SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Mattsson Carlgren Niklas) "

Search: WFRF:(Mattsson Carlgren Niklas)

  • Result 1-25 of 114
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Arctaedius, Isabelle, et al. (author)
  • Plasma glial fibrillary acidic protein and tau: predictors of neurological outcome after cardiac arrest.
  • 2024
  • In: Critical care (London, England). - 1364-8535 .- 1466-609X. ; 28:1
  • Journal article (peer-reviewed)abstract
    • The purpose was to evaluate glial fibrillary acidic protein (GFAP) and total-tau in plasma as predictors of poor neurological outcome after out-of-hospital (OHCA) and in-hospital cardiac arrest (IHCA), including comparisons with neurofilament light (NFL) and neuron-specific enolase (NSE).Retrospective multicentre observational study of patients admitted to an intensive care unit (ICU) in three hospitals in Sweden 2014-2018. Blood samples were collected at ICU admission, 12h, and 48h post-cardiac arrest. Poor neurological outcome was defined as Cerebral Performance Category 3-5 at 2-6months after cardiac arrest. Plasma samples were retrospectively analysed for GFAP, tau, and NFL. Serum NSE was analysed in clinical care. Prognostic performances were tested with the area under the receiver operating characteristics curve (AUC).Of the 428 included patients, 328 were OHCA, and 100 were IHCA. At ICU admission, 12h and 48h post-cardiac arrest, GFAP predicted neurological outcome after OHCA with AUC (95% CI) 0.76 (0.70-0.82), 0.86 (0.81-0.90) and 0.91 (0.87-0.96), and after IHCA with AUC (95% CI) 0.77 (0.66-0.87), 0.83 (0.74-0.92) and 0.83 (0.71-0.95). At the same time points, tau predicted outcome after OHCA with AUC (95% CI) 0.72 (0.66-0.79), 0.75 (0.69-0.81), and 0.93 (0.89-0.96) and after IHCA with AUC (95% CI) 0.61 (0.49-0.74), 0.68 (0.56-0.79), and 0.77 (0.65-0.90). Adding the change in biomarker levels between time points did not improve predictive accuracy compared to the last time point. In a subset of patients, GFAP at 12h and 48 h, as well as tau at 48h, offered similar predictive value as NSE at 48h (the earliest time point NSE is recommended in guidelines) after both OHCA and IHCA. The predictive performance of NFL was similar or superior to GFAP and tau at all time points after OHCA and IHCA.GFAP and tau are promising biomarkers for neuroprognostication, with the highest predictive performance at 48h after OHCA, but not superior to NFL. The predictive ability of GFAP may be sufficiently high for clinical use at 12h after cardiac arrest.
  •  
2.
  • Blennow Nordström, Erik, et al. (author)
  • Serum neurofilament light levels are correlated to long-term neurocognitive outcome measures after cardiac arrest
  • 2022
  • In: Brain Injury. - : Informa UK Limited. - 0269-9052 .- 1362-301X. ; 36:6, s. 800-809
  • Journal article (peer-reviewed)abstract
    • Objective To explore associations between four methods assessing long-term neurocognitive outcome after out-of-hospital cardiac arrest and early hypoxic-ischemic neuronal brain injury assessed by the biomarker serum neurofilament light (NFL), and to compare the agreement for the outcome methods. Methods An explorative post-hoc study was conducted on survivor data from the international Target Temperature Management after Out-of-hospital Cardiac Arrest trial, investigating serum NFL sampled 48/72-hours post-arrest and neurocognitive outcome 6 months post-arrest. Results Among the long-term surviving participants (N = 457), serum NFL (n = 384) was associated to all outcome instruments, also when controlling for demographic and cardiovascular risk factors. Associations between NFL and the patient-reported Two Simple Questions (TSQ) were however attenuated when adjusting for vitality and mental health. NFL predicted results on the outcome instruments to varying degrees, with an excellent area under the curve for the clinician-report Cerebral Performance Category (CPC 1-2: 0.90). Most participants were classified as CPC 1 (79%). Outcome instrument correlations ranged from small (Mini-Mental State Examination [MMSE]-TSQ) to strong (CPC-MMSE). Conclusions The clinician-reported CPC was mostly related to hypoxic-ischemic brain injury, but with a ceiling effect. These results may be useful when selecting methods and instruments for clinical follow-up models.
  •  
3.
  • Ebner, Florian, et al. (author)
  • Serum GFAP and UCH-L1 for the prediction of neurological outcome in comatose cardiac arrest patients
  • 2020
  • In: Resuscitation. - : Elsevier BV. - 0300-9572. ; 154, s. 61-68
  • Journal article (peer-reviewed)abstract
    • Objective: Neurological outcome prediction is crucial early after cardiac arrest. Serum biomarkers released from brain cells after hypoxic-ischaemic injury may aid in outcome prediction. The only serum biomarker presently recommended in the European Resuscitation Council prognostication guidelines is neuron-specific enolase (NSE), but NSE has limitations. In this study, we therefore analyzed the outcome predictive accuracy of the serum biomarkers glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase-L1 (UCH-L1) in patients after cardiac arrest. Methods: Serum GFAP and UCH-L1 were collected at 24, 48 and 72 h after cardiac arrest. The primary outcome was neurological function at 6-month follow-up assessed by the cerebral performance category scale (CPC), dichotomized into good (CPC1-2) and poor (CPC3-5). Prognostic accuracies were tested with receiver-operating characteristics by calculating the area under the receiver-operating curve (AUROC) and compared to the AUROC of NSE. Results: 717 patients were included in the study. GFAP and UCH-L1 discriminated between good and poor neurological outcome at all time-points when used alone (AUROC GFAP 0.88–0.89; UCH-L1 0.85–0.87) or in combination (AUROC 0.90–0.91). The combined model was superior to GFAP and UCH-L1 separately and NSE (AUROC 0.75–0.85) at all time-points. At specificities ≥95%, the combined model predicted poor outcome with a higher sensitivity than NSE at 24 h and with similar sensitivities at 48 and 72 h. Conclusion: GFAP and UCH-L1 predicted poor neurological outcome with high accuracy. Their combination may be of special interest for early prognostication after cardiac arrest where it performed significantly better than the currently recommended biomarker NSE.
  •  
4.
  • Grindegård, Linnéa, et al. (author)
  • Association Between EEG Patterns and Serum Neurofilament Light After Cardiac Arrest: A Post Hoc Analysis of the TTM Trial.
  • 2022
  • In: Neurology. - 1526-632X .- 0028-3878. ; 98:24
  • Journal article (peer-reviewed)abstract
    • Electroencephalography (EEG) is widely used for prediction of neurological outcome after cardiac arrest. To better understand the relationship between EEG and neuronal injury, we explore the association between EEG and neurofilament light (NFL) as a marker of neuroaxonal injury. We evaluate whether highly malignant EEG patterns are reflected by high NFL levels. Additionally, we explore the association of EEG backgrounds and EEG discharges with NFL.Post-hoc analysis of the Target Temperature Management after out-of-hospital cardiac arrest (TTM)-trial. Routine EEGs were prospectively performed after the temperature intervention ≥36 hours post-arrest. Patients who awoke or died prior to 36 hours post-arrest were excluded. EEG-experts blinded to clinical information classified EEG background, amount of discharges and highly malignant EEG patterns according to the standardized American Clinical Neurophysiology Society terminology. Prospectively collected serum samples were analyzed for NFL after trial completion. The highest available concentration at 48 or 72-hours post-arrest was used.262/939 patients with EEG and NFL data were included. Patients with highly malignant EEG patterns had 2.9 times higher NFL levels than patients with malignant patterns and NFL levels were 13 times higher in patients with malignant patterns than those with benign patterns (95% CI: 1.4-6.1 and 6.5-26.2 respectively, effect size 0.47, p<0.001). Both background and the amount of discharges were independently strongly associated with NFL levels (p<0.001). The EEG background had a stronger association with NFL levels than EEG discharges (R2=0.30 and R2=0.10, respectively). NFL levels in patients with a continuous background were lower than for any other background (95% CI for discontinuous, burst-suppression and suppression, respectively: 2.26-18.06, 3.91-41.71 and 5.74-41.74, effect size 0.30 and p<0.001 for all). NFL levels did not differ between suppression and burst-suppression. Superimposed discharges were only associated with higher NFL levels if the EEG background was continuous.Benign, malignant, and highly malignant EEG patterns reflect the extent of brain injury as measured by NFL in serum. The extent of brain injury is more strongly related to the EEG background than superimposed discharges. Combining EEG and NFL may be useful to better identify patients misclassified by single methods.clinicaltrials.gov, NCT01020916.
  •  
5.
  • Lagebrant, Alice, et al. (author)
  • Brain injury markers in blood predict signs of hypoxic ischaemic encephalopathy on head computed tomography after cardiac arrest
  • 2023
  • In: Resuscitation. - : Elsevier. - 0300-9572 .- 1873-1570. ; 184
  • Journal article (peer-reviewed)abstract
    • Background/Aim: Signs of hypoxic ischaemic encephalopathy (HIE) on head computed tomography (CT) predicts poor neurological outcome after cardiac arrest. We explore whether levels of brain injury markers in blood could predict the likelihood of HIE on CT.Methods: Retrospective analysis of CT performed at 24-168 h post cardiac arrest on clinical indication within the Target Temperature Management after out-of-hospital cardiac arrest-trial. Biomarkers prospectively collected at 24-and 48 h post-arrest were analysed for neuron specific enolase (NSE), neurofilament light (NFL), total-tau and glial fibrillary acidic protein (GFAP). HIE was assessed through visual evaluation and quantitative grey-white-matter ratio (GWR) was retrospectively calculated on Swedish subjects with original images available.Results: In total, 95 patients were included. The performance to predict HIE on CT (performed at IQR 73-116 h) at 48 h was similar for all biomark-ers, assessed as area under the receiving operating characteristic curve (AUC) NSE 0.82 (0.71-0.94), NFL 0.79 (0.67-0.91), total-tau 0.84 (0.74- 0.95), GFAP 0.79 (0.67-0.90). The predictive performance of biomarker levels at 24 h was AUC 0.72-0.81. At 48 h biomarker levels below Youden Index accurately excluded HIE in 77.3-91.7% (negative predictive value) and levels above Youden Index correctly predicted HIE in 73.3-83.7% (positive predictive value). NSE cut-off at 48 h was 48 ng/ml. Elevated biomarker levels irrespective of timepoint significantly correlated with lower GWR.Conclusion: Biomarker levels can assess the likelihood of a patient presenting with HIE on CT and could be used to select suitable patients for CT-examination during neurological prognostication in unconscious cardiac arrest patients.
  •  
6.
  • Levin, Helena, et al. (author)
  • Plasma neurofilament light is a predictor of neurological outcome 12 h after cardiac arrest
  • 2023
  • In: Critical Care. - : Springer Science and Business Media LLC. - 1364-8535. ; 27:1
  • Journal article (peer-reviewed)abstract
    • BackgroundPrevious studies have reported high prognostic accuracy of circulating neurofilament light (NfL) at 24-72 h after out-of-hospital cardiac arrest (OHCA), but performance at earlier time points and after in-hospital cardiac arrest (IHCA) is less investigated. We aimed to assess plasma NfL during the first 48 h after OHCA and IHCA to predict long-term outcomes.MethodsObservational multicentre cohort study in adults admitted to intensive care after cardiac arrest. NfL was retrospectively analysed in plasma collected on admission to intensive care, 12 and 48 h after cardiac arrest. The outcome was assessed at two to six months using the Cerebral Performance Category (CPC) scale, where CPC 1-2 was considered a good outcome and CPC 3-5 a poor outcome. Predictive performance was measured with the area under the receiver operating characteristic curve (AUROC).ResultsOf 428 patients, 328 (77%) suffered OHCA and 100 (23%) IHCA. Poor outcome was found in 68% of OHCA and 55% of IHCA patients. The overall prognostic performance of NfL was excellent at 12 and 48 h after OHCA, with AUROCs of 0.93 and 0.97, respectively. The predictive ability was lower after IHCA than OHCA at 12 and 48 h, with AUROCs of 0.81 and 0.86 (p <= 0.03). AUROCs on admission were 0.77 and 0.67 after OHCA and IHCA, respectively. At 12 and 48 h after OHCA, high NfL levels predicted poor outcome at 95% specificity with 70 and 89% sensitivity, while low NfL levels predicted good outcome at 95% sensitivity with 71 and 74% specificity and negative predictive values of 86 and 88%.ConclusionsThe prognostic accuracy of NfL for predicting good and poor outcomes is excellent as early as 12 h after OHCA. NfL is less reliable for the prediction of outcome after IHCA.
  •  
7.
  • Moseby-Knappe, Marion, et al. (author)
  • Performance of a guideline-recommended algorithm for prognostication of poor neurological outcome after cardiac arrest
  • 2020
  • In: Intensive Care Medicine. - : Springer Science and Business Media LLC. - 0342-4642 .- 1432-1238. ; 46:10, s. 1852-62
  • Journal article (peer-reviewed)abstract
    • © 2020, The Author(s). Purpose: To assess the performance of a 4-step algorithm for neurological prognostication after cardiac arrest recommended by the European Resuscitation Council (ERC) and the European Society of Intensive Care Medicine (ESICM). Methods: Retrospective descriptive analysis with data from the Target Temperature Management (TTM) Trial. Associations between predicted and actual neurological outcome were investigated for each step of the algorithm with results from clinical neurological examinations, neuroradiology (CT or MRI), neurophysiology (EEG and SSEP) and serum neuron-specific enolase. Patients examined with Glasgow Coma Scale Motor Score (GCS-M) on day 4 (72–96h) post-arrest and available 6-month outcome were included. Poor outcome was defined as Cerebral Performance Category 3–5. Variations of the ERC/ESICM algorithm were explored within the same cohort. Results: The ERC/ESICM algorithm identified poor outcome patients with 38.7% sensitivity (95% CI 33.1–44.7) and 100% specificity (95% CI 98.8–100) in a cohort of 585 patients. An alternative cut-off for serum neuron-specific enolase, an alternative EEG-classification and variations of the GCS-M had minor effects on the sensitivity without causing false positive predictions. The highest overall sensitivity, 42.5% (95% CI 36.7–48.5), was achieved when prognosticating patients irrespective of GCS-M score, with 100% specificity (95% CI 98.8–100) remaining. Conclusion: The ERC/ESICM algorithm and all exploratory multimodal variations thereof investigated in this study predicted poor outcome without false positive predictions and with sensitivities 34.6–42.5%. Our results should be validated prospectively, preferably in patients where withdrawal of life-sustaining therapy is uncommon to exclude any confounding from self-fulfilling prophecies.
  •  
8.
  • Moseby-Knappe, Marion, et al. (author)
  • Serum markers of brain injury can predict good neurological outcome after out-of-hospital cardiac arrest
  • 2021
  • In: Intensive Care Medicine. - : Springer Science and Business Media LLC. - 0342-4642 .- 1432-1238. ; 47, s. 984-994
  • Journal article (peer-reviewed)abstract
    • Purpose The majority of unconscious patients after cardiac arrest (CA) do not fulfill guideline criteria for a likely poor outcome, their prognosis is considered "indeterminate". We compared brain injury markers in blood for prediction of good outcome and for identifying false positive predictions of poor outcome as recommended by guidelines. Methods Retrospective analysis of prospectively collected serum samples at 24, 48 and 72 h post arrest within the Target Temperature Management after out-of-hospital cardiac arrest (TTM)-trial. Clinically available markers neuron-specific enolase (NSE) and S100B, and novel markers neurofilament light chain (NFL), total tau, ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) and glial fibrillary acidic protein (GFAP) were analysed. Normal levels with a priori cutoffs specified by reference laboratories or defined from literature were used to predict good outcome (no to moderate disability, Cerebral Performance Category scale 1-2) at 6 months. Results Seven hundred and seventeen patients were included. Normal NFL, tau and GFAP had the highest sensitivities (97.2-98% of poor outcome patients had abnormal serum levels) and NPV (normal levels predicted good outcome in 87-95% of patients). Normal S100B and NSE predicted good outcome with NPV 76-82.2%. Normal NSE correctly identified 67/190 (35.3%) patients with good outcome among those classified as "indeterminate outcome" by guidelines. Five patients with single pathological prognostic findings despite normal biomarkers had good outcome. Conclusion Low levels of brain injury markers in blood are associated with good neurological outcome after CA. Incorporating biomarkers into neuroprognostication may help prevent premature withdrawal of life-sustaining therapy.
  •  
9.
  • Ahmad, Shahzad, et al. (author)
  • CDH6 and HAGH protein levels in plasma associate with Alzheimer’s disease in APOE ε4 carriers
  • 2020
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1
  • Journal article (peer-reviewed)abstract
    • Many Alzheimer’s disease (AD) genes including Apolipoprotein E (APOE) are found to be expressed in blood-derived macrophages and thus may alter blood protein levels. We measured 91 neuro-proteins in plasma from 316 participants of the Rotterdam Study (incident AD = 161) using Proximity Extension Ligation assay. We studied the association of plasma proteins with AD in the overall sample and stratified by APOE. Findings from the Rotterdam study were replicated in 186 AD patients of the BioFINDER study. We further evaluated the correlation of these protein biomarkers with total tau (t-tau), phosphorylated tau (p-tau) and amyloid-beta (Aβ) 42 levels in cerebrospinal fluid (CSF) in the Amsterdam Dementia Cohort (N = 441). Finally, we conducted a genome-wide association study (GWAS) to identify the genetic variants determining the blood levels of AD-associated proteins. Plasma levels of the proteins, CDH6 (β = 0.638, P = 3.33 × 10−4) and HAGH (β = 0.481, P = 7.20 × 10−4), were significantly elevated in APOE ε4 carrier AD patients. The findings in the Rotterdam Study were replicated in the BioFINDER study for both CDH6 (β = 1.365, P = 3.97 × 10−3) and HAGH proteins (β = 0.506, P = 9.31 × 10−7) when comparing cases and controls in APOE ε4 carriers. In the CSF, CDH6 levels were positively correlated with t-tau and p-tau in the total sample as well as in APOE ε4 stratum (P < 1 × 10−3). The HAGH protein was not detected in CSF. GWAS of plasma CDH6 protein levels showed significant association with a cis-regulatory locus (rs111283466, P = 1.92 × 10−9). CDH6 protein is implicated in cell adhesion and synaptogenesis while HAGH protein is related to the oxidative stress pathway. Our findings suggest that these pathways may be altered during presymptomatic AD and that CDH6 and HAGH may be new blood-based biomarkers.
  •  
10.
  • Arvidsson, Ida, et al. (author)
  • Comparing a pre-defined versus deep learning approach for extracting brain atrophy patterns to predict cognitive decline due to Alzheimer’s disease in patients with mild cognitive symptoms
  • 2024
  • In: Alzheimer's Research and Therapy. - 1758-9193. ; 16:1
  • Journal article (peer-reviewed)abstract
    • Background: Predicting future Alzheimer’s disease (AD)-related cognitive decline among individuals with subjective cognitive decline (SCD) or mild cognitive impairment (MCI) is an important task for healthcare. Structural brain imaging as measured by magnetic resonance imaging (MRI) could potentially contribute when making such predictions. It is unclear if the predictive performance of MRI can be improved using entire brain images in deep learning (DL) models compared to using pre-defined brain regions. Methods: A cohort of 332 individuals with SCD/MCI were included from the Swedish BioFINDER-1 study. The goal was to predict longitudinal SCD/MCI-to-AD dementia progression and change in Mini-Mental State Examination (MMSE) over four years. Four models were evaluated using different predictors: (1) clinical data only, including demographics, cognitive tests and APOE ε4 status, (2) clinical data plus hippocampal volume, (3) clinical data plus all regional MRI gray matter volumes (N = 68) extracted using FreeSurfer software, (4) a DL model trained using multi-task learning with MRI images, Jacobian determinant images and baseline cognition as input. A double cross-validation scheme, with five test folds and for each of those ten validation folds, was used. External evaluation was performed on part of the ADNI dataset, including 108 patients. Mann-Whitney U-test was used to determine statistically significant differences in performance, with p-values less than 0.05 considered significant. Results: In the BioFINDER cohort, 109 patients (33%) progressed to AD dementia. The performance of the clinical data model for prediction of progression to AD dementia was area under the curve (AUC) = 0.85 and four-year cognitive decline was R2 = 0.14. The performance was improved for both outcomes when adding hippocampal volume (AUC = 0.86, R2 = 0.16). Adding FreeSurfer brain regions improved prediction of four-year cognitive decline but not progression to AD (AUC = 0.83, R2 = 0.17), while the DL model worsened the performance for both outcomes (AUC = 0.84, R2 = 0.08). A sensitivity analysis showed that the Jacobian determinant image was more informative than the MRI image, but that performance was maximized when both were included. In the external evaluation cohort from ADNI, 23 patients (21%) progressed to AD dementia. The results for predicted progression to AD dementia were similar to the results for the BioFINDER test data, while the performance for the cognitive decline was deteriorated. Conclusions: The DL model did not significantly improve the prediction of clinical disease progression in AD, compared to regression models with a single pre-defined brain region.
  •  
11.
  • Ashton, Nicholas J., et al. (author)
  • Differential roles of Aβ42/40, p-tau231 and p-tau217 for Alzheimer's trial selection and disease monitoring.
  • 2022
  • In: Nature medicine. - : Springer Science and Business Media LLC. - 1546-170X .- 1078-8956. ; 28:12, s. 2555-2562
  • Journal article (peer-reviewed)abstract
    • Blood biomarkers indicative of Alzheimer's disease (AD) pathology are altered in both preclinical and symptomatic stages of the disease. Distinctive biomarkers may be optimal for the identification of AD pathology or monitoring of disease progression. Blood biomarkers that correlate with changes in cognition and atrophy during the course of the disease could be used in clinical trials to identify successful interventions and thereby accelerate the development of efficient therapies. When disease-modifying treatments become approved for use, efficient blood-based biomarkers might also inform on treatment implementation and management in clinical practice. In the BioFINDER-1 cohort, plasma phosphorylated (p)-tau231 and amyloid-β42/40 ratio were more changed at lower thresholds of amyloid pathology. Longitudinally, however, only p-tau217 demonstrated marked amyloid-dependent changes over 4-6years in both preclinical and symptomatic stages of the disease, with no such changes observed in p-tau231, p-tau181, amyloid-β42/40, glial acidic fibrillary protein or neurofilament light. Only longitudinal increases of p-tau217 were also associated with clinical deterioration and brain atrophy in preclinical AD. The selective longitudinal increase of p-tau217 and its associations with cognitive decline and atrophy was confirmed in an independent cohort (Wisconsin Registry for Alzheimer's Prevention). These findings support the differential association of plasma biomarkers with disease development and strongly highlight p-tau217 as a surrogate marker of disease progression in preclinical and prodromal AD, with impact for the development of new disease-modifying treatments.
  •  
12.
  • Barthélemy, Nicolas R, et al. (author)
  • Highly Accurate Blood Test for Alzheimer's Disease Comparable or Superior to Clinical CSF Tests
  • In: Nature Medicine. - 1546-170X.
  • Journal article (peer-reviewed)abstract
    • With the emergence of Alzheimer's disease (AD) disease-modifying therapies, identifying patients who could benefit from these treatments becomes critical. We evaluated whether a precise blood test could perform as well as established cerebrospinal fluid (CSF) tests in detecting amyloid-β (Aβ) plaques and tau tangles. Plasma %p-tau217 (ratio of phosporylated-tau217 to non-phosphorylated tau) was analyzed by mass spectrometry in the Swedish BioFINDER-2 cohort (n=1,422) and the US Knight ADRC cohort (n=337). Matched CSF samples were analyzed with clinically used and FDA-approved automated immunoassays for Aβ42/40 and p-tau181/Aβ42. The primary and secondary outcomes were detection of brain Aβ or tau pathology, respectively, using PET imaging as the reference standard. Main analyses were focused on individuals with cognitive impairment (mild cognitive impairment and mild dementia), which is the target population for available disease-modifying treatments. Plasma %p-tau217 was clinically equivalent to FDA-approved CSF tests in classifying Aβ PET status, with an area-under-the-curve (AUC) for both between 0.95-0.97. Plasma %p-tau217 was generally superior to CSF tests in classification of tau-PET with AUCs of 0.95-0.98. In cognitively impaired sub-cohorts (BioFINDER-2: n=720; Knight ADRC: n=50), plasma %p-tau217 had an accuracy, positive predictive value and negative predictive value of 89-90% for Aβ PET and 87-88% for tau-PET status, which was clinically equivalent to CSF tests, further improving to 95% using a two cut-off approach. Blood plasma %p-tau217 demonstrated performance clinically equivalent or superior to clinically used FDA-approved CSF tests in the detection of AD pathology. Use of high performance blood tests in clinical practice can improve access to accurate AD diagnosis and AD-specific treatments.
  •  
13.
  • Baumeister, Hannah, et al. (author)
  • A generalizable data-driven model of atrophy heterogeneity and progression in memory clinic settings
  • In: Brain : a journal of neurology. - 1460-2156. ; 147:7, s. 2400-2413
  • Journal article (peer-reviewed)abstract
    • Memory clinic patients are a heterogeneous population representing various aetiologies of pathological aging. It is unknown if divergent spatiotemporal progression patterns of brain atrophy, as previously described in Alzheimer's disease (AD) patients, are prevalent and clinically meaningful in this group of older adults. To uncover distinct atrophy subtypes, we applied the Subtype and Stage Inference (SuStaIn) algorithm to baseline structural MRI data from 813 participants enrolled in the DELCODE cohort (mean ± SD age = 70.67 ± 6.07 years, 52% females). Participants were cognitively unimpaired (CU; n = 285) or fulfilled diagnostic criteria for subjective cognitive decline (SCD; n = 342), mild cognitive impairment (MCI; n = 118), or dementia of the Alzheimer's type (n = 68). Atrophy subtypes were compared in baseline demographics, fluid AD biomarker levels, the Preclinical Alzheimer Cognitive Composite (PACC-5), as well as episodic memory and executive functioning. PACC-5 trajectories over up to 240 weeks were examined. To test if baseline atrophy subtype and stage predicted clinical trajectories before manifest cognitive impairment, we analysed PACC-5 trajectories and MCI conversion rates of CU and SCD participants. Limbic-predominant and hippocampal-sparing atrophy subtypes were identified. Limbic-predominant atrophy first affected the medial temporal lobes, followed by further temporal and, finally, the remaining cortical regions. At baseline, this subtype was related to older age, more pathological AD biomarker levels, APOE ε4 carriership, and an amnestic cognitive impairment. Hippocampal-sparing atrophy initially occurred outside the temporal lobe with the medial temporal lobe spared up to advanced atrophy stages. This atrophy pattern also affected individuals with positive AD biomarkers and was associated with more generalised cognitive impairment. Limbic-predominant atrophy, in all and in only unimpaired participants, was linked to more negative longitudinal PACC-5 slopes than observed in participants without or with hippocampal-sparing atrophy and increased the risk of MCI conversion. SuStaIn modelling was repeated in a sample from the Swedish BioFINDER-2 cohort. Highly similar atrophy progression patterns and associated cognitive profiles were identified. Cross-cohort model generalizability, both on the subject and group level, were excellent, indicating reliable performance in previously unseen data. The proposed model is a promising tool for capturing heterogeneity among older adults at early at-risk states for AD in applied settings. The implementation of atrophy subtype- and stage-specific end-points may increase the statistical power of pharmacological trials targeting early AD.
  •  
14.
  • Berron, David, et al. (author)
  • Early stages of tau pathology and its associations with functional connectivity, atrophy and memory
  • 2021
  • In: Brain. - : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 144:9, s. 2771-2783
  • Journal article (peer-reviewed)abstract
    • In Alzheimer's disease, post-mortem studies have shown that the first cortical site where neurofibrillary tangles appear is the transentorhinal region, a subregion within the medial temporal lobe that largely overlaps with Brodmann area 35, and the entorhinal cortex. Here we used tau-PET imaging to investigate the sequence of tau pathology progression within the human medial temporal lobe and across regions in the posterior-medial system. Our objective was to study how medial temporal tau is related to functional connectivity, regional atrophy, and memory performance. We included 215 amyloid-β- cognitively unimpaired, 81 amyloid-β+ cognitively unimpaired and 87 amyloid-β+ individuals with mild cognitive impairment, who each underwent 18F-RO948 tau and 18F-flutemetamol amyloid PET imaging, structural T1-MRI and memory assessments as part of the Swedish BioFINDER-2 study. First, event-based modelling revealed that the entorhinal cortex and Brodmann area 35 show the earliest signs of tau accumulation followed by the anterior and posterior hippocampus, Brodmann area 36 and the parahippocampal cortex. In later stages, tau accumulation became abnormal in neocortical temporal and finally parietal brain regions. Second, in cognitively unimpaired individuals, increased tau load was related to local atrophy in the entorhinal cortex, Brodmann area 35 and the anterior hippocampus and tau load in several anterior medial temporal lobe subregions was associated with distant atrophy of the posterior hippocampus. Tau load, but not atrophy, in these regions was associated with lower memory performance. Further, tau-related reductions in functional connectivity in critical networks between the medial temporal lobe and regions in the posterior-medial system were associated with this early memory impairment. Finally, in patients with mild cognitive impairment, the association of tau load in the hippocampus with memory performance was partially mediated by posterior hippocampal atrophy. In summary, our findings highlight the progression of tau pathology across medial temporal lobe subregions and its disease stage-specific association with memory performance. While tau pathology might affect memory performance in cognitively unimpaired individuals via reduced functional connectivity in critical medial temporal lobe-cortical networks, memory impairment in mild cognitively impaired patients is associated with posterior hippocampal atrophy.
  •  
15.
  • Binette, Alexa Pichet, et al. (author)
  • Amyloid-associated increases in soluble tau is a key driver in accumulation of tau aggregates and cognitive decline in early Alzheimer
  • 2022
  • In: Alzheimer's and Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 18:S1
  • Journal article (peer-reviewed)abstract
    • Background: For optimal design of anti-amyloid-β (Aβ) and anti-tau clinical trials, it is important to understand how Aβ and soluble phosphorylated tau (p-tau) relate to the accumulation of tau aggregates assessed with positron emission tomography (PET) and subsequent cognitive decline across the Alzheimer's disease (AD) continuum. Method: We included 327 participants from the Swedish BioFINDER-2 cohort with cerebrospinal fluid (CSF) p-tau217, Aβ-PET, longitudinal tau-PET, and longitudinal cognition. The main groups of interest were Aβ-positive non-demented participants and AD dementia patients (Table 1 and Figure 1), and analyses were conducted separately in each group. First, we investigated how soluble p-tau217 and regional Aβ-PET were associated with tau-PET rate of change across the 200 brain parcels from the Schaefer atlas. We also tested the mediating effect of p-tau217 between Aβ-PET and tau-PET change. Second, we investigated how soluble p-tau217 and tau-PET change related to change in cognition, and mediation between these variables. Result: In early AD stages (non-demented participants), increased concentration of soluble p-tau217 was the main driver of accumulation of insoluble tau aggregates across the brain (measured as tau-PET rate of change), beyond the effect of regional Aβ-PET and baseline tau-PET (Figure 2A-C). Further, averaged across all regions, soluble p-tau217 mediated 54% of the association between Aβ and tau aggregation (Figure 2D). Higher soluble p-tau217 concentrations were also associated with cognitive decline, which was mediated by faster increase of tau aggregates (Figure 3). Repeating the same analyses in the AD dementia group, results were different. In late stage of AD, when Aβ fibrils and soluble p-tau levels have plateaued, soluble p-tau217 was not associated with accumulation of tau aggregates beyond baseline tau-PET (Figure 4A), and cognitive decline was driven by the accumulation rate of insoluble tau aggregates and not soluble p-tau217 (Figure 4B-C). Conclusion: Soluble p-tau is a main driver of tau aggregation and future cognitive decline in earlier stages of AD, whereas tau aggregation accumulation is more likely an important driver of disease in later stages. Overall, our data suggest that therapeutic approaches reducing soluble p-tau levels might be most favorable in early AD.
  •  
16.
  • Bjurstrom, M. F., et al. (author)
  • Decreased pain sensitivity and alterations of cerebrospinal fluid and plasma inflammatory mediators after total hip arthroplasty in patients with disabling osteoarthritis
  • 2022
  • In: Pain Pract. - : Wiley. - 1533-2500 .- 1530-7085. ; 22:1, s. 66-82
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Proinflammatory mechanisms are implicated in pain states. Recent research indicates that patients with osteoarthritis (OA) with signs of central sensitization exhibit elevated cerebrospinal fluid (CSF) levels of interferon gamma-induced protein 10 (IP-10), Fms-related tyrosine kinase 1 (Flt-1), and monocyte chemoattractant protein 1 (MCP-1). METHODS: The current prospective cohort study, including 15 patients with OA, primarily aimed to evaluate associations among alterations in CSF IP-10, Flt-1, MCP-1, and pain sensitization following total hip arthroplasty (THA). Participants provided CSF and blood samples for analysis of 10 proinflammatory mediators, and underwent detailed clinical examination and quantitative sensory testing, immediately preoperative and 18 months after surgery. RESULTS: Neurophysiological measures of pain showed markedly reduced pain sensitivity long-term postoperative. Increases in remote site pressure pain detection thresholds (PPDTs) and decreased temporal summation indicated partial resolution of previous central sensitization. Compared to preoperative, CSF concentrations of IP-10 were increased (p = 0.041), whereas neither Flt-1 (p = 0.112) nor MCP-1 levels changed (p = 0.650). Compared to preoperative, plasma concentrations of IP-10 were increased (p = 0.006), whereas interleukin (IL)-8 was decreased (p = 0.023). Subjects who exhibited increases in arm PPDTs above median showed greater increases in CSF IP-10 compared to those with PPDT increases below median (p = 0.028). Analyses of plasma IP-10 and IL-8 indicated higher levels of peripheral inflammation were linked to decreased pressure pain thresholds (unadjusted beta = -0.79, p = 0.006, and beta = -118.1, p = 0.014, respectively). CONCLUSIONS: THA leads to long-term decreases in pain sensitivity, indicative of resolution of sensitization processes. Changes in CSF and plasma levels of IP-10, and plasma IL-8, may be associated with altered pain phenotype.
  •  
17.
  • Bjurstrom, M. F., et al. (author)
  • Differential expression of cerebrospinal fluid neuroinflammatory mediators depending on osteoarthritis pain phenotype
  • 2020
  • In: Pain. - : Ovid Technologies (Wolters Kluwer Health). - 1872-6623 .- 0304-3959. ; 161:9, s. 2142-2154
  • Journal article (peer-reviewed)abstract
    • Neuroinflammation is implicated in the development and maintenance of persistent pain states, but there are limited data linking cerebrospinal fluid (CSF) inflammatory mediators with neurophysiological pain processes in humans. In a prospective observational study, CSF inflammatory mediators were compared between patients with osteoarthritis (OA) who were undergoing total hip arthroplasty due to disabling pain symptoms (n = 52) and pain-free comparison controls (n = 30). In OA patients only, detailed clinical examination and quantitative sensory testing were completed. Cerebrospinal fluid samples were analyzed for 10 proinflammatory mediators using Meso Scale Discovery platform. Compared to controls, OA patients had higher CSF levels of interleukin 8 (IL-8) (P = 0.002), intercellular adhesion molecule 1 (P = 0.007), and vascular cell adhesion molecule 1 (P = 0.006). Osteoarthritis patients with central sensitization possibly indicated by arm pressure pain detection threshold <250 kPa showed significantly higher CSF levels of Fms-related tyrosine kinase 1 (Flt-1) (P = 0.044) and interferon gamma-induced protein 10 (IP-10) (P = 0.024), as compared to subjects with PPDT above that threshold. In patients reporting pain numerical rating scale score >/=3/10 during peripheral venous cannulation, Flt-1 was elevated (P = 0.025), and in patients with punctate stimulus wind-up ratio >/=2, CSF monocyte chemoattractant protein 1 was higher (P = 0.011). Multiple logistic regression models showed that increased Flt-1 was associated with central sensitization, assessed by remote-site PPDT and peripheral venous cannulation pain, and monocyte chemoattractant protein-1 with temporal summation in the area of maximum pain. Multiple proinflammatory mediators measured in CSF are associated with persistent hip OA-related pain. Pain phenotype may be influenced by specific CSF neuroinflammatory profiles.
  •  
18.
  • Bjurstrom, M. F., et al. (author)
  • Preoperative sleep quality and adverse pain outcomes after total hip arthroplasty
  • 2021
  • In: Eur J Pain. - : Wiley. ; 25:7, s. 1482-1492
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Sleep disturbance is thought to aggravate acute postoperative pain. The influence of preoperative sleep problems on pain control in the long-term and development of chronic postsurgical pain is largely unknown. METHODS: This prospective, observational study aimed to examine the links between preoperative sleep disturbance (Pittsburgh Sleep Quality Index, PSQI) and pain severity (Brief Pain Inventory, BPI) 6 months postoperative (primary outcome), objective measures of pain and postoperative pain control variables (secondary outcomes). Patients (n = 52) with disabling osteoarthritis (OA) pain undergoing total hip arthroplasty (THA) were included. Quantitative sensory testing (QST) was performed preoperatively on the day of surgery to evaluate pain objectively. Clinical data, as well as measures of sleep quality and pain, were obtained preoperatively and longitudinally over a 6-month period. RESULTS: Preoperatively, sleep disturbance (i.e., PSQI score >5) occurred in 73.1% (n = 38) of THA patients, and pain severity was high (BPI pain severity 5.4 +/- 1.3). Regression models, adjusting for relevant covariates, showed that preoperative PSQI score predicted pain severity 6 months postoperative (beta = 0.091 (95% CI 0.001-0.181), p = .048, R(2) = 0.35). Poor sleep quality was associated with increased pressure pain sensitivity and impaired endogenous pain inhibitory capacity (R(2) range 0.14-0.33, all p's < 0.04). Moreover, preoperative sleep disturbance predicted increased opioid treatment during the first 24 hr after surgery (unadjusted beta = 0.009 (95% CI 0.002-0.015) mg/kg, p = .007, R(2) = 0.15). CONCLUSIONS: Preoperative sleep disturbance is prevalent in THA patients, is associated with objective measures of pain severity, and independently predicts immediate postoperative opioid treatment and poorer long-term pain control in patients who have undergone THA. SIGNIFICANCE: Poor sleep quality and impaired sleep continuity are associated with heightened pain sensitivity, but previous work has not evaluated whether preoperative sleep problems impact long-term postoperative pain outcomes. Here, we show that sleep difficulties prior to total hip arthroplasty adversely predict postoperative pain control 6 months after surgery. Given sleep difficulties robustly predict pain outcomes, targeting and improving sleep may have salutary effects on postoperative pain reports and management.
  •  
19.
  • Bjurström, Martin F., et al. (author)
  • Central nervous system monoaminergic activity in hip osteoarthritis patients with disabling pain : associations with pain severity and central sensitization
  • 2022
  • In: Pain Reports. - 2471-2531. ; 7:1, s. 988-988
  • Journal article (peer-reviewed)abstract
    • Introduction: Monoaminergic activity modulates nociceptive transmission in the central nervous system (CNS). Although pain is the most disabling symptom of osteoarthritis (OA), limited knowledge exists regarding the CNS mechanisms that amplify pain and drive sensitization processes in humans.Objectives:The main objective of this study was to evaluate associations between cerebrospinal fluid (CSF) monoamine metabolites, pain severity, and central sensitization in patients with OA undergoing total hip arthroplasty (THA).Methods:Patients with OA (n = 52) and pain-free controls (n = 30) provided CSF samples for measurement of serotonin (5-hydroxyindoleacetic acid [5-HIAA]), noradrenaline (3-methoxy-4-hydroxyphenylglycol [HMPG]), and dopamine (homovanillic acid [HVA]) monoamine metabolites. Patients with OA completed longitudinal evaluation of pain using clinical measures and quantitative sensory testing.Results:Patients with OA had higher HMPG levels when compared with controls (P = 0.036). Within patients with OA undergoing THA, higher 5-HIAA and HVA levels were consistently associated with higher preoperative pain severity. Higher concentrations of 5-HIAA and HVA were also associated with lower conditioned pain modulation levels, whereas higher HMPG levels were linked to more efficient conditioned pain modulation. Patients with higher levels of CSF HVA exhibited increased pressure pain sensitivity (arm pressure pain detection threshold < 250 kPa vs ≥ 250 kPa, P = 0.042). Higher preoperative levels of CSF 5-HIAA predicted poorer pain control 6 months postoperatively (brief pain inventory pain severity; adjusted β = 0.010, 95% CI 0.001-0.019).Conclusions:In OA patients with disabling pain, higher CSF levels of serotonin and dopamine metabolites are associated with increased pain severity and central sensitization. Increased noradrenergic activity may be associated with more efficient pain inhibitory capacity.
  •  
20.
  • Cicognola, Claudia, et al. (author)
  • Associations of CSF PDGFRβ With Aging, Blood-Brain Barrier Damage, Neuroinflammation, and Alzheimer Disease Pathologic Changes
  • 2023
  • In: Neurology. - 1526-632X. ; 101:1, s. 30-39
  • Journal article (peer-reviewed)abstract
    • BACKGROUND AND OBJECTIVES: Injured pericytes in the neurovascular unit release platelet-derived growth factor β (PDGFRβ) into the cerebrospinal fluid (CSF). However, it is not clear how pericyte injury contributes to Alzheimer's disease (AD)-related changes and blood brain barrier (BBB) damage. We aimed to test if CSF PDGFRβ was associated with different AD- and age-associated pathological changes leading to dementia.METHODS: PDGFRβ was measured in the CSF of 771 cognitively unimpaired (CU, n=408), mild cognitive impairment (MCI, n=175) and dementia subjects (n=188) from the Swedish BioFINDER-2 cohort. We then checked association Aβ-PET and tau-PET SUVR, APOE ε4 genotype and MRI measurements of cortical thickness, white matter lesions (WML) and cerebral blood flow (CBF). We also analysed the role of CSF PDGFRβ in the relationship between aging, BBB dysfunction (measured by CSF/plasma albumin ratio, QAlb) and neuroinflammation (i.e., CSF levels of YKL-40 and glial fibrillary acidic protein [GFAP], preferentially expressed in reactive astrocytes). RESULTS: The cohort had a mean age of 67 years (CU=62.8, MCI=69.9, dementia=70.4) and 50.1% were male (CU=46.6%, MCI=53.7%, dementia=54.3%). Higher CSF PDGFRβ concentrations were related to higher age (b=19.1, β=0.5, 95% CI=16-22.2, p<0.001), increased CSF neuroinflammatory markers of glial activation YKL-40 (b=3.4, β=0.5, 95% CI=2.8-3.9, p<0.001) and GFAP (b=27.4, β=0.4, 95% CI=20.9-33.9, p<0.001), and worse BBB integrity measured by QAlb (b=37.4, β=0.2, 95% CI=24.9-49.9, p<0.001). Age was also associated with worse BBB integrity, and this was partly mediated by PDGFRβ and neuroinflammatory markers (16-33% of total effect). However, PDGFRβ showed no associations with APOE ε4 genotype, PET imaging of Aβ and tau pathology or MRI measures of brain atrophy and white matter lesions (p>0.05).DISCUSSION: In summary, pericyte damage, reflected by CSF PDGFRβ, may be involved in age-related BBB disruption together with neuroinflammation, but is not related to Alzheimer-related pathological changes.
  •  
21.
  • Cicognola, Claudia, et al. (author)
  • Plasma glial fibrillary acidic protein detects Alzheimer pathology and predicts future conversion to Alzheimer dementia in patients with mild cognitive impairment
  • 2021
  • In: Alzheimer's Research and Therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 13:1
  • Journal article (peer-reviewed)abstract
    • Introduction: Plasma glial fibrillary acidic protein (GFAP) is a marker of astroglial activation and astrocytosis. We assessed the ability of plasma GFAP to detect Alzheimer’s disease (AD) pathology in the form of AD-related amyloid-β (Aβ) pathology and conversion to AD dementia in a mild cognitive impairment (MCI) cohort. Method: One hundred sixty MCI patients were followed for 4.7 years (average). AD pathology was defined using cerebrospinal fluid (CSF) Aβ42/40 and Aβ42/total tau (T-tau). Plasma GFAP was measured at baseline and follow-up using Simoa technology. Results: Baseline plasma GFAP could detect abnormal CSF Aβ42/40 and CSF Aβ42/T-tau with an AUC of 0.79 (95% CI 0.72–0.86) and 0.80 (95% CI 0.72–0.86), respectively. When also including APOE ε4 status as a predictor, the accuracy of the model to detect abnormal CSF Aβ42/40 status improved (AUC = 0.86, p = 0.02). Plasma GFAP predicted subsequent conversion to AD dementia with an AUC of 0.84 (95% CI 0.77–0.91), which was not significantly improved when adding APOE ε4 or age as predictors to the model. Longitudinal GFAP slopes for Aβ-positive and MCI who progressed to dementia (AD or other) were significantly steeper than those for Aβ-negative (p = 0.007) and stable MCI (p < 0.0001), respectively. Conclusion: Plasma GFAP can detect AD pathology in patients with MCI and predict conversion to AD dementia.
  •  
22.
  • Cullen, Nicholas, et al. (author)
  • Association of CSF Aβ38Levels with Risk of Alzheimer Disease-Related Decline
  • 2022
  • In: Neurology. - 0028-3878. ; 98:9, s. 958-967
  • Journal article (peer-reviewed)abstract
    • Background and ObjectiveExperimental studies suggest that the balance between short and long β-amyloid (Aβ) species might modulate the toxic effects of Aβ in Alzheimer disease (AD), but clinical evidence is lacking. We studied whether Aβ38 levels in CSF relate to risk of AD dementia and cognitive decline.MethodsCSF Aβ38 levels were measured in 656 individuals across 2 clinical cohorts: the Swedish BioFINDER study and the Alzheimer's Disease Neuroimaging Initiative (ADNI). Cox regression models were used to evaluate the association between baseline Aβ38 levels and risk of AD dementia in AD biomarker-positive individuals (AD+; determined by CSF phosphorylated tau [P-tau]/Aβ42 ratio) with subjective cognitive decline (SCD) or mild cognitive impairment (MCI). Linear mixed-effects models were used to evaluate the association between baseline Aβ38 levels and cognitive decline as measured by the Mini-Mental State Examination (MMSE) in AD+ participants with SCD, MCI, or AD dementia.ResultsIn the BioFINDER cohort, high Aβ38 levels were associated with slower decline in MMSE score (β = 0.30 points per SD, p = 0.001) and with lower risk of conversion to AD dementia (hazard ratio 0.83 per SD, p = 0.03). In the ADNI cohort, higher Aβ38 levels were associated with less decline in MMSE score (β = 0.27, p = 0.01) but not risk of conversion to AD dementia (p = 0.66). Aβ38 levels in both cohorts were significantly associated with both cognitive and clinical outcomes when further adjusted for CSF P-tau or CSF Aβ42 levels.DiscussionHigher CSF Aβ38 levels are associated with lower risk of AD-related changes in 2 independent clinical cohorts. These findings suggest that γ-secretase modulators could be effective as disease-altering therapy.Trial Registration InformationClinicalTrials.gov Identifier: NCT03174938.
  •  
23.
  • Cullen, Nicholas C., et al. (author)
  • Accelerated inflammatory aging in Alzheimer’s disease and its relation to amyloid, tau, and cognition
  • 2021
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 11:1
  • Journal article (peer-reviewed)abstract
    • It is unclear how pathological aging of the inflammatory system relates to Alzheimer’s disease (AD). We tested whether age-related inflammatory changes in cerebrospinal fluid (CSF) and plasma exist across different stages of AD, and whether such changes related to AD pathology. Linear regression was first used model chronological age in amyloid-β negative, cognitively unimpaired individuals (Aβ− CU; n = 312) based on a collection of 73 inflammatory proteins measured in both CSF and plasma. Fitted models were then applied on protein levels from Aβ+ individuals with mild cognitive impairment (Aβ+ MCI; n = 150) or Alzheimer’s disease dementia (Aβ+ AD; n = 139) to test whether the age predicted from proteins alone (“inflammatory age”) differed significantly from true chronological age. Aβ− individuals with subjective cognitive decline (Aβ− SCD; n = 125) or MCI (Aβ− MCI; n = 104) were used as an independent contrast group. The difference between inflammatory age and chronological age (InflammAGE score) was then assessed in relation to core AD biomarkers of amyloid, tau, and cognition. Both CSF and plasma inflammatory proteins were significantly associated with age in Aβ− CU individuals, with CSF-based proteins predicting chronological age better than plasma-based counterparts. Meanwhile, the Aβ− SCD and validation Aβ− CU groups were not characterized by significant inflammatory aging, while there was increased inflammatory aging in Aβ− MCI patients for CSF but not plasma inflammatory markers. Both CSF and plasma inflammatory changes were seen in the Aβ+ MCI and Aβ+ AD groups, with varying degrees of change compared to Aβ− CU and Aβ− SCD groups. Finally, CSF inflammatory changes were highly correlated with amyloid, tau, general neurodegeneration, and cognition, while plasma changes were mostly associated with amyloid and cognition. Inflammatory pathways change during aging and are specifically altered in AD, tracking closely with pathological hallmarks. These results have implications for tracking AD progression and for suggesting possible pathways for drug targeting.
  •  
24.
  • Cullen, Nicholas C., et al. (author)
  • Comparing progression biomarkers in clinical trials of early Alzheimer's disease
  • 2020
  • In: Annals of Clinical and Translational Neurology. - : Wiley. - 2328-9503. ; 7:9, s. 1661-1673
  • Journal article (peer-reviewed)abstract
    • Objective: To investigate the statistical power of plasma, imaging, and cognition biomarkers as Alzheimer's disease (AD) clinical trial outcome measures. Methods: Plasma neurofilament light, structural magnetic resonance imaging, and cognition were measured longitudinally in the Alzheimer's Disease Neuroimaging Initiative (ADNI) in control (amyloid PET or CSF A beta 42 negative [A beta-] with Clinical Dementia Rating scale [CDR] = 0; n = 330), preclinical AD (A beta + with CDR = 0; n = 218) and mild AD (A beta + with CDR = 0.5-1; n = 697) individuals. A statistical power analysis was performed across biomarkers and groups based on longitudinal mixed effects modeling and using several different clinical trial designs. Results: For a 30-month trial of preclinical AD, both the temporal composite and hippocampal volumes were superior to plasma neurofilament light and cognition. For an 18-month trial of mild AD, hippocampal volume was superior to all other biomarkers. Plasma neurofilament light became more effective with increased trial duration or sampling frequency. Imaging biomarkers were characterized by high slope and low within-subject variability, while plasma neurofilament light and cognition were characterized by higher within-subject variability. Interpretation: MRI measures had properties that made them preferable to cognition and pNFL as outcome measures in clinical trials of early AD, regardless of cognitive status. However, pNfL and cognition can still be effective depending on inclusion criteria, sampling frequency, and response to therapy. Future trials will help to understand how sensitive pNfL and MRI are to detect downstream effects on neurodegeneration of drugs targeting amyloid and tau pathology in AD.
  •  
25.
  • Cullen, Nicholas C., et al. (author)
  • Individualized prognosis of cognitive decline and dementia in mild cognitive impairment based on plasma biomarker combinations
  • 2021
  • In: Nature Aging. - : Springer Science and Business Media LLC. - 2662-8465. ; 1, s. 114-123
  • Journal article (peer-reviewed)abstract
    • We developed models for individualized risk prediction of cognitive decline in mild cognitive impairment (MCI) using plasma biomarkers of β-amyloid (Aβ), tau and neurodegeneration. A total of 573 patients with MCI from the Swedish BioFINDER study and the Alzheimer’s Disease Neuroimaging Initiative (ADNI) were included in the study. The primary outcomes were longitudinal cognition and conversion to Alzheimer’s disease (AD) dementia. A model combining tau phosphorylated at threonine 181 (P-tau181) and neurofilament light (NfL), but not Aβ42/Aβ40, had the best prognosis performance of all models (area under the curve = 0.88 for 4-year conversion to AD in BioFINDER, validated in ADNI), was stronger than a basic model of age, sex, education and baseline cognition, and performed similarly to cerebrospinal fluid biomarkers. A publicly available online tool for individualized prognosis in MCI based on our combined plasma biomarker models is introduced. Combination of plasma biomarkers may be of high value to identify individuals with MCI who will progress to AD dementia in clinical trials and in clinical practice.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 114
Type of publication
journal article (107)
other publication (3)
research review (3)
conference paper (1)
Type of content
peer-reviewed (111)
other academic/artistic (3)
Author/Editor
Mattsson-Carlgren, N ... (113)
Hansson, Oskar (98)
Palmqvist, Sebastian (66)
Stomrud, Erik (64)
Janelidze, Shorena (58)
Strandberg, Olof (30)
show more...
Blennow, Kaj, 1958 (29)
Smith, Ruben (29)
Zetterberg, Henrik, ... (25)
Ossenkoppele, Rik (25)
Leuzy, Antoine (22)
Ashton, Nicholas J. (14)
van Westen, Danielle (13)
Zetterberg, Henrik (13)
Blennow, Kaj (12)
Cullen, Nicholas C (12)
Dage, Jeffrey L. (10)
Moseby-Knappe, Mario ... (10)
Cronberg, Tobias (9)
Friberg, Hans (9)
Binette, Alexa Piche ... (9)
Pereira, Joana B. (8)
Nielsen, Niklas (8)
Ullén, Susann (8)
Cullen, Nicholas (8)
La Joie, Renaud (8)
Berron, David (7)
Salvadó, Gemma (7)
Ewers, Michael (6)
Tideman, Pontus (6)
Rabinovici, Gil D (6)
Klein, Gregory (6)
Spotorno, Nicola (5)
Nilsson, Maria H. (5)
Lilja, Gisela (5)
Stammet, Pascal (5)
Rosa-Neto, Pedro (5)
Lessa Benedet, André ... (5)
Bateman, Randall J (5)
Dage, J. L. (5)
Hall, Sara (5)
Jögi, Jonas (4)
Karikari, Thomas (4)
Lantero Rodriguez, J ... (4)
Undén, Johan (4)
Dankiewicz, Josef (4)
Kjaergaard, Jesper (4)
Hassager, Christian (4)
Horn, Janneke (4)
Buerger, Katharina (4)
show less...
University
Lund University (112)
University of Gothenburg (45)
Karolinska Institutet (14)
Uppsala University (7)
Linköping University (1)
Language
English (114)
Research subject (UKÄ/SCB)
Medical and Health Sciences (114)
Social Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view