SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Martina G.) "

Search: WFRF:(Martina G.)

  • Result 1-25 of 215
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  • Loza, M. J., et al. (author)
  • Validated and longitudinally stable asthma phenotypes based on cluster analysis of the ADEPT study
  • 2016
  • In: Respiratory Research. - : Springer Nature. - 1465-9921 .- 1465-993X. ; 17:1
  • Journal article (peer-reviewed)abstract
    • Background: Asthma is a disease of varying severity and differing disease mechanisms. To date, studies aimed at stratifying asthma into clinically useful phenotypes have produced a number of phenotypes that have yet to be assessed for stability and to be validated in independent cohorts. The aim of this study was to define and validate, for the first time ever, clinically driven asthma phenotypes using two independent, severe asthma cohorts: ADEPT and U-BIOPRED. Methods: Fuzzy partition-around-medoid clustering was performed on pre-specified data from the ADEPT participants (n = 156) and independently on data from a subset of U-BIOPRED asthma participants (n = 82) for whom the same variables were available. Models for cluster classification probabilities were derived and applied to the 12-month longitudinal ADEPT data and to a larger subset of the U-BIOPRED asthma dataset (n = 397). High and low type-2 inflammation phenotypes were defined as high or low Th2 activity, indicated by endobronchial biopsies gene expression changes downstream of IL-4 or IL-13. Results: Four phenotypes were identified in the ADEPT (training) cohort, with distinct clinical and biomarker profiles. Phenotype 1 was "mild, good lung function, early onset", with a low-inflammatory, predominantly Type-2, phenotype. Phenotype 2 had a "moderate, hyper-responsive, eosinophilic" phenotype, with moderate asthma control, mild airflow obstruction and predominant Type-2 inflammation. Phenotype 3 had a "mixed severity, predominantly fixed obstructive, non-eosinophilic and neutrophilic" phenotype, with moderate asthma control and low Type-2 inflammation. Phenotype 4 had a "severe uncontrolled, severe reversible obstruction, mixed granulocytic" phenotype, with moderate Type-2 inflammation. These phenotypes had good longitudinal stability in the ADEPT cohort. They were reproduced and demonstrated high classification probability in two subsets of the U-BIOPRED asthma cohort. Conclusions: Focusing on the biology of the four clinical independently-validated easy-to-assess ADEPT asthma phenotypes will help understanding the unmet need and will aid in developing tailored therapies. Trial registration:NCT01274507(ADEPT), registered October 28, 2010 and NCT01982162(U-BIOPRED), registered October 30, 2013.
  •  
4.
  • Aghanim, N., et al. (author)
  • Planck 2015 results XI. CMB power spectra, likelihoods, and robustness of parameters
  • 2016
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 594
  • Journal article (peer-reviewed)abstract
    • This paper presents the Planck 2015 likelihoods, statistical descriptions of the 2-point correlation functions of the cosmic microwave background (CMB) temperature and polarization fluctuations that account for relevant uncertainties, both instrumental and astrophysical in nature. They are based on the same hybrid approach used for the previous release, i.e., a pixel-based likelihood at low multipoles (l < 30) and a Gaussian approximation to the distribution of cross-power spectra at higher multipoles. The main improvements are the use of more and better processed data and of Planck polarization information, along with more detailed models of foregrounds and instrumental uncertainties. The increased redundancy brought by more than doubling the amount of data analysed enables further consistency checks and enhanced immunity to systematic effects. It also improves the constraining power of Planck, in particular with regard to small-scale foreground properties. Progress in the modelling of foreground emission enables the retention of a larger fraction of the sky to determine the properties of the CMB, which also contributes to the enhanced precision of the spectra. Improvements in data processing and instrumental modelling further reduce uncertainties. Extensive tests establish the robustness and accuracy of the likelihood results, from temperature alone, from polarization alone, and from their combination. For temperature, we also perform a full likelihood analysis of realistic end-to-end simulations of the instrumental response to the sky, which were fed into the actual data processing pipeline; this does not reveal biases from residual low-level instrumental systematics. Even with the increase in precision and robustness, the Lambda CDM cosmological model continues to offer a very good fit to the Planck data. The slope of the primordial scalar fluctuations, n(s), is confirmed smaller than unity at more than 5 sigma from Planck alone. We further validate the robustness of the likelihood results against specific extensions to the baseline cosmology, which are particularly sensitive to data at high multipoles. For instance, the effective number of neutrino species remains compatible with the canonical value of 3.046. For this first detailed analysis of Planck polarization spectra, we concentrate at high multipoles on the E modes, leaving the analysis of the weaker B modes to future work. At low multipoles we use temperature maps at all Planck frequencies along with a subset of polarization data. These data take advantage of Planck's wide frequency coverage to improve the separation of CMB and foreground emission. Within the baseline Lambda CDM cosmology this requires tau = 0.078 +/- 0.019 for the reionization optical depth, which is significantly lower than estimates without the use of high-frequency data for explicit monitoring of dust emission. At high multipoles we detect residual systematic errors in E polarization, typically at the mu K-2 level; we therefore choose to retain temperature information alone for high multipoles as the recommended baseline, in particular for testing non-minimal models. Nevertheless, the high-multipole polarization spectra from Planck are already good enough to enable a separate high-precision determination of the parameters of the Lambda CDM model, showing consistency with those established independently from temperature information alone.
  •  
5.
  • Delabrouille, J., et al. (author)
  • Exploring cosmic origins with CORE : Survey requirements and mission design
  • 2018
  • In: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :4
  • Journal article (peer-reviewed)abstract
    • Future observations of cosmic microwave background (CMB) polarisation have the potential to answer some of the most fundamental questions of modern physics and cosmology, including: what physical process gave birth to the Universe we see today? What are the dark matter and dark energy that seem to constitute 95% of the energy density of the Universe? Do we need extensions to the standard model of particle physics and fundamental interactions? Is the ACDM cosmological scenario correct, or are we missing an essential piece of the puzzle? In this paper, we list the requirements for a future CMB polarisation survey addressing these scientific objectives, and discuss the design drivers of the CORE space mission proposed to ESA in answer to the M5 call for a medium-sized mission. The rationale and options, and the methodologies used to assess the mission's performance, are of interest to other future CMB mission design studies. CORE has 19 frequency channels, distributed over a broad frequency range, spanning the 60-600 GHz interval, to control astrophysical foreground emission. The angular resolution ranges from 2' to 18', and the aggregate CMB sensitivity is about 2 mu K.arcmin. The observations are made with a single integrated focal-plane instrument, consisting of an array of 2100 cryogenically-cooled, linearly-polarised detectors at the focus of a 1.2-m aperture cross-Dragone telescope. The mission is designed to minimise all sources of systematic effects, which must be controlled so that no more than 10(-4) of the intensity leaks into polarisation maps, and no more than about 1% of E-type polarisation leaks into B-type modes. CORE observes the sky from a large Lissajous orbit around the Sun-Earth L2 point on an orbit that offers stable observing conditions and avoids contamination from sidelobe pick-up of stray radiation originating from the Sun, Earth, and Moon. The entire sky is observed repeatedly during four years of continuous scanning, with a combination of three rotations of the spacecraft over different timescales. With about 50% of the sky covered every few days, this scan strategy provides the mitigation of systematic effects and the internal redundancy that are needed to convincingly extract the primordial B-mode signal on large angular scales, and check with adequate sensitivity the consistency of the observations in several independent data subsets. CORE is designed as a near-ultimate CMB polarisation mission which, for optimal complementarity with ground-based observations, will perform the observations that are known to be essential to CMB polarisation science and cannot be obtained by any other means than a dedicated space mission. It will provide well-characterised, highly-redundant multi-frequency observations of polarisation at all the scales where foreground emission and cosmic variance dominate the final uncertainty for obtaining precision CMB science, as well as 2' angular resolution maps of high-frequency foreground emission in the 300-600 GHz frequency range, essential for complementarity with future ground-based observations with large telescopes that can observe the CMB with the same beamsize.
  •  
6.
  • Aghanim, N., et al. (author)
  • Planck 2018 results I. Overview and the cosmological legacy of Planck
  • 2020
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 641
  • Journal article (peer-reviewed)abstract
    • The European Space Agency's Planck satellite, which was dedicated to studying the early Universe and its subsequent evolution, was launched on 14 May 2009. It scanned the microwave and submillimetre sky continuously between 12 August 2009 and 23 October 2013, producing deep, high-resolution, all-sky maps in nine frequency bands from 30 to 857 GHz. This paper presents the cosmological legacy of Planck, which currently provides our strongest constraints on the parameters of the standard cosmological model and some of the tightest limits available on deviations from that model. The 6-parameter Lambda CDM model continues to provide an excellent fit to the cosmic microwave background data at high and low redshift, describing the cosmological information in over a billion map pixels with just six parameters. With 18 peaks in the temperature and polarization angular power spectra constrained well, Planck measures five of the six parameters to better than 1% (simultaneously), with the best-determined parameter (theta (*)) now known to 0.03%. We describe the multi-component sky as seen by Planck, the success of the Lambda CDM model, and the connection to lower-redshift probes of structure formation. We also give a comprehensive summary of the major changes introduced in this 2018 release. The Planck data, alone and in combination with other probes, provide stringent constraints on our models of the early Universe and the large-scale structure within which all astrophysical objects form and evolve. We discuss some lessons learned from the Planck mission, and highlight areas ripe for further experimental advances.
  •  
7.
  • Aghanim, N., et al. (author)
  • Planck intermediate results XLVI. Reduction of large-scale systematic effects in HFI polarization maps and estimation of the reionization optical depth
  • 2016
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 596
  • Journal article (peer-reviewed)abstract
    • This paper describes the identification, modelling, and removal of previously unexplained systematic effects in the polarization data of the Planck High Frequency Instrument (HFI) on large angular scales, including new mapmaking and calibration procedures, new and more complete end-to-end simulations, and a set of robust internal consistency checks on the resulting maps. These maps, at 100, 143, 217, and 353 GHz, are early versions of those that will be released in final form later in 2016. The improvements allow us to determine the cosmic reionization optical depth tau using, for the first time, the low-multipole EE data from HFI, reducing significantly the central value and uncertainty, and hence the upper limit. Two different likelihood procedures are used to constrain tau from two estimators of the CMB E- and B-mode angular power spectra at 100 and 143 GHz, after debiasing the spectra from a small remaining systematic contamination. These all give fully consistent results. A further consistency test is performed using cross-correlations derived from the Low Frequency Instrument maps of the Planck 2015 data release and the new HFI data. For this purpose, end-to-end analyses of systematic effects from the two instruments are used to demonstrate the near independence of their dominant systematic error residuals. The tightest result comes from the HFI-based tau posterior distribution using the maximum likelihood power spectrum estimator from EE data only, giving a value 0.055 +/- 0.009. In a companion paper these results are discussed in the context of the best-fit Planck Lambda CDM cosmological model and recent models of reionization.
  •  
8.
  • Adam, R., et al. (author)
  • Planck intermediate results XLVII. Planck constraints on reionization history
  • 2016
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 596
  • Journal article (peer-reviewed)abstract
    • We investigate constraints on cosmic reionization extracted from the Planck cosmic microwave background (CMB) data. We combine the Planck CMB anisotropy data in temperature with the low-multipole polarization data to fit Lambda CDM models with various parameterizations of the reionization history. We obtain a Thomson optical depth tau = 0.058 +/- 0.012 for the commonly adopted instantaneous reionization model. This confirms, with data solely from CMB anisotropies, the low value suggested by combining Planck 2015 results with other data sets, and also reduces the uncertainties. We reconstruct the history of the ionization fraction using either a symmetric or an asymmetric model for the transition between the neutral and ionized phases. To determine better constraints on the duration of the reionization process, we also make use of measurements of the amplitude of the kinetic Sunyaev-Zeldovich (kSZ) effect using additional information from the high-resolution Atacama Cosmology Telescope and South Pole Telescope experiments. The average redshift at which reionization occurs is found to lie between z = 7.8 and 8.8, depending on the model of reionization adopted. Using kSZ constraints and a redshift-symmetric reionization model, we find an upper limit to the width of the reionization period of Delta z < 2.8. In all cases, we find that the Universe is ionized at less than the 10% level at redshifts above z similar or equal to 10. This suggests that an early onset of reionization is strongly disfavoured by the Planck data. We show that this result also reduces the tension between CMB-based analyses and constraints from other astrophysical sources.
  •  
9.
  • Aghanim, N., et al. (author)
  • Planck 2018 results XII. Galactic astrophysics using polarized dust emission
  • 2020
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 641
  • Journal article (peer-reviewed)abstract
    • Observations of the submillimetre emission from Galactic dust, in both total intensity I and polarization, have received tremendous interest thanks to the Planck full-sky maps. In this paper we make use of such full-sky maps of dust polarized emission produced from the third public release of Planck data. As the basis for expanding on astrophysical studies of the polarized thermal emission from Galactic dust, we present full-sky maps of the dust polarization fraction p, polarization angle psi, and dispersion function of polarization angles ?. The joint distribution (one-point statistics) of p and N-H confirms that the mean and maximum polarization fractions decrease with increasing N-H. The uncertainty on the maximum observed polarization fraction, (max) = 22.0(-1.4)(+3.5) p max = 22 . 0 - 1.4 + 3.5 % at 353 GHz and 80 ' resolution, is dominated by the uncertainty on the Galactic emission zero level in total intensity, in particular towards diffuse lines of sight at high Galactic latitudes. Furthermore, the inverse behaviour between p and ? found earlier is seen to be present at high latitudes. This follows the ?proportional to p(-1) relationship expected from models of the polarized sky (including numerical simulations of magnetohydrodynamical turbulence) that include effects from only the topology of the turbulent magnetic field, but otherwise have uniform alignment and dust properties. Thus, the statistical properties of p, psi, and ? for the most part reflect the structure of the Galactic magnetic field. Nevertheless, we search for potential signatures of varying grain alignment and dust properties. First, we analyse the product map ?xp, looking for residual trends. While the polarization fraction p decreases by a factor of 3-4 between N-H=10(20) cm(-2) and N-H=2x10(22) cm(-2), out of the Galactic plane, this product ?xp only decreases by about 25%. Because ? is independent of the grain alignment efficiency, this demonstrates that the systematic decrease in p with N-H is determined mostly by the magnetic-field structure and not by a drop in grain alignment. This systematic trend is observed both in the diffuse interstellar medium (ISM) and in molecular clouds of the Gould Belt. Second, we look for a dependence of polarization properties on the dust temperature, as we would expect from the radiative alignment torque (RAT) theory. We find no systematic trend of ?xp with the dust temperature T-d, whether in the diffuse ISM or in the molecular clouds of the Gould Belt. In the diffuse ISM, lines of sight with high polarization fraction p and low polarization angle dispersion ? tend, on the contrary, to have colder dust than lines of sight with low p and high ?. We also compare the Planck thermal dust polarization with starlight polarization data in the visible at high Galactic latitudes. The agreement in polarization angles is remarkable, and is consistent with what we expect from the noise and the observed dispersion of polarization angles in the visible on the scale of the Planck beam. The two polarization emission-to-extinction ratios, R-P/p and R-S/V, which primarily characterize dust optical properties, have only a weak dependence on the column density, and converge towards the values previously determined for translucent lines of sight. We also determine an upper limit for the polarization fraction in extinction, p(V)/E(B-V), of 13% at high Galactic latitude, compatible with the polarization fraction p approximate to 20% observed at 353 GHz. Taken together, these results provide strong constraints for models of Galactic dust in diffuse gas.
  •  
10.
  • Aghanim, N., et al. (author)
  • Planck intermediate results L. Evidence of spatial variation of the polarized thermal dust spectral energy distribution and implications for CMB B-mode analysis
  • 2017
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 599
  • Journal article (peer-reviewed)abstract
    • The characterization of the Galactic foregrounds has been shown to be the main obstacle in the challenging quest to detect primordial B-modes in the polarized microwave sky. We make use of the Planck-HFI 2015 data release at high frequencies to place new constraints on the properties of the polarized thermal dust emission at high Galactic latitudes. Here, we specifically study the spatial variability of the dust polarized spectral energy distribution (SED), and its potential impact on the determination of the tensor-to-scalar ratio, r. We use the correlation ratio of the CBB `angular power spectra between the 217 and 353 GHz channels as a tracer of these potential variations, computed on different high Galactic latitude regions, ranging from 80% to 20% of the sky. The new insight from Planck data is a departure of the correlation ratio from unity that cannot be attributed to a spurious decorrelation due to the cosmic microwave background, instrumental noise, or instrumental systematics. The effect is marginally detected on each region, but the statistical combination of all the regions gives more than 99% confidence for this variation in polarized dust properties. In addition, we show that the decorrelation increases when there is a decrease in the mean column density of the region of the sky being considered, and we propose a simple power-law empirical model for this dependence, which matches what is seen in the Planck data. We explore the effect that this measured decorrelation has on simulations of the BICEP2-Keck Array/Planck analysis and show that the 2015 constraints from these data still allow a decorrelation between the dust at 150 and 353 GHz that is compatible with our measured value. Finally, using simplified models, we show that either spatial variation of the dust SED or of the dust polarization angle are able to produce decorrelations between 217 and 353 GHz data similar to the values we observe in the data.
  •  
11.
  • Aghanim, N., et al. (author)
  • Planck intermediate results LI. Features in the cosmic microwave background temperature power spectrum and shifts in cosmological parameters
  • 2017
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 607
  • Journal article (peer-reviewed)abstract
    • The six parameters of the standard Lambda CDM model have best-fit values derived from the Planck temperature power spectrum that are shifted somewhat from the best-fit values derived from WMAP data. These shifts are driven by features in the Planck temperature power spectrum at angular scales that had never before been measured to cosmic-variance level precision. We have investigated these shifts to determine whether they are within the range of expectation and to understand their origin in the data. Taking our parameter set to be the optical depth of the reionized intergalactic medium tau, the baryon density omega(b), the matter density omega(m), the angular size of the sound horizon theta(*), the spectral index of the primordial power spectrum, n(s), and A(s)e(-2 pi) (where As is the amplitude of the primordial power spectrum), we have examined the change in best-fit values between a WMAP-like large angular-scale data set (with multipole moment l < 800 in the Planck temperature power spectrum) and an all angular-scale data set (l < 2500 Planck temperature power spectrum), each with a prior on tau of 0.07 +/- 0.02. We find that the shifts, in units of the 1 sigma expected dispersion for each parameter, are {Delta tau, Delta A(s)e(-2 tau), Delta n(s), Delta omega(m), Delta omega(b), Delta theta(*)} = {-1.7, -2.2, 1.2, 2.0, 1.1, 0.9}, with a chi(2) value of 8.0. We find that this chi(2) value is exceeded in 15% of our simulated data sets, and that a parameter deviates by more than 2.2 sigma in 9% of simulated data sets, meaning that the shifts are not unusually large. Comparing l < 800 instead to l > 800, or splitting at a different multipole, yields similar results. We examined the l < 800 model residuals in the l > 800 power spectrum data and find that the features there that drive these shifts are a set of oscillations across a broad range of angular scales. Although they partly appear similar to the effects of enhanced gravitational lensing, the shifts in Lambda CDM parameters that arise in response to these features correspond to model spectrum changes that are predominantly due to non-lensing effects; the only exception is tau, which, at fixed A(s)e(-2 tau), affects the l > 800 temperature power spectrum solely through the associated change in As and the impact of that on the lensing potential power spectrum. We also ask, what is it about the power spectrum at l < 800 that leads to somewhat different best-fit parameters than come from the full l range? We find that if we discard the data at l < 30, where there is a roughly 2 sigma downward fluctuation in power relative to the model that best fits the full l range, the l < 800 best-fit parameters shift significantly towards the l < 2500 best-fit parameters. In contrast, including l < 30, this previously noted low-l deficit drives ns up and impacts parameters correlated with ns, such as omega(m) and H-0. As expected, the l < 30 data have a much greater impact on the l < 800 best fit than on the l < 2500 best fit. So although the shifts are not very significant, we find that they can be understood through the combined effects of an oscillatory-like set of high-l residuals and the deficit in low-l power, excursions consistent with sample variance that happen to map onto changes in cosmological parameters. Finally, we examine agreement between Planck TT data and two other CMB data sets, namely the Planck lensing reconstruction and the TT power spectrum measured by the South Pole Telescope, again finding a lack of convincing evidence of any significant deviations in parameters, suggesting that current CMB data sets give an internally consistent picture of the Lambda CDM model.
  •  
12.
  • Akrami, Y., et al. (author)
  • Planck 2018 results X. Constraints on inflation
  • 2020
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 641
  • Journal article (peer-reviewed)abstract
    • We report on the implications for cosmic inflation of the 2018 release of the Planck cosmic microwave background (CMB) anisotropy measurements. The results are fully consistent with those reported using the data from the two previous Planck cosmological releases, but have smaller uncertainties thanks to improvements in the characterization of polarization at low and high multipoles. Planck temperature, polarization, and lensing data determine the spectral index of scalar perturbations to be n(s)=0.9649 +/- 0.0042 at 68% CL. We find no evidence for a scale dependence of n(s), either as a running or as a running of the running. The Universe is found to be consistent with spatial flatness with a precision of 0.4% at 95% CL by combining Planck with a compilation of baryon acoustic oscillation data. The Planck 95% CL upper limit on the tensor-to-scalar ratio, r(0.002)< 0.10, is further tightened by combining with the BICEP2/Keck Array BK15 data to obtain r(0.002)< 0.056. In the framework of standard single-field inflationary models with Einstein gravity, these results imply that: (a) the predictions of slow-roll models with a concave potential, V(phi) < 0, are increasingly favoured by the data; and (b) based on two different methods for reconstructing the inflaton potential, we find no evidence for dynamics beyond slow roll. Three different methods for the non-parametric reconstruction of the primordial power spectrum consistently confirm a pure power law in the range of comoving scales 0.005 Mpc(-1)k less than or similar to 0.2 Mpc(-1). A complementary analysis also finds no evidence for theoretically motivated parameterized features in the Planck power spectra. For the case of oscillatory features that are logarithmic or linear in k, this result is further strengthened by a new combined analysis including the Planck bispectrum data. The new Planck polarization data provide a stringent test of the adiabaticity of the initial conditions for the cosmological fluctuations. In correlated, mixed adiabatic and isocurvature models, the non-adiabatic contribution to the observed CMB temperature variance is constrained to 1.3%, 1.7%, and 1.7% at 95% CL for cold dark matter, neutrino density, and neutrino velocity, respectively. Planck power spectra plus lensing set constraints on the amplitude of compensated cold dark matter-baryon isocurvature perturbations that are consistent with current complementary measurements. The polarization data also provide improved constraints on inflationary models that predict a small statistically anisotropic quadupolar modulation of the primordial fluctuations. However, the polarization data do not support physical models for a scale-dependent dipolar modulation. All these findings support the key predictions of the standard single-field inflationary models, which will be further tested by future cosmological observations.
  •  
13.
  • Akrami, Y., et al. (author)
  • Planck intermediate results LII. Planet flux densities
  • 2017
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 607
  • Journal article (peer-reviewed)abstract
    • Measurements of flux density are described for five planets, Mars, Jupiter, Saturn, Uranus, and Neptune, across the six Planck High Frequency Instrument frequency bands (100-857 GHz) and these are then compared with models and existing data. In our analysis, we have also included estimates of the brightness of Jupiter and Saturn at the three frequencies of the Planck Low Frequency Instrument (30, 44, and 70 GHz). The results provide constraints on the intrinsic brightness and the brightness time-variability of these planets. The majority of the planet flux density estimates are limited by systematic errors, but still yield better than 1% measurements in many cases. Applying data from Planck HFI, the Wilkinson Microwave Anisotropy Probe (WMAP), and the Atacama Cosmology Telescope (ACT) to a model that incorporates contributions from Saturn's rings to the planet's total flux density suggests a best fit value for the spectral index of Saturn's ring system of beta(ring) = 2 : 30 +/- 0 : 03 over the 30-1000 GHz frequency range. Estimates of the polarization amplitude of the planets have also been made in the four bands that have polarization-sensitive detectors (100-353 GHz); this analysis provides a 95% confidence level upper limit on Mars's polarization of 1.8, 1.7, 1.2, and 1.7% at 100, 143, 217, and 353 GHz, respectively. The average ratio between the Planck-HFI measurements and the adopted model predictions for all five planets (excluding Jupiter observations for 353 GHz) is 1.004, 1.002, 1.021, and 1.033 for 100, 143, 217, and 353 GHz, respectively. Model predictions for planet thermodynamic temperatures are therefore consistent with the absolute calibration of Planck-HFI detectors at about the three-percent level. We compare our measurements with published results from recent cosmic microwave background experiments. In particular, we observe that the flux densities measured by Planck HFI and WMAP agree to within 2%. These results allow experiments operating in the mm-wavelength range to cross-calibrate against Planck and improve models of radiative transport used in planetary science.
  •  
14.
  • De Zotti, G., et al. (author)
  • Exploring cosmic origins with CORE : Extragalactic sources in cosmic microwave background maps
  • 2018
  • In: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :4
  • Journal article (peer-reviewed)abstract
    • We discuss the potential of a next generation space-borne Cosmic Microwave Background (CMB) experiment for studies of extragalactic sources. Our analysis has particular bearing on the definition of the future space project, CORE, that has been submitted in response to ESA's call for a Medium-size mission opportunity as the successor of the Planck satellite. Even though the effective telescope size will be somewhat smaller than that of Planck, CORE will have a considerably better angular resolution at its highest frequencies, since, in contrast with Planck, it will be diffraction limited at all frequencies. The improved resolution implies a considerable decrease of the source confusion, i.e. substantially fainter detection limits. In particular, CORE will detect thousands of strongly lensed high-z galaxies distributed over the full sky. The extreme brightness of these galaxies will make it possible to study them, via follow-up observations, in extraordinary detail. Also, the CORE resolution matches the typical sizes of high-z galaxy proto-clusters much better than the Planck resolution, resulting in a much higher detection efficiency; these objects will be caught in an evolutionary phase beyond the reach of surveys in other wavebands. Furthermore, CORE will provide unique information on the evolution of the star formation in virialized groups and clusters of galaxies up to the highest possible redshifts. Finally, thanks to its very high sensitivity, CORE will detect the polarized emission of thousands of radio sources and, for the first time, of dusty galaxies, at mm and sub-mm wavelengths, respectively.
  •  
15.
  • Di Valentino, E., et al. (author)
  • Exploring cosmic origins with CORE : Cosmological parameters
  • 2018
  • In: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :4
  • Journal article (peer-reviewed)abstract
    • We forecast the main cosmological parameter constraints achievable with the CORE space mission which is dedicated to mapping the polarisation of the Cosmic Microwave Background (CMB). CORE was recently submitted in response to ESA's fifth call for medium-sized mission proposals (M5). Here we report the results from our pre-submission study of the impact of various instrumental options, in particular the telescope size and sensitivity level, and review the great, transformative potential of the mission as proposed. Specifically, we assess the impact on a broad range of fundamental parameters of our Universe as a function of the expected CMB characteristics, with other papers in the series focusing on controlling astrophysical and instrumental residual systematics. In this paper, we assume that only a few central CORE frequency channels are usable for our purpose, all others being devoted to the cleaning of astrophysical contaminants. On the theoretical side, we assume ACDM as our general framework and quantify the improvement provided by CORE over the current constraints from the Planck 2015 release. We also study the joint sensitivity of CORE and of future Baryon Acoustic Oscillation and Large Scale Structure experiments like DESI and Euclid. Specific constraints on the physics of inflation are presented in another paper of the series. In addition to the six parameters of the base ACDM, which describe the matter content of a spatially flat universe with adiabatic and scalar primordial fluctuations from inflation, we derive the precision achievable on parameters like those describing curvature, neutrino physics, extra light relics, primordial helium abundance, dark matter annihilation, recombination physics, variation of fundamental constants, dark energy, modified gravity, reionization and cosmic birefringence. In addition to assessing the improvement on the precision of individual parameters, we also forecast the post-CORE overall reduction of the allowed parameter space with figures of merit for various models increasing by as much as similar to 10(7) as compared to Planck 2015, and 10(5) with respect to Planck 2015 + future BAO measurements.
  •  
16.
  • Finelli, F., et al. (author)
  • Exploring cosmic origins with CORE : Inflation
  • 2018
  • In: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; 2018:4
  • Journal article (peer-reviewed)abstract
    • We forecast the scientific capabilities to improve our understanding of cosmic inflation of CORE, a proposed CMB space satellite submitted in response to the ESA fifth call for a medium-size mission opportunity. The CORE satellite will map the CMB anisotropies in temperature and polarization in 19 frequency channels spanning the range 60-600 GHz. CORE will have an aggregate noise sensitivity of 1.7 mu K.arcmin and an angular resolution of 5' at 200 GHz. We explore the impact of telescope size and noise sensitivity on the inflation science return by making forecasts for several instrumental configurations. This study assumes that the lower and higher frequency channels suffice to remove foreground contaminations and complements other related studies of component separation and systematic effects, which will be reported in other papers of the series Exploring Cosmic Origins with CORE. We forecast the capability to determine key inflationary parameters, to lower the detection limit for the tensor-to-scalar ratio down to the 10(-3) level, to chart the landscape of single field slow-roll inflationary models, to constrain the epoch of reheating, thus connecting inflation to the standard radiation-matter dominated Big Bang era, to reconstruct the primordial power spectrum, to constrain the contribution from isocurvature perturbations to the 10(-3) level, to improve constraints on the cosmic string tension to a level below the presumptive GUT scale, and to improve the current measurements of primordial non-Gaussianities down to the f(NL)(local) < 1 level. For all the models explored, CORE alone will improve significantly on the present constraints on the physics of inflation. Its capabilities will be further enhanced by combining with complementary future cosmological observations.
  •  
17.
  • Aghanim, N., et al. (author)
  • Planck 2018 results III. High Frequency Instrument data processing and frequency maps
  • 2020
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 641
  • Journal article (peer-reviewed)abstract
    • This paper presents the High Frequency Instrument (HFI) data processing procedures for the Planck 2018 release. Major improvements in mapmaking have been achieved since the previous Planck 2015 release, many of which were used and described already in an intermediate paper dedicated to the Planck polarized data at low multipoles. These improvements enabled the first significant measurement of the reionization optical depth parameter using Planck-HFI data. This paper presents an extensive analysis of systematic effects, including the use of end-to-end simulations to facilitate their removal and characterize the residuals. The polarized data, which presented a number of known problems in the 2015 Planck release, are very significantly improved, especially the leakage from intensity to polarization. Calibration, based on the cosmic microwave background (CMB) dipole, is now extremely accurate and in the frequency range 100-353 GHz reduces intensity-to-polarization leakage caused by calibration mismatch. The Solar dipole direction has been determined in the three lowest HFI frequency channels to within one arc minute, and its amplitude has an absolute uncertainty smaller than 0.35 mu K, an accuracy of order 10(-4). This is a major legacy from the Planck HFI for future CMB experiments. The removal of bandpass leakage has been improved for the main high-frequency foregrounds by extracting the bandpass-mismatch coefficients for each detector as part of the mapmaking process; these values in turn improve the intensity maps. This is a major change in the philosophy of frequency maps, which are now computed from single detector data, all adjusted to the same average bandpass response for the main foregrounds. End-to-end simulations have been shown to reproduce very well the relative gain calibration of detectors, as well as drifts within a frequency induced by the residuals of the main systematic effect (analogue-to-digital convertor non-linearity residuals). Using these simulations, we have been able to measure and correct the small frequency calibration bias induced by this systematic effect at the 10(-4) level. There is no detectable sign of a residual calibration bias between the first and second acoustic peaks in the CMB channels, at the 10(-3) level.
  •  
18.
  • Aghanim, N., et al. (author)
  • Planck intermediate results XLIV. Structure of the Galactic magnetic field from dust polarization maps of the southern Galactic cap
  • 2016
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 596
  • Journal article (peer-reviewed)abstract
    • Using data from the Planck satellite, we study the statistical properties of interstellar dust polarization at high Galactic latitudes around the south pole (b < -60 degrees). Our aim is to advance the understanding of the magnetized interstellar medium (ISM), and to provide a modelling framework of the polarized dust foreground for use in cosmic microwave background (CMB) component-separation procedures. We examine the Stokes I, Q, and U maps at 353 GHz, and particularly the statistical distribution of the polarization fraction (p) and angle (Psi), in order to characterize the ordered and turbulent components of the Galactic magnetic field (GMF) in the solar neighbourhood. The Q and U maps show patterns at large angular scales, which we relate to the mean orientation of the GMF towards Galactic coordinates (l(0); b(0)) = (70 degrees +/- 5 degrees, 24 degrees +/- 5 degrees). The histogram of the observed p values shows a wide dispersion up to 25%. The histogram Psi of has a standard deviation of 12 degrees about the regular pattern expected from the ordered GMF. We build a phenomenological model that connects the distributions of p and Psi to a statistical description of the turbulent component of the GMF, assuming a uniform effective polarization fraction (p(0)) of dust emission. To compute the Stokes parameters, we approximate the integration along the line of sight (LOS) as a sum over a set of N independent polarization layers, in each of which the turbulent component of the GMF is obtained from Gaussian realizations of a power-law power spectrum. We are able to reproduce the observed p and distributions using a p0 value of 26%, a ratio of 0.9 between the strengths of the turbulent and mean components of the GMF, and a small value of N. The mean value of p (inferred from the fit of the large-scale patterns in the Stokes maps) is 12 +/- 1%. We relate the polarization layers to the density structure and to the correlation length of the GMF along the LOS. We emphasize the simplicity of our model (involving only a few parameters), which can be easily computed on the celestial sphere to produce simulated maps of dust polarization. Our work is an important step towards a model that can be used to assess the accuracy of component-separation methods in present and future CMB experiments designed to search the B mode CMB polarization from primordial gravity waves.
  •  
19.
  • Aghanim, N., et al. (author)
  • Planck intermediate results XLVIII. Disentangling Galactic dust emission and cosmic infrared background anisotropies
  • 2016
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 596
  • Journal article (peer-reviewed)abstract
    • Using the Planck 2015 data release (PR2) temperature maps, we separate Galactic thermal dust emission from cosmic infrared background (CIB) anisotropies. For this purpose, we implement a specifically tailored component-separation method, the so-called generalized needlet internal linear combination (GNILC) method, which uses spatial information (the angular power spectra) to disentangle the Galactic dust emission and CIB anisotropies. We produce significantly improved all-sky maps of Planck thermal dust emission, with reduced CIB contamination, at 353, 545, and 857 GHz. By reducing the CIB contamination of the thermal dust maps, we provide more accurate estimates of the local dust temperature and dust spectral index over the sky with reduced dispersion, especially at high Galactic latitudes above b = +/- 20 degrees. We find that the dust temperature is T = (19.4 +/- 1.3) K and the dust spectral index is beta = 1.6 +/- 0.1 averaged over the whole sky, while T = (19.4 +/- 1.5) K and beta = 1.6 +/- 0.2 on 21% of the sky at high latitudes. Moreover, subtracting the new CIB-removed thermal dust maps from the CMB-removed Planck maps gives access to the CIB anisotropies over 60% of the sky at Galactic latitudes vertical bar b vertical bar > 20 degrees. Because they are a significant improvement over previous Planck products, the GNILC maps are recommended for thermal dust science. The new CIB maps can be regarded as indirect tracers of the dark matter and they are recommended for exploring cross-correlations with lensing and large-scale structure optical surveys. The reconstructed GNILC thermal dust and CIB maps are delivered as Planck products.
  •  
20.
  • Akrami, Y., et al. (author)
  • Planck 2018 results II. Low Frequency Instrument data processing
  • 2020
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 641
  • Journal article (peer-reviewed)abstract
    • We present a final description of the data-processing pipeline for the Planck Low Frequency Instrument (LFI), implemented for the 2018 data release. Several improvements have been made with respect to the previous release, especially in the calibration process and in the correction of instrumental features such as the effects of nonlinearity in the response of the analogue-to-digital converters. We provide a brief pedagogical introduction to the complete pipeline, as well as a detailed description of the important changes implemented. Self-consistency of the pipeline is demonstrated using dedicated simulations and null tests. We present the final version of the LFI full sky maps at 30, 44, and 70 GHz, both in temperature and polarization, together with a refined estimate of the solar dipole and a final assessment of the main LFI instrumental parameters.
  •  
21.
  • Akrami, Y., et al. (author)
  • Planck 2018 results IV. Diffuse component separation
  • 2020
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 641
  • Journal article (peer-reviewed)abstract
    • We present full-sky maps of the cosmic microwave background (CMB) and polarized synchrotron and thermal dust emission, derived from the third set of Planck frequency maps. These products have significantly lower contamination from instrumental systematic effects than previous versions. The methodologies used to derive these maps follow closely those described in earlier papers, adopting four methods (Commander, NILC, SEVEM, and SMICA) to extract the CMB component, as well as three methods (Commander, GNILC, and SMICA) to extract astrophysical components. Our revised CMB temperature maps agree with corresponding products in the Planck 2015 delivery, whereas the polarization maps exhibit significantly lower large-scale power, reflecting the improved data processing described in companion papers; however, the noise properties of the resulting data products are complicated, and the best available end-to-end simulations exhibit relative biases with respect to the data at the few percent level. Using these maps, we are for the first time able to fit the spectral index of thermal dust independently over 3 degrees regions. We derive a conservative estimate of the mean spectral index of polarized thermal dust emission of beta (d)=1.55 +/- 0.05, where the uncertainty marginalizes both over all known systematic uncertainties and different estimation techniques. For polarized synchrotron emission, we find a mean spectral index of beta (s)=-3.1 +/- 0.1, consistent with previously reported measurements. We note that the current data processing does not allow for construction of unbiased single-bolometer maps, and this limits our ability to extract CO emission and correlated components. The foreground results for intensity derived in this paper therefore do not supersede corresponding Planck 2015 products. For polarization the new results supersede the corresponding 2015 products in all respects.
  •  
22.
  • Hibar, Derrek P., et al. (author)
  • Novel genetic loci associated with hippocampal volume
  • 2017
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • Journal article (peer-reviewed)abstract
    • The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (r(g) = -0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness.
  •  
23.
  • Natoli, P., et al. (author)
  • Exploring cosmic origins with CORE : Mitigation of systematic effects
  • 2018
  • In: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :4
  • Journal article (peer-reviewed)abstract
    • We present an analysis of the main systematic effects that could impact the measurement of CMB polarization with the proposed CORE space mission. We employ timeline to-map simulations to verify that the CORE instrumental set-up and scanning strategy allow us to measure sky polarization to a level of accuracy adequate to the mission science goals. We also show how the CORE observations can be processed to mitigate the level of contamination by potentially worrying systematics, including intensity-to-polarization leakage due to bandpass mismatch, asymmetric main beams, pointing errors and correlated noise. We use analysis techniques that are well validated on data from current missions such as Planck to demonstrate how the residual contamination of the measurements by these effects can be brought to a level low enough not to hamper the scientific capability of the mission, nor significantly increase the overall error budget. We also present a prototype of the CORE photometric calibration pipeline, based on that used for Planck, and discuss its robustness to systematics, showing how CORE can achieve its calibration requirements. While a fine-grained assessment of the impact of systematics requires a level of knowledge of the system that can only be achieved in a future study phase, the analysis presented here strongly suggests that the main areas of concern for the CORE mission can be addressed using existing knowledge, techniques and algorithms.
  •  
24.
  • Thompson, Paul M., et al. (author)
  • The ENIGMA Consortium : large-scale collaborative analyses of neuroimaging and genetic data
  • 2014
  • In: BRAIN IMAGING BEHAV. - : Springer Science and Business Media LLC. - 1931-7557 .- 1931-7565. ; 8:2, s. 153-182
  • Journal article (peer-reviewed)abstract
    • The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in neuroscience, genetics, and medicine, ENIGMA studies have analyzed neuroimaging data from over 12,826 subjects. In addition, data from 12,171 individuals were provided by the CHARGE consortium for replication of findings, in a total of 24,997 subjects. By meta-analyzing results from many sites, ENIGMA has detected factors that affect the brain that no individual site could detect on its own, and that require larger numbers of subjects than any individual neuroimaging study has currently collected. ENIGMA's first project was a genome-wide association study identifying common variants in the genome associated with hippocampal volume or intracranial volume. Continuing work is exploring genetic associations with subcortical volumes (ENIGMA2) and white matter microstructure (ENIGMA-DTI). Working groups also focus on understanding how schizophrenia, bipolar illness, major depression and attention deficit/hyperactivity disorder (ADHD) affect the brain. We review the current progress of the ENIGMA Consortium, along with challenges and unexpected discoveries made on the way.
  •  
25.
  • Aghanim, N., et al. (author)
  • Planck intermediate results XLIX. Parity-violation constraints from polarization data
  • 2016
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 596
  • Journal article (peer-reviewed)abstract
    • Parity-violating extensions of the standard electromagnetic theory cause in vacuo rotation of the plane of polarization of propagating photons. This effect, also known as cosmic birefringence, has an impact on the cosmic microwave background (CMB) anisotropy angular power spectra, producing non-vanishing T-B and E-B correlations that are otherwise null when parity is a symmetry. Here we present new constraints on an isotropic rotation, parametrized by the angle alpha, derived from Planck 2015 CMB polarization data. To increase the robustness of our analyses, we employ two complementary approaches, in harmonic space and in map space, the latter based on a peak stacking technique. The two approaches provide estimates for alpha that are in agreement within statistical uncertainties and are very stable against several consistency tests. Considering the T-B and E-B information jointly, we find alpha = 0 degrees: 31 +/- 0 degrees.05 (stat:) +/- 0 degrees:28 (syst:) from the harmonic analysis and alpha = 0 degrees.35 +/- 0 degrees.05 (stat :) 0 degrees.28 (syst :) from the stacking approach. These constraints are compatible with no parity violation and are dominated by the systematic uncertainty in the orientation of Planck's polarization-sensitive bolometers.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 215
Type of publication
journal article (199)
research review (8)
conference paper (4)
reports (2)
other publication (1)
book chapter (1)
show more...
show less...
Type of content
peer-reviewed (204)
other academic/artistic (11)
Author/Editor
Salomaa, Veikko (32)
Peters, Annette (31)
McCarthy, Mark I (29)
Gerbino, Martina (28)
Wareham, Nicholas J. (27)
Loos, Ruth J F (27)
show more...
Gudnason, Vilmundur (27)
de Bernardis, P. (26)
Delabrouille, J. (26)
Di Valentino, E. (26)
Matarrese, S. (26)
Paoletti, D. (26)
Banday, A. J. (26)
Bartolo, N. (26)
Bersanelli, M. (26)
Burigana, C. (26)
de Zotti, G. (26)
Diego, J. M. (26)
Galli, S. (26)
Kunz, M. (26)
Kurki-Suonio, H. (26)
Lasenby, A. (26)
Lattanzi, M. (26)
Martinez-Gonzalez, E ... (26)
Remazeilles, M. (26)
Tomasi, M. (26)
Trombetti, T. (26)
Valiviita, J. (26)
Vielva, P. (26)
Deloukas, Panos (26)
Boehnke, Michael (26)
Metspalu, Andres (26)
Ballardini, M. (25)
Finelli, F. (25)
Lind, Lars (25)
Ashdown, M. (25)
Basak, S. (25)
Gonzalez-Nuevo, J. (25)
Hivon, E. (25)
Liguori, M. (25)
Lopez-Caniego, M. (25)
Molinari, D. (25)
Natoli, P. (25)
Polenta, G. (25)
Stefansson, Kari (25)
Melchiorri, A. (24)
Borrill, J. (24)
Salvati, L. (24)
Mahajan, Anubha (24)
Hofman, Albert (24)
show less...
University
Uppsala University (72)
Lund University (70)
Karolinska Institutet (53)
Umeå University (52)
Stockholm University (47)
University of Gothenburg (37)
show more...
Royal Institute of Technology (19)
Linköping University (11)
Chalmers University of Technology (11)
Swedish University of Agricultural Sciences (5)
Luleå University of Technology (4)
Högskolan Dalarna (4)
Mälardalen University (3)
Linnaeus University (3)
Halmstad University (2)
Mid Sweden University (2)
Örebro University (1)
The Swedish School of Sport and Health Sciences (1)
RISE (1)
Karlstad University (1)
Swedish Museum of Natural History (1)
show less...
Language
English (215)
Research subject (UKÄ/SCB)
Medical and Health Sciences (132)
Natural sciences (82)
Social Sciences (8)
Humanities (4)
Engineering and Technology (3)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view