SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(May CR) "

Search: WFRF:(May CR)

  • Result 1-22 of 22
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Abel, I, et al. (author)
  • Overview of the JET results with the ITER-like wall
  • 2013
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 53:10, s. 104002-
  • Journal article (peer-reviewed)abstract
    • Following the completion in May 2011 of the shutdown for the installation of the beryllium wall and the tungsten divertor, the first set of JET campaigns have addressed the investigation of the retention properties and the development of operational scenarios with the new plasma-facing materials. The large reduction in the carbon content (more than a factor ten) led to a much lower Z(eff) (1.2-1.4) during L- and H-mode plasmas, and radiation during the burn-through phase of the plasma initiation with the consequence that breakdown failures are almost absent. Gas balance experiments have shown that the fuel retention rate with the new wall is substantially reduced with respect to the C wall. The re-establishment of the baseline H-mode and hybrid scenarios compatible with the new wall has required an optimization of the control of metallic impurity sources and heat loads. Stable type-I ELMy H-mode regimes with H-98,H-y2 close to 1 and beta(N) similar to 1.6 have been achieved using gas injection. ELM frequency is a key factor for the control of the metallic impurity accumulation. Pedestal temperatures tend to be lower with the new wall, leading to reduced confinement, but nitrogen seeding restores high pedestal temperatures and confinement. Compared with the carbon wall, major disruptions with the new wall show a lower radiated power and a slower current quench. The higher heat loads on Be wall plasma-facing components due to lower radiation made the routine use of massive gas injection for disruption mitigation essential.
  •  
2.
  • Romanelli, F, et al. (author)
  • Overview of the JET results
  • 2011
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 51:9
  • Journal article (peer-reviewed)abstract
    • Since the last IAEA Conference JET has been in operation for one year with a programmatic focus on the qualification of ITER operating scenarios, the consolidation of ITER design choices and preparation for plasma operation with the ITER-like wall presently being installed in JET. Good progress has been achieved, including stationary ELMy H-mode operation at 4.5 MA. The high confinement hybrid scenario has been extended to high triangularity, lower ρ*and to pulse lengths comparable to the resistive time. The steady-state scenario has also been extended to lower ρ*and ν*and optimized to simultaneously achieve, under stationary conditions, ITER-like values of all other relevant normalized parameters. A dedicated helium campaign has allowed key aspects of plasma control and H-mode operation for the ITER non-activated phase to be evaluated. Effective sawtooth control by fast ions has been demonstrated with3He minority ICRH, a scenario with negligible minority current drive. Edge localized mode (ELM) control studies using external n = 1 and n = 2 perturbation fields have found a resonance effect in ELM frequency for specific q95values. Complete ELM suppression has, however, not been observed, even with an edge Chirikov parameter larger than 1. Pellet ELM pacing has been demonstrated and the minimum pellet size needed to trigger an ELM has been estimated. For both natural and mitigated ELMs a broadening of the divertor ELM-wetted area with increasing ELM size has been found. In disruption studies with massive gas injection up to 50% of the thermal energy could be radiated before, and 20% during, the thermal quench. Halo currents could be reduced by 60% and, using argon/deuterium and neon/deuterium gas mixtures, runaway electron generation could be avoided. Most objectives of the ITER-like ICRH antenna have been demonstrated; matching with closely packed straps, ELM resilience, scattering matrix arc detection and operation at high power density (6.2 MW m-2) and antenna strap voltages (42 kV). Coupling measurements are in very good agreement with TOPICA modelling. © 2011 IAEA, Vienna.
  •  
3.
  • Niemi, MEK, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
4.
  • 2021
  • swepub:Mat__t
  •  
5.
  • Kanai, M, et al. (author)
  • 2023
  • swepub:Mat__t
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  • Dareng, EO, et al. (author)
  • Polygenic risk modeling for prediction of epithelial ovarian cancer risk
  • 2022
  • In: European journal of human genetics : EJHG. - : Springer Science and Business Media LLC. - 1476-5438 .- 1018-4813. ; 30:3, s. 349-362
  • Journal article (peer-reviewed)abstract
    • Polygenic risk scores (PRS) for epithelial ovarian cancer (EOC) have the potential to improve risk stratification. Joint estimation of Single Nucleotide Polymorphism (SNP) effects in models could improve predictive performance over standard approaches of PRS construction. Here, we implemented computationally efficient, penalized, logistic regression models (lasso, elastic net, stepwise) to individual level genotype data and a Bayesian framework with continuous shrinkage, “select and shrink for summary statistics” (S4), to summary level data for epithelial non-mucinous ovarian cancer risk prediction. We developed the models in a dataset consisting of 23,564 non-mucinous EOC cases and 40,138 controls participating in the Ovarian Cancer Association Consortium (OCAC) and validated the best models in three populations of different ancestries: prospective data from 198,101 women of European ancestries; 7,669 women of East Asian ancestries; 1,072 women of African ancestries, and in 18,915 BRCA1 and 12,337 BRCA2 pathogenic variant carriers of European ancestries. In the external validation data, the model with the strongest association for non-mucinous EOC risk derived from the OCAC model development data was the S4 model (27,240 SNPs) with odds ratios (OR) of 1.38 (95% CI: 1.28–1.48, AUC: 0.588) per unit standard deviation, in women of European ancestries; 1.14 (95% CI: 1.08–1.19, AUC: 0.538) in women of East Asian ancestries; 1.38 (95% CI: 1.21–1.58, AUC: 0.593) in women of African ancestries; hazard ratios of 1.36 (95% CI: 1.29–1.43, AUC: 0.592) in BRCA1 pathogenic variant carriers and 1.49 (95% CI: 1.35–1.64, AUC: 0.624) in BRCA2 pathogenic variant carriers. Incorporation of the S4 PRS in risk prediction models for ovarian cancer may have clinical utility in ovarian cancer prevention programs.
  •  
14.
  • Hackett, JM, et al. (author)
  • Optimal neural differentiation and extension of hybrid neuroblastoma cells (NDC) for nerve-target evaluations using a multifactorial approach
  • 2010
  • In: Toxicology in Vitro. - : Elsevier BV. - 0887-2333 .- 1879-3177. ; 24:2, s. 567-577
  • Journal article (peer-reviewed)abstract
    • In vitro models of tissues, such as the cornea, represent systems for modeling cell-to-cell interactions and tissue function. The objective of this study was to develop an optimized nerve differentiation medium to incorporate into a 3D in vitro model to study innervation and cell targeting. A hybrid neuroblastoma cell line (NDC) was examined for its ability to differentiate into neurons, produce neurites, and functionally contact target cells. Neuronal differentiation of NDCs was optimized through a combinatorial approach which involved culturing cells in the presence of various extracellular matrices and soluble factors. A serum-free medium containing nerve growth factor (NGF), dimethyl sulfoxide (DMSO), or dexamethasone resulted in the greatest proportion of NDCs demonstrating a neuronal morphology. Similarly, with supplementation of cyclic AMP (cAMP) or NGF, neurite extension was optimized. Combining these factors generated an optimized differentiation and extension medium, relative to the individual components alone. In co-culture with epithelial cells, NDC neurites generated in the optimized medium formed contacts with epithelial targets and produced substance P. Similarly, NDCs seeded into a collagen matrix produced neurites that projected through the matrix to target epithelial cells, promoted epithelial stratification, and increased the rate of epithelial wound healing. As well, differentiated NDCs could target and alter acetylcholine receptor clustering in mouse C2C12 myotubes, demonstrating synaptic plasticity. Our data supports the use of NDCs, in combination with optimized medium, for generating an innervated in vitro model. (C) 2009 Elsevier Ltd. All rights reserved.
  •  
15.
  •  
16.
  • McLaughlin, CR, et al. (author)
  • Regeneration of functional nerves within full thickness collagen-phosphorylcholine corneal substitute implants in guinea pigs
  • 2010
  • In: Biomaterials. - : Elsevier BV. - 0142-9612 .- 1878-5905. ; 31:10, s. 2770-2778
  • Journal article (peer-reviewed)abstract
    • Our objective was to evaluate promotion of tissue and nerve regeneration by extracellular matrix (ECM) Mimics, using corneal implantation as a model system. Porcine type I collagen and 2-methacryloyloxyethyl phosphorylcholine (MPC) were crosslinked using 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) and moulded into appropriate corneal dimensions to serve as substitutes for natural corneal ECK These were implanted as full thickness grafts by penetrating keratoplasty into the corneas Of guinea pigs after removal of the host tissue, and tracked over eight months, by clinical examination, slit-lamp biomicroscopy, and esthesiometry. Histopathology and ex vivo nerve terminal impulse recordings were performed at three months and at eight months. The implants promoted regeneration of corneal cells, nerves and the tear film, while retaining optical clarity. After three months, electrophysiological recordings showed evidence of mechano-nociceptors, and polymodal units inside the implants, while cold-sensitive units were present only on the peripheral host cornea. Following eight months, the incidence of nerve activity and the frequency of spontaneous firing were higher than in control eyes as reported for regenerating fibers. Active cold nerve terminals also innervated the implant area. We show that ECM mimetic materials can promote regeneration of corneal cells and functional nerves. The simplicity in fabrication and demonstrated functionality shows potential for ECM substitutes in future clinical applications. (C) 2009 Elsevier Ltd. All rights reserved.
  •  
17.
  •  
18.
  •  
19.
  • Schael, S, et al. (author)
  • Precision electroweak measurements on the Z resonance
  • 2006
  • In: Physics Reports. - : Elsevier BV. - 0370-1573 .- 1873-6270. ; 427:5-6, s. 257-454
  • Research review (peer-reviewed)abstract
    • We report on the final electroweak measurements performed with data taken at the Z resonance by the experiments operating at the electron-positron colliders SLC and LEP. The data consist of 17 million Z decays accumulated by the ALEPH, DELPHI, L3 and OPAL experiments at LEP, and 600 thousand Z decays by the SLID experiment using a polarised beam at SLC. The measurements include cross-sections, forward-backward asymmetries and polarised asymmetries. The mass and width of the Z boson, m(Z) and Gamma(Z), and its couplings to fermions, for example the p parameter and the effective electroweak mixing angle for leptons, are precisely measured: m(Z) = 91.1875 +/- 0.0021 GeV, Gamma(Z) = 2.4952 +/- 0.0023 GeV, rho(l) = 1.0050 +/- 0.0010, sin(2)theta(eff)(lept) = 0.23153 +/- 0.00016. The number of light neutrino species is determined to be 2.9840 +/- 0.0082, in agreement with the three observed generations of fundamental fermions. The results are compared to the predictions of the Standard Model (SM). At the Z-pole, electroweak radiative corrections beyond the running of the QED and QCD coupling constants are observed with a significance of five standard deviations, and in agreement with the Standard Model. Of the many Z-pole measurements, the forward-backward asymmetry in b-quark production shows the largest difference with respect to its SM expectation, at the level of 2.8 standard deviations. Through radiative corrections evaluated in the framework of the Standard Model, the Z-pole data are also used to predict the mass of the top quark, m(t) = 173(+10)(+13) GeV, and the mass of the W boson, m(W) = 80.363 +/- 0.032 GeV. These indirect constraints are compared to the direct measurements, providing a stringent test of the SM. Using in addition the direct measurements of m(t) and m(W), the mass of the as yet unobserved SM Higgs boson is predicted with a relative uncertainty of about 50% and found to be less than 285 GeV at 95% confidence level. (c) 2006 Elsevier B.V. All rights reserved.
  •  
20.
  •  
21.
  • Glasbey, JC, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
22.
  • 2021
  • swepub:Mat__t
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-22 of 22

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view