foreground material toward W49N. The column density ratio, N(CH+)/N(HCO+), is found to vary by at least a factor 10, between 4 and > 40, in the Galactic foreground material. Line-of-sight 12CH+ average abundances relative to total hydrogen are estimated. Their average value, N(CH+)/NH > 2.6 x 10(-8), is higher than that observed in the solar neighborhood and confirms the high abundances of CH+ in the Galactic interstellar medium. We compare this result to the predictions of turbulent dissipation regions (TDR) models and find that these high abundances can be reproduced for the inner Galaxy conditions. It is remarkable that the range of predicted N(CH+)/ N(HCO+) ratios, from 1 to similar to 50, is comparable to that observed.
  •  
11.
  • Gerin, M., et al. (author)
  • Interstellar OH+, H2O+ and H3O+ along the sight-line to G10.6-0.4
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518:4, s. 110-
  • Journal article (peer-reviewed)abstract
    • We report the detection of absorption lines by the reactive ions OH+, H2O+ and H3O+ along the line of sight to the submillimeter continuum source G10.6$-$0.4 (W31C). We used the Herschel HIFI instrument in dual beam switch mode to observe the ground state rotational transitions of OH+ at 971 GHz, H2O+ at 1115 and 607 GHz, and H3O+ at 984 GHz. The resultant spectra show deep absorption over a broad velocity range that originates in the interstellar matter along the line of sight to G10.6$-$0.4 as well as in the molecular gas directly associated with that source. The OH+ spectrum reaches saturation over most velocities corresponding to the foreground gas, while the opacity of the H2O+ lines remains lower than 1 in the same velocity range, and the H3O+ line shows only weak absorption. For LSR velocities between 7 and 50 kms$^{-1}$ we estimate total column densities of $N$(OH+) $> 2.5 \times 10^{14}$ cm$^{-2}$, $N$(H2O+) $\sim 6 \times 10^{13}$ cm$^{-2}$ and $N$(H3O+) $\sim 4.0 \times 10^{13}$ cm$^{-2}$. These detections confirm the role of O$^+$ and OH$^+$ in initiating the oxygen chemistry in diffuse molecular gas and strengthen our understanding of the gas phase production of water. The high ratio of the OH+ by the H2O+ column density implies that these species predominantly trace low-density gas with a small fraction of hydrogen in molecular form.
  •  
12.
  • Mookerjea, B., et al. (author)
  • Excitation and abundance of C3 in star forming cores Herschel/HIFI observations of the sight-lines to W31C and W49N
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521:1, s. Article Number: L13 -
  • Journal article (peer-reviewed)abstract
    • We present spectrally resolved observations of triatomic carbon (C-3) in several ro-vibrational transitions between the vibrational ground state and the low-energy nu(2) bending mode at frequencies between 1654-1897 GHz along the sight-lines to the submillimeter continuum sources W31C and W49N, using Herschel's HIFI instrument. We detect C-3 in absorption arising from the warm envelope surrounding the hot core, as indicated by the velocity peak position and shape of the line profile. The sensitivity does not allow to detect C-3 absorption due to diffuse foreground clouds. From the column densities of the rotational levels in the vibrational ground state probed by the absorption we derive a rotation temperature (T-rot) of similar to 50-70 K, which is a good measure of the kinetic temperature of the absorbing gas, as radiative transitions within the vibrational ground state are forbidden. It is also in good agreement with the dust temperatures for W31C and W49N. Applying the partition function correction based on the derived T-rot, we get column densities N(C-3) similar to 7-9 x 10(14) cm(-2) and abundance x(C-3) similar to 10(-8) with respect to H-2. For W31C, using a radiative transfer model including far-infrared pumping by the dust continuum and a temperature gradient within the source along the line of sight we find that a model with x(C-3) = 10(-8), T-kin = 30-50 K, N(C-3) = 1.5 x 10(15) cm(-2) fits the observations reasonably well and provides parameters in very good agreement with the simple excitation analysis.
  •  
13.
  • Neufeld, D. A., et al. (author)
  • Herschel/HIFI observations of interstellar OH+ and H2O+ towards W49N: a probe of diffuse clouds with a small molecular fraction
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521:1, s. Article Number: L10-
  • Journal article (peer-reviewed)abstract
    • We report the detection of absorption by interstellar hydroxyl cations and water cations, along the sight-line to the bright continuum source W49N. We have used Herschel's HIFI instrument, in dual beam switch mode, to observe the 972 GHz N = 1-0 transition of OH+ and the 1115 GHz 1(11)-0(00) transition of ortho-H2O+. The resultant spectra show absorption by ortho-H2O+, and strong absorption by OH+, in foreground material at velocities in the range 0 to 70 km s(-1) with respect to the local standard of rest. The inferred OH+/H2O+ abundance ratio ranges from similar to 3 to similar to 15, implying that the observed OH+ arises in clouds of small molecular fraction, in the 2-8% range. This conclusion is confirmed by the distribution of OH+ and H2O+ in Doppler velocity space, which is similar to that of atomic hydrogen, as observed by means of 21 cm absorption measurements, and dissimilar from that typical of other molecular tracers. The observed OH+/H abundance ratio of a few x10(-8) suggests a cosmic ray ionization rate for atomic hydrogen of 0.6-2.4 x 10(-16) s(-1), in good agreement with estimates inferred previously for diffuse clouds in the Galactic disk from observations of interstellar H-3(+) and other species.
  •  
14.
  • Roelfsema, P. R., et al. (author)
  • In-orbit performance of Herschel-HIFI
  • 2012
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 537
  • Journal article (peer-reviewed)abstract
    • Aims: In this paper the calibration and in-orbit performance of the Heterodyne Instrument for the Far-Infrared (HIFI) is described.Methods: The calibration of HIFI is based on a combination of ground and in-flight tests. Dedicated ground tests to determine those instrument parameters that can only be measured accurately using controlled laboratory stimuli were carried out in the instrument level test (ILT) campaign. Special in-flight tests during the commissioning phase (CoP) and performance verification (PV) allowed the determination of the remaining instrument parameters. The various instrument observing modes, as specified in astronomical observation templates (AOTs), were validated in parallel during PV by observing selected celestial sources.Results: The initial calibration and in-orbit performance of HIFI has been established. A first estimate of the calibration budget is given. The overall in-flight instrument performance agrees with the original specification. Issues remain at only a few frequencies. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
  •  
15.
  • Sonnentrucker, P., et al. (author)
  • Detection of hydrogen fluoride absorption in diffuse molecular clouds with Herschel/HIFI: an ubiquitous tracer of molecular gas
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521:1, s. Article Number: L12-
  • Journal article (peer-reviewed)abstract
    • We discuss the detection of absorption by interstellar hydrogen fluoride (HF) along the sight line to the submillimeter continuum sources W49N and W51. We have used Herschel's HIFI instrument in dual beam switch mode to observe the 1232.4762 GHz J = 1-0 HF transition in the upper sideband of the band 5a receiver. We detected foreground absorption by HF toward both sources over a wide range of velocities. Optically thin absorption components were detected on both sight lines, allowing us to measure - as opposed to obtain a lower limit on - the column density of HF for the first time. As in previous observations of HF toward the source G10.6-0.4, the derived HF column density is typically comparable to that of water vapor, even though the elemental abundance of oxygen is greater than that of fluorine by four orders of magnitude. We used the rather uncertain N(CH) - N(H-2) relationship derived previously toward diffuse molecular clouds to infer the molecular hydrogen column density in the clouds exhibiting HF absorption. Within the uncertainties, we find that the abundance of HF with respect to H-2 is consistent with the theoretical prediction that HF is the main reservoir of gas-phase fluorine for these clouds. Thus, hydrogen fluoride has the potential to become an excellent tracer of molecular hydrogen, and provides a sensitive probe of clouds of small H-2 column density. Indeed, the observations of hydrogen fluoride reported here reveal the presence of a low column density diffuse molecular cloud along the W51 sight line, at an LSR velocity of similar to 24 km s(-1), that had not been identified in molecular absorption line studies prior to the launch of Herschel.
  •  
16.
  • Lefloch, B., et al. (author)
  • The CHESS spectral survey of star forming regions : Peering into the protostellar shock L1157-B1. II. Shock dynamics
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518, s. L113-
  • Journal article (peer-reviewed)abstract
    • Context. The outflow driven by the low-mass class 0 protostar L1157 is the prototype of the so-called chemically active outflows. The bright bowshock B1 in the southern outflow lobe is a privileged testbed of magneto-hydrodynamical (MHD) shock models, for which dynamical and chemical processes are strongly interdependent. Aims: We present the first results of the unbiased spectral survey of the L1157-B1 bowshock, obtained in the framework of the key program “Chemical HErschel Surveys of star forming regions” (CHESS). The main aim is to trace the warm and chemically enriched gas and to infer the excitation conditions in the shock region. Methods: The CO 5-4 and o-H2O 110-101 lines have been detected at high-spectral resolution in the unbiased spectral survey of the HIFI-band 1b spectral window (555-636 GHz), presented by Codella et al. in this volume. Complementary ground-based observations in the submm window help establish the origin of the emission detected in the main-beam of HIFI and the physical conditions in the shock. Results: Both lines exhibit broad wings, which extend to velocities much higher than reported up to now. We find that the molecular emission arises from two regions with distinct physical conditions : an extended, warm (100 K), dense (3 × 105 cm-3) component at low-velocity, which dominates the water line flux in Band 1; a secondary component in a small region of B1 (a few arcsec) associated with high-velocity, hot (>400 K) gas of moderate density ((1.0-3.0) × 104 cm-3), which appears to dominate the flux of the water line at 179μm observed with PACS. The water abundance is enhanced by two orders of magnitude between the low- and the high-velocity component, from 8 × 10-7 up to 8 × 10-5. The properties of the high-velocity component agree well with the predictions of steady-state C-shock models. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
  •  
17.
  • Neufeld, D.A., et al. (author)
  • Strong absorption by interstellar hydrogen fluoride: Herschel/HIFI observations of the sight-line to G10.6-0.4 (W31C)
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518:4, s. 108-
  • Journal article (peer-reviewed)abstract
    • We report the detection of strong absorption by interstellar hydrogen fluoride along the sight-line to the submillimeter continuum source G10.6-0.4 (W31C). We have used Herschel's HIFI instrument, in dual beam switch mode, to observe the 1232.4763 GHz J=1-0 HF transition in the upper sideband of the Band 5a receiver. The resultant spectrum shows weak HF emission from G10.6-0.4 at LSR velocities in the range -10 to -3 km/s, accompanied by strong absorption by foreground material at LSR velocities in the range 15 to 50 km/s. The spectrum is similar to that of the 1113.3430 GHz 1(11)-0(00) transition of para-water, although at some frequencies the HF (hydrogen fluoride) optical depth clearly exceeds that of para-H2O. The optically-thick HF absorption that we have observed places a conservative lower limit of 1.6E+14 cm-2 on the HF column density along the sight-line to G10.6-0.4. Our lower limit on the HF abundance, 6E-9 relative to hydrogen nuclei, implies that hydrogen fluoride accounts for between ~ 30 and 100% of the fluorine nuclei in the gas phase along this sight-line. This observation corroborates theoretical predictions that - because the unique thermochemistry of fluorine permits the exothermic reaction of F atoms with molecular hydrogen - HF will be the dominant reservoir of interstellar fluorine under a wide range of conditions.
  •  
18.
  • Persson, Carina, 1964, et al. (author)
  • Nitrogen hydrides in interstellar gas Herschel/HIFI observations towards G10.6-0.4 (W31C)
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521:1, s. Article Number: L45 -
  • Journal article (peer-reviewed)abstract
    • The HIFI instrument on board the Herschel Space Observatory has been used to observe interstellar nitrogen hydrides along the sight-line towards G10.6-0.4 in order to improve our understanding of the interstellar chemistry of nitrogen. We report observations of absorption in NH N = 1
  •  
19.
  • Wild, W., et al. (author)
  • Millimetron—a large Russian-European submillimeter space observatory
  • 2009
  • In: Experimental Astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 23:1, s. 221-244
  • Journal article (peer-reviewed)abstract
    • Millimetron is a Russian-led 12 m diameter submillimeter and far-infrared space observatory which is included in the Space Plan of the Russian Federation for launch around 2017. With its large collecting area and state-of-the-art receivers, it will enable unique science and allow at least one order of magnitude improvement with respect to the Herschel Space Observatory. Millimetron will be operated in two basic observing modes: as a single-dish observatory, and as an element of a ground-space very long baseline interferometry (VLBI) system. As single-dish, angular resolutions on the order of 3 to 12 arc sec will be achieved and spectral resolutions of up to a million employing heterodyne techniques. As VLBI antenna, the chosen elliptical orbit will provide extremely large VLBI baselines (beyond 300,000 km) resulting in micro-arc second angular resolution.
  •  
20.
  • Gonzalez-Alfonso, E., et al. (author)
  • Herschel observations of water vapour in Markarian 231
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518:Article Number: L43
  • Journal article (peer-reviewed)abstract
    • The Ultra luminous infrared galaxy (ULIRG) Mrk 231 reveals up to seven rotational lines of water (H2O) in emission, including a very high-lying (Eupper = 640 K) line detected at a 4 sigma level, within the Herschel/SPIRE wavelength range (190
  •  
21.
  • Kramer, C., et al. (author)
  • PACS and SPIRE photometer maps of M33: First results of the HERschel M33 Extended Survey (HERM33ES)
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518:Article Number: L67
  • Journal article (peer-reviewed)abstract
    • Context. Within the framework of the HERM33ES key program, we are studying the star forming interstellar medium in the nearby, metal-poor spiral galaxy M33, exploiting the high resolution and sensitivity of Herschel. Aims. We use PACS and SPIRE maps at 100, 160, 250, 350, and 500 mu m wavelength, to study the variation of the spectral energy distributions (SEDs) with galacto-centric distance. Methods. Detailed SED modeling is performed using azimuthally averaged fluxes in elliptical rings of 2 kpc width, out to 8 kpc galacto-centric distance. Simple isothermal and two-component grey body models, with fixed dust emissivity index, are fitted to the SEDs between 24 mu m and 500 mu m using also MIPS/Spitzer data, to derive first estimates of the dust physical conditions. Results. The far-infrared and submillimeter maps reveal the branched, knotted spiral structure of M33. An underlying diffuse disk is seen in all SPIRE maps (250-500 mu m). Two component fits to the SEDs agree better than isothermal models with the observed, total and radially averaged flux densities. The two component model, with beta fixed at 1.5, best fits the global and the radial SEDs. The cold dust component clearly dominates; the relative mass of the warm component is less than 0.3% for all the fits. The temperature of the warm component is not well constrained and is found to be about 60 K +/- 10 K. The temperature of the cold component drops significantly from similar to 24 K in the inner 2 kpc radius to 13 K beyond 6 kpc radial distance, for the best fitting model. The gas-to-dust ratio for beta = 1.5, averaged over the galaxy, is higher than the solar value by a factor of 1.5 and is roughly in agreement with the subsolar metallicity of M33.
  •  
22.
  • Burillo, S. G., et al. (author)
  • ALMA images the many faces of the NGC 1068 torus and its surroundings
  • 2019
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 632
  • Journal article (peer-reviewed)abstract
    • Aims. We investigate the fueling and the feedback of nuclear activity in the nearby (D = 14 Mpc) Seyfert 2 barred galaxy NGC 1068 by studying the distribution and kinematics of molecular gas in the torus and its connections to the host galaxy disk. Methods.We used the Atacama Large Millimeter Array (ALMA ) to image the emission of a set of molecular gas tracers in the circumnuclear disk (CND) and the torus of the galaxy using the CO(2-1), CO(3-2), and HCO+(4-3) lines and their underlying continuum emission with high spatial resolutions (0:0300 0:0900 ' 26 pc). These transitions, which span a wide range of physical conditions of molecular gas (n(H2) 103107 cm3), are instrumental in revealing the density radial stratification and the complex kinematics of the gas in the torus and its surroundings. Results. The ALMA images resolve the CND as an asymmetric ringed disk of D ' 400 pc in size and '1:4 108 M in mass. The CND shows a marked deficit of molecular gas in its central '130 pc region. The inner edge of the ring is associated with the presence of edge-brightened arcs of NIR polarized emission, which are identified with the current working surface of the ionized wind of the active galactic nucleus (AGN). ALMA proves the existence of an elongated molecular disk/torus in NGC 1068 of Mgas torus ' 3 105 M, which extends over a large range of spatial scales D ' 1030 pc around the central engine. The new observations evidence the density radial stratification of the torus: the HCO+(4-3) torus, with a full size DHCO+(43) = 11 0:6 pc, is a factor of between two and three smaller than its CO(2-1) and CO(3-2) counterparts, which have full sizes of DCO(32) = 26 0:6 pc and DCO(21) = 28 0:6 pc, respectively. This result brings into light the many faces of the molecular torus. The torus is connected to the CND through a network of molecular gas streamers detected inside the CND ring. The kinematics of molecular gas show strong departures from circular motions in the torus, the gas streamers, and the CND ring. These velocity field distortions are interconnected and are part of a 3D outflow that reflects the eects of AGN feedback on the kinematics of molecular gas across a wide range of spatial scales around the central engine. In particular, we estimate through modeling that a significant fraction of the gas inside the torus ('0:40:6 Mgas torus) and a comparable amount of mass along the gas streamers are outflowing. However, the bulk of the mass, momentum, and energy of the molecular outflow of NGC 1068 is contained at larger radii in the CND region, where the AGN wind and the radio jet are currently pushing the gas assembled at the Inner Lindblad Resonance (ILR) ring of the nuclear stellar bar. Conclusions. In our favored scenario a wide-angle AGN wind launched from the accretion disk of NGC1068 is currently impacting a sizable fraction of the gas inside the torus. However, a large gas reservoir ('1:21:8 105 M), which lies close to the equatorial plane of the torus, remains unaected by the feedback of the AGN wind and can therefore continue fueling the AGN for at least '14 Myr. Nevertheless, AGN fueling currently seems thwarted on intermediate scales (15 pc r 50 pc).
  •  
23.
  • Gonzalez-Alfonso, E., et al. (author)
  • HIGH-LYING OH ABSORPTION, [C II] DEFICITS, AND EXTREME LFIR/MH2 RATIOS IN GALAXIES
  • 2015
  • In: Astrophysical Journal. - 1538-4357 .- 0004-637X. ; 800:1, s. 1-10
  • Journal article (peer-reviewed)abstract
    • Herschel/PACS observations of 29 local (ultra) luminous infrared galaxies, including both starburst and active galactic nucleus (AGN) dominated sources as diagnosed in the mid-infrared/optical, show that the equivalent width of the absorbing OH 65 mu m.3/2 J = 9/2-7/2 line (Weq(OH65)) with lower level energy Elow 300 K, is anticorrelated with the [Cii] 158 mu m line to far-infrared luminosity ratio, and correlated with the far-infrared luminosity per unit gas mass and with the 60-to-100 mu m far-infrared color. While all sources are in the active LIR/MH2 > 50L /M mode as derived from previous CO line studies, the OH65 absorption shows a bimodal distribution with a discontinuity at LFIR/MH2 100L /M . In the most buried sources, OH65 probes material partially responsible for the silicate 9.7 mu m absorption. Combined with observations of the OH 71 mu m.1/2 J = 7/2-5/2 doublet (Elow 415 K), radiative transfer models characterized by the equivalent dust temperature, Tdust, and the continuum optical depth at 100 mu m, t100, indicate that strong [C ii] 158 mu m deficits are associated with far-IR thick (t100 0.7, NH 1024 cm-2), warm (Tdust 60 K) structures where the OH 65 mu m absorption is produced, most likely in circumnuclear disks/tori/cocoons. With their high LFIR/MH2 ratios and columns, the presence of these structures is expected to give rise to strong [C ii] deficits. Weq(OH65) probes the fraction of infrared luminosity arising from these compact/warm environments, which is 30%-50% in sources with high Weq(OH65). Sources with high Weq(OH65) have surface densities of both LIR and MH2 higher than inferred from the half-light (CO or UV/optical) radius, tracing coherent structures that represent the most buried/active stage of (circum) nuclear starburst-AGN co-evolution.
  •  
24.
  • Martin, S., et al. (author)
  • The Submillimeter Array 1.3 mm line survey of Arp 220
  • 2011
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 527:5
  • Journal article (peer-reviewed)abstract
    • Context. Though Arp 220 is the closest and by far the most studied ULIRG, a discussion is still ongoing on the main power source driving its huge infrared luminosity. Aims. To study the molecular composition of Arp 220 in order to find chemical fingerprints associated with the main heating mechanisms within its nuclear region. Methods. We present the first aperture synthesis unbiased spectral line survey toward an extragalactic object. The survey covered the 40 GHz frequency range between 202 and 242 GHz of the 1.3 mm atmospheric window. Results. We find that 80% of the observed band shows molecular emission, with 73 features identified from 15 molecular species and 6 isotopologues. The C-13 isotopic substitutions of HC3N and transitions from (H2O)-O-18, (SiO)-Si-29, and CH2CO are detected for the first time outside the Galaxy. No hydrogen recombination lines have been detected in the 40 GHz window covered. The emission feature at the transition frequency of H31 alpha line is identified to be an HC3N molecular line, challenging the previous detections reported at this frequency. Within the broad observed band, we estimate that 28% of the total measured flux is due to the molecular line contribution, with CO only contributing 9% to the overall flux. We present maps of the CO emission at a resolution of 2.9 '' x 1.9 '' which, though not enough to resolve the two nuclei, recover all the single-dish flux. The 40 GHz spectral scan has been modelled assuming LTE conditions and abundances are derived for all identified species. Conclusions. The chemical composition of Arp 220 shows no clear evidence of an AGN impact on the molecular emission but seems indicative of a purely starburst-heated ISM. The overabundance of H2S and the low isotopic ratios observed suggest a chemically enriched environment by consecutive bursts of star formation, with an ongoing burst at an early evolutionary stage. The large abundance of water (similar to 10(-5)), derived from the isotopologue (H2O)-O-18, as well as the vibrationally excited emission from HC3N and CH3CN are claimed to be evidence of massive star forming regions within Arp 220. Moreover, the observations put strong constraints on the compactness of the starburst event in Arp 220. We estimate that such emission would require similar to 2-8 x 10(6) hot cores, similar to those found in the Sgr B2 region in the Galactic center, concentrated within the central 700 pc of Arp 220.
  •  
25.
  • van der Werf, P.P., et al. (author)
  • Black hole accretion and star formation as drivers of gas excitation and chemistry in Markarian 231
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518:Article Number: L42
  • Journal article (peer-reviewed)abstract
    • We present a full high resolution SPIRE FTS spectrum of the nearby ultraluminous infrared galaxy Mrk 231. In total 25 lines are detected, including CO J = 5-4 through J = 13-12, 7 rotational lines of H2O, 3 of OH+ and one line each of H2O+, CH+, and HF. We find that the excitation of the CO rotational levels up to J = 8 can be accounted for by UV radiation from star formation. However, the approximately flat luminosity distribution of the CO lines over the rotational ladder above J = 8 requires the presence of a separate source of excitation for the highest CO lines. We explore X-ray heating by the accreting supermassive black hole in Mrk 231 as a source of excitation for these lines, and find that it can reproduce the observed luminosities. We also consider a model with dense gas in a strong UV radiation field to produce the highest CO lines, but find that this model strongly overpredicts the hot dust mass in Mrk 231. Our favoured model consists of a star forming disk of radius 560 pc, containing clumps of dense gas exposed to strong UV radiation, dominating the emission of CO lines up to J = 8. X-rays from the accreting supermassive black hole in Mrk 231 dominate the excitation and chemistry of the inner disk out to a radius of 160 pc, consistent with the X-ray power of the AGN in Mrk 231. The extraordinary luminosity of the OH+ and H2O+ lines reveals the signature of X-ray driven excitation and chemistry in this region.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 35

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view