SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Mousis Olivier) "

Search: WFRF:(Mousis Olivier)

  • Result 1-10 of 10
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Tinetti, Giovanna, et al. (author)
  • The science of EChO
  • 2010
  • In: Proceedings of the International Astronomical Union. - 1743-9213 .- 1743-9221. ; 6:S276, s. 359-370
  • Journal article (peer-reviewed)abstract
    • The science of extra-solar planets is one of the most rapidly changing areas of astrophysics and since 1995 the number of planets known has increased by almost two orders of magnitude. A combination of ground-based surveys and dedicated space missions has resulted in 560-plus planets being detected, and over 1200 that await confirmation. NASA's Kepler mission has opened up the possibility of discovering Earth-like planets in the habitable zone around some of the 100,000 stars it is surveying during its 3 to 4-year lifetime. The new ESA's Gaia mission is expected to discover thousands of new planets around stars within 200 parsecs of the Sun. The key challenge now is moving on from discovery, important though that remains, to characterisation: what are these planets actually like, and why are they as they are In the past ten years, we have learned how to obtain the first spectra of exoplanets using transit transmission and emission spectroscopy. With the high stability of Spitzer, Hubble, and large ground-based telescopes the spectra of bright close-in massive planets can be obtained and species like water vapour, methane, carbon monoxide and dioxide have been detected. With transit science came the first tangible remote sensing of these planetary bodies and so one can start to extrapolate from what has been learnt from Solar System probes to what one might plan to learn about their faraway siblings. As we learn more about the atmospheres, surfaces and near-surfaces of these remote bodies, we will begin to build up a clearer picture of their construction, history and suitability for life. The Exoplanet Characterisation Observatory, EChO, will be the first dedicated mission to investigate the physics and chemistry of Exoplanetary Atmospheres. By characterising spectroscopically more bodies in different environments we will take detailed planetology out of the Solar System and into the Galaxy as a whole. EChO has now been selected by the European Space Agency to be assessed as one of four M3 mission candidates. © International Astronomical Union 2011.
  •  
2.
  • Blanc, Michel, et al. (author)
  • Science Goals and Mission Objectives for the Future Exploration of Ice Giants Systems : A Horizon 2061 Perspective
  • 2021
  • In: Space Science Reviews. - : Springer Science and Business Media LLC. - 0038-6308 .- 1572-9672. ; 217:1
  • Research review (peer-reviewed)abstract
    • The comparative study of planetary systems is a unique source of new scientific insight: following the six “key science questions” of the “Planetary Exploration, Horizon 2061” long-term foresight exercise, it can reveal to us the diversity of their objects (Question 1) and of their architectures (Question 2), help us better understand their origins (Question 3) and how they work (Question 4), find and characterize habitable worlds (Question 5), and ultimately, search for alien life (Question 6). But a huge “knowledge gap” exists which limits the applicability of this approach in the solar system itself: two of its secondary planetary systems, the ice giant systems of Uranus and Neptune, remain poorly explored. Starting from an analysis of our current limited knowledge of solar system ice giants and their systems in the light of these six key science questions, we show that a long-term plan for the space exploration of ice giants and their systems will greatly contribute to answer these questions. To do so, we identify the key measurements needed to address each of these questions, the destinations to choose (Uranus, Neptune, Triton or a subset of them), the combinations of space platform(s) and the types of flight sequences needed. We then examine the different launch windows available until 2061, using a Jupiter fly-by, to send a mission to Uranus or Neptune, and find that: (1) an optimized choice of platforms and flight sequences makes it possible to address a broad range of the key science questions with one mission at one of the planets. Combining an atmospheric entry probe with an orbiter tour starting on a high-inclination, low periapse orbit, followed by a sequence of lower inclination orbits (or the other way around) appears to be an optimal choice. (2) a combination of two missions to each of the ice giant systems, to be flown in parallel or in sequence, will address five out of the six key questions and establish the prerequisites to address the sixth one: searching for life at one of the most promising Ice Giant moons. (3) The 2032 Jupiter fly-by window, which offers a unique opportunity to implement this plan, should be considered in priority; if this window cannot be met, using the 2036 Jupiter fly-by window to send a mission to Uranus first, and then the 2045 window for a mission to Neptune, will allow one to achieve the same objectives; as a back-up option, one should consider an orbiter + probe mission to one of the planets and a close fly-by of the other planet to deliver a probe into its atmosphere, using the opportunity of a future mission on its way to Kuiper Belt Objects or the interstellar medium; (4) based on the examination of the habitability of the different moons by the first two missions, a third one can be properly designed to search for life at the most promising moon, likely Triton, or one of the active moons of Uranus. Thus, by 2061 the first two missions of this plan can be implemented and a third mission focusing on the search for life can be designed. Given that such a plan may be out of reach of a single national agency, international collaboration is the most promising way to implement it.
  •  
3.
  • Aguichine, Artyom, et al. (author)
  • Rocklines as cradles for refractory solids in the protosolar nebula
  • 2020
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 901:2
  • Journal article (peer-reviewed)abstract
    • In our solar system, terrestrial planets and meteoritical matter exhibit various bulk compositions. To understand this variety of compositions, formation mechanisms of meteorites are usually investigated via a thermodynamic approach that neglects the processes of transport throughout the protosolar nebula. Here, we investigate the role played by rocklines (condensation/sublimation lines of refractory materials) in the innermost regions of the protosolar nebula to compute the composition of particles migrating inward toward the disk as a function of time. To do so, we utilize a one-dimensional accretion disk model with a prescription for dust and vapor transport, sublimation, and recondensation of refractory materials (ferrosilite, enstatite, fayalite, forsterite, iron sulfide, metal iron, and nickel). We find that the diversity of the bulk composition of cosmic spherules, chondrules, and chondrites can be explained by their formation close to rocklines, suggesting that solid matter is concentrated in the vicinity of these sublimation/condensation fronts. Although our model relies a lot on the number of considered species and the availability of thermodynamic data governing state changes, it suggests that rocklines played a major role in the formation of small and large bodies in the innermost regions of the protosolar nebula. Our model gives insights on the mechanisms that might have contributed to the formation of Mercury's large core.
  •  
4.
  • Anderson, Sarah E., et al. (author)
  • Formation conditions of Titan’s and Enceladus’s building blocks in Saturn’s circumplanetary disk
  • 2021
  • In: Planetary Science Journal. - 2632-3338. ; 2:2
  • Journal article (peer-reviewed)abstract
    • The building blocks of Titan and Enceladus are believed to have formed in a late-stage circumplanetary disk (CPD) around Saturn. Evaluating the evolution of the abundances of volatile species in this disk as a function of the migration, growth, and evaporation of icy grains is then of primary importance to assess the origin of the material that eventually formed these two moons. Here we use a simple prescription of Saturn’s CPD in which the location of the centrifugal radius is varied, to investigate the time evolution of the icelines of water ice, ammonia hydrate, methane clathrate, carbon monoxide, and dinitrogen pure condensates. To match their compositional data, the building blocks of both moons would have had to form in a region of the CPD situated between the icelines of carbon monoxide and dinitrogen at their outer limit, and the iceline of methane clathrate as their inner limit. We find that a source of dust at the location of centrifugal radius does not guarantee the replenishment of the disk in the volatiles assumed to be primordial in Titan and Enceladus. Only simulations assuming a centrifugal radius in the range 66–100 Saturnian radii allow for the formation and growth of solids with compositions consistent with those measured in Enceladus and Titan. The species are then able to evolve in solid forms in the system for longer periods of time, even reaching an equilibrium, thus favoring the formation of Titan and Enceladus’s building blocks in this region of the disk.
  •  
5.
  • Arridge, Christopher S., et al. (author)
  • Uranus Pathfinder : exploring the origins and evolution of Ice Giant planets
  • 2012
  • In: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 33:2-3, s. 753-791
  • Journal article (peer-reviewed)abstract
    • The "Ice Giants" Uranus and Neptune are a different class of planet compared to Jupiter and Saturn. Studying these objects is important for furthering our understanding of the formation and evolution of the planets, and unravelling the fundamental physical and chemical processes in the Solar System. The importance of filling these gaps in our knowledge of the Solar System is particularly acute when trying to apply our understanding to the numerous planetary systems that have been discovered around other stars. The Uranus Pathfinder (UP) mission thus represents the quintessential aspects of the objectives of the European planetary community as expressed in ESA's Cosmic Vision 2015-2025. UP was proposed to the European Space Agency's M3 call for medium-class missions in 2010 and proposed to be the first orbiter of an Ice Giant planet. As the most accessible Ice Giant within the M-class mission envelope Uranus was identified as the mission target. Although not selected for this call the UP mission concept provides a baseline framework for the exploration of Uranus with existing low-cost platforms and underlines the need to develop power sources suitable for the outer Solar System. The UP science case is based around exploring the origins, evolution, and processes at work in Ice Giant planetary systems. Three broad themes were identified: (1) Uranus as an Ice Giant, (2) An Ice Giant planetary system, and (3) An asymmetric magnetosphere. Due to the long interplanetary transfer from Earth to Uranus a significant cruise-phase science theme was also developed. The UP mission concept calls for the use of a Mars Express/Rosetta-type platform to launch on a Soyuz-Fregat in 2021 and entering into an eccentric polar orbit around Uranus in the 2036-2037 timeframe. The science payload has a strong heritage in Europe and beyond and requires no significant technology developments.
  •  
6.
  • Georgieva, Iskra, 1987, et al. (author)
  • TOI-733 b : A planet in the small-planet radius valley orbiting a Sun-like star
  • 2023
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 674
  • Journal article (peer-reviewed)abstract
    • We report the discovery of a hot (Teq ≈ 1055 K) planet in the small-planet radius valley that transits the Sun-like star TOI-733. It was discovered as part of the KESPRINT follow-up program of TESS planets carried out with the HARPS spectrograph. TESS photometry from sectors 9 and 36 yields an orbital period of {equation presented} days and a radius of {equation presented}. Multi-dimensional Gaussian process modelling of the radial velocity measurements from HARPS and activity indicators gives a semi-amplitude of K = 2.23 ± 0.26 m s-1, translating into a planet mass of {equation presented}. These parameters imply that the planet is of moderate density ({equation presented}) and place it in the transition region between rocky and volatile-rich planets with H/He-dominated envelopes on the mass-radius diagram. Combining these with stellar parameters and abundances, we calculated planet interior and atmosphere models, which in turn suggest that TOI-733 b has a volatile-enriched, most likely secondary outer envelope, and may represent a highly irradiated ocean world. This is one of only a few such planets around G-type stars that are well characterised.
  •  
7.
  • Kobayashi, Kensei, et al. (author)
  • Laboratory Studies of Methane and Its Relationship to Prebiotic Chemistry
  • 2017
  • In: Astrobiology. - : Mary Ann Liebert Inc. - 1531-1074 .- 1557-8070. ; 17:8, s. 786-812
  • Research review (peer-reviewed)abstract
    • To examine how prebiotic chemical evolution took place on Earth prior to the emergence of life, laboratory experiments have been conducted since the 1950s. Methane has been one of the key molecules in these investigations. In earlier studies, strongly reducing gas mixtures containing methane and ammonia were used to simulate possible reactions in the primitive atmosphere of Earth, producing amino acids and other organic compounds. Since Earth's early atmosphere is now considered to be less reducing, the contribution of extraterrestrial organics to chemical evolution has taken on an important role. Such organic molecules may have come from molecular clouds and regions of star formation that created protoplanetary disks, planets, asteroids, and comets. The interstellar origin of organics has been examined both experimentally and theoretically, including laboratory investigations that simulate interstellar molecular reactions. Endogenous and exogenous organics could also have been supplied to the primitive ocean, making submarine hydrothermal systems plausible sites of the generation of life. Experiments that simulate such hydrothermal systems where methane played an important role have consequently been conducted. Processes that occur in other Solar System bodies offer clues to the prebiotic chemistry of Earth. Titan and other icy bodies, where methane plays significant roles, are especially good targets. In the case of Titan, methane is both in the atmosphere and in liquidospheres that are composed of methane and other hydrocarbons, and these have been studied in simulation experiments. Here, we review the wide range of experimental work in which these various terrestrial and extraterrestrial environments have been modeled, and we examine the possible role of methane in chemical evolution.
  •  
8.
  • Mousis, Olivier, et al. (author)
  • Jupiter's Formation in the Vicinity of the Amorphous Ice Snowline
  • 2019
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 875:1
  • Journal article (peer-reviewed)abstract
    • Argon, krypton, xenon, carbon, nitrogen, sulfur, and phosphorus have all been measured and found to be enriched by a quasi uniform factor in the 2-4 range, compared to their protosolar values, in the atmosphere of Jupiter. To elucidate the origin of these volatile enrichments, we investigate the possibility of an inward drift of particles made of amorphous ice and adsorbed volatiles, and their ability to enrich in heavy elements the gas phase of the protosolar nebula, once they cross the amorphous-to-crystalline ice transition zone, following the original idea formulated by Monga & Desch. To do so, we use a simple accretion disk model coupled to modules depicting the radial evolution of icy particles and vapors, assuming growth, fragmentation, and crystallization of amorphous grains. We show that it is possible to accrete supersolar gas from the nebula onto proto-Jupiter's core to form its envelope, and allowing it to match the observed volatile enrichments. Our calculations suggest that nebular gas, with a metallicity similar to that measured in Jupiter, can be accreted by its envelope if the planet is formed in the ∼0.5-2 Myr time range and in the 0.5-20 au distance range from the Sun, depending on the adopted viscosity parameter of the disk. These values match a wide range of Jupiter's formation scenarios, including in situ formation and migration/formation models.
  •  
9.
  • Mousis, Olivier, et al. (author)
  • Methane Clathrates in the Solar System
  • 2015
  • In: Astrobiology. - : Mary Ann Liebert Inc. - 1531-1074 .- 1557-8070. ; 15:4, s. 308-326
  • Research review (peer-reviewed)abstract
    • We review the reservoirs of methane clathrates that may exist in the different bodies of the Solar System. Methane was formed in the interstellar medium prior to having been embedded in the protosolar nebula gas phase. This molecule was subsequently trapped in clathrates that formed from crystalline water ice during the cooling of the disk and incorporated in this form into the building blocks of comets, icy bodies, and giant planets. Methane clathrates may play an important role in the evolution of planetary atmospheres. On Earth, the production of methane in clathrates is essentially biological, and these compounds are mostly found in permafrost regions or in the sediments of continental shelves. On Mars, methane would more likely derive from hydrothermal reactions with olivine-rich material. If they do exist, martian methane clathrates would be stable only at depth in the cryosphere and sporadically release some methane into the atmosphere via mechanisms that remain to be determined. In the case of Titan, most of its methane probably originates from the protosolar nebula, where it would have been trapped in the clathrates agglomerated by the satellite's building blocks. Methane clathrates are still believed to play an important role in the present state of Titan. Their presence is invoked in the satellite's subsurface as a means of replenishing its atmosphere with methane via outgassing episodes. The internal oceans of Enceladus and Europa also provide appropriate thermodynamic conditions that allow formation of methane clathrates. In turn, these clathrates might influence the composition of these liquid reservoirs. Finally, comets and Kuiper Belt Objects might have formed from the agglomeration of clathrates and pure ices in the nebula. The methane observed in comets would then result from the destabilization of clathrate layers in the nuclei concurrent with their approach to perihelion. Thermodynamic equilibrium calculations show that methane-rich clathrate layers may exist on Pluto as well.
  •  
10.
  • Persson, Carina, 1964, et al. (author)
  • TOI-2196 b: Rare planet in the hot Neptune desert transiting a G-type star
  • 2022
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 666
  • Journal article (peer-reviewed)abstract
    • The hot Neptune desert is a region hosting a small number of short-period Neptunes in the radius-instellation diagram. Highly irradiated planets are usually either small (R less than or similar to 2 R-circle plus) and rocky or they are gas giants with radii of greater than or similar to 1 R-J. Here, we report on the intermediate-sized planet TOI-2196 b (TIC 372172128.01) on a 1.2 day orbit around a G-type star (V = 12.0, [Fe/H] = 0.14 dex) discovered by the Transiting Exoplanet Survey Satellite in sector 27. We collected 41 radial velocity measurements with the HARPS spectrograph to confirm the planetary nature of the transit signal and to determine the mass. The radius of TOI-2196 b is 3.51 +/- 0.15 R-circle plus, which, combined with the mass of 26.0 +/- 1.3 M-circle plus, results in a bulk density of 3.31(-0.43)(+0.51) g cm(-3). Hence, the radius implies that this planet is a sub-Neptune, although the density is twice than that of Neptune. A significant trend in the HARPS radial velocity measurements points to the presence of a distant companion with a lower limit on the period and mass of 220 days and 0.65 M-J, respectively, assuming zero eccentricity. The short period of planet b implies a high equilibrium temperature of 1860 +/- 20 K, for zero albedo and isotropic emission. This places the planet in the hot Neptune desert, joining a group of very few planets in this parameter space discovered in recent years. These planets suggest that the hot Neptune desert may be divided in two parts for planets with equilibrium temperatures of greater than or similar to 1800 K: a hot sub-Neptune desert devoid of planets with radii of approximate to 1.8-3 R-circle plus and a sub-Jovian desert for radii of approximate to 5-12 R-circle plus. More planets in this parameter space are needed to further investigate this finding. Planetary interior structure models of TOI-2196 b are consistent with a H/He atmosphere mass fraction between 0.4% and 3%, with a mean value of 0.7% on top of a rocky interior. We estimated the amount of mass this planet might have lost at a young age and we find that while the mass loss could have been significant, the planet had not changed in terms of character: it was born as a small volatile-rich planet and it remains one at present.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view