SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Maurizi A) "

Search: WFRF:(Maurizi A)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Colette, A., et al. (author)
  • Future air quality in Europe: a multi-model assessment of projected exposure to ozone
  • 2012
  • In: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 12:21, s. 10613-10630
  • Journal article (peer-reviewed)abstract
    • In order to explore future air quality in Europe at the 2030 horizon, two emission scenarios developed in the framework of the Global Energy Assessment including varying assumptions on climate and energy access policies are investigated with an ensemble of six regional and global atmospheric chemistry transport models. A specific focus is given in the paper to the assessment of uncertainties and robustness of the projected changes in air quality. The present work relies on an ensemble of chemistry transport models giving insight into the model spread. Both regional and global scale models were involved, so that the ensemble benefits from medium-resolution approaches as well as global models that capture long-range transport. For each scenario a whole decade is modelled in order to gain statistical confidence in the results. A statistical downscaling approach is used to correct the distribution of the modelled projection. Last, the modelling experiment is related to a hind-cast study published earlier, where the performances of all participating models were extensively documented. The analysis is presented in an exposure-based framework in order to discuss policy relevant changes. According to the emission projections, ozone precursors such as NOx will drop down to 30% to 50% of their current levels, depending on the scenario. As a result, annual mean O-3 will slightly increase in NOx saturated areas but the overall O-3 burden will decrease substantially. Exposure to detrimental O-3 levels for health (SOMO35) will be reduced down to 45% to 70% of their current levels. And the fraction of stations where present-day exceedences of daily maximum O-3 is higher than 120 mu g m(-3) more than 25 days per year will drop from 43% down to 2 to 8 %. We conclude that air pollution mitigation measures (present in both scenarios) are the main factors leading to the improvement, but an additional cobenefit of at least 40% (depending on the indicator) is brought about by the climate policy.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Formosa, MM, et al. (author)
  • A Roadmap to Gene Discoveries and Novel Therapies in Monogenic Low and High Bone Mass Disorders
  • 2021
  • In: Frontiers in endocrinology. - : Frontiers Media SA. - 1664-2392. ; 12, s. 709711-
  • Journal article (peer-reviewed)abstract
    • Genetic disorders of the skeleton encompass a diverse group of bone diseases differing in clinical characteristics, severity, incidence and molecular etiology. Of particular interest are the monogenic rare bone mass disorders, with the underlying genetic defect contributing to either low or high bone mass phenotype. Extensive, deep phenotyping coupled with high-throughput, cost-effective genotyping is crucial in the characterization and diagnosis of affected individuals. Massive parallel sequencing efforts have been instrumental in the discovery of novel causal genes that merit functional validation using in vitro and ex vivo cell-based techniques, and in vivo models, mainly mice and zebrafish. These translational models also serve as an excellent platform for therapeutic discovery, bridging the gap between basic science research and the clinic. Altogether, genetic studies of monogenic rare bone mass disorders have broadened our knowledge on molecular signaling pathways coordinating bone development and metabolism, disease inheritance patterns, development of new and improved bone biomarkers, and identification of novel drug targets. In this comprehensive review we describe approaches to further enhance the innovative processes taking discoveries from clinic to bench, and then back to clinic in rare bone mass disorders. We highlight the importance of cross laboratory collaboration to perform functional validation in multiple model systems after identification of a novel disease gene. We describe the monogenic forms of rare low and high rare bone mass disorders known to date, provide a roadmap to unravel the genetic determinants of monogenic rare bone mass disorders using proper phenotyping and genotyping methods, and describe different genetic validation approaches paving the way for future treatments.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view