SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Myers Gary J.) "

Search: WFRF:(Myers Gary J.)

  • Result 1-14 of 14
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Birney, Ewan, et al. (author)
  • Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project
  • 2007
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 447:7146, s. 799-816
  • Journal article (peer-reviewed)abstract
    • We report the generation and analysis of functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project. These data have been further integrated and augmented by a number of evolutionary and computational analyses. Together, our results advance the collective knowledge about human genome function in several major areas. First, our studies provide convincing evidence that the genome is pervasively transcribed, such that the majority of its bases can be found in primary transcripts, including non-protein-coding transcripts, and those that extensively overlap one another. Second, systematic examination of transcriptional regulation has yielded new understanding about transcription start sites, including their relationship to specific regulatory sequences and features of chromatin accessibility and histone modification. Third, a more sophisticated view of chromatin structure has emerged, including its inter-relationship with DNA replication and transcriptional regulation. Finally, integration of these new sources of information, in particular with respect to mammalian evolution based on inter- and intra-species sequence comparisons, has yielded new mechanistic and evolutionary insights concerning the functional landscape of the human genome. Together, these studies are defining a path for pursuit of a more comprehensive characterization of human genome function.
  •  
3.
  • Clark, Andrew G., et al. (author)
  • Evolution of genes and genomes on the Drosophila phylogeny
  • 2007
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 450:7167, s. 203-218
  • Journal article (peer-reviewed)abstract
    • Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution. Despite remarkable similarities among these Drosophila species, we identified many putatively non-neutral changes in protein-coding genes, non-coding RNA genes, and cis-regulatory regions. These may prove to underlie differences in the ecology and behaviour of these diverse species.
  •  
4.
  • Escott-Price, Valentina, et al. (author)
  • Gene-Wide Analysis Detects Two New Susceptibility Genes for Alzheimer's Disease
  • 2014
  • In: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 9:6, s. e94661-
  • Journal article (peer-reviewed)abstract
    • Background: Alzheimer's disease is a common debilitating dementia with known heritability, for which 20 late onset susceptibility loci have been identified, but more remain to be discovered. This study sought to identify new susceptibility genes, using an alternative gene-wide analytical approach which tests for patterns of association within genes, in the powerful genome-wide association dataset of the International Genomics of Alzheimer's Project Consortium, comprising over 7 m genotypes from 25,580 Alzheimer's cases and 48,466 controls. Principal Findings: In addition to earlier reported genes, we detected genome-wide significant loci on chromosomes 8 (TP53INP1, p = 1.4x10(-6)) and 14 (IGHV1-67 p = 7.9x10(-8)) which indexed novel susceptibility loci. Significance: The additional genes identified in this study, have an array of functions previously implicated in Alzheimer's disease, including aspects of energy metabolism, protein degradation and the immune system and add further weight to these pathways as potential therapeutic targets in Alzheimer's disease.
  •  
5.
  • Jones, Lesley, et al. (author)
  • Convergent genetic and expression data implicate immunity in Alzheimer's disease
  • 2015
  • In: Alzheimer's & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 11:6, s. 658-671
  • Journal article (peer-reviewed)abstract
    • Background: Late-onset Alzheimer's disease (AD) is heritable with 20 genes showing genome-wide association in the International Genomics of Alzheimer's Project (IGAP). To identify the biology underlying the disease, we extended these genetic data in a pathway analysis. Methods: The ALIGATOR and GSEA algorithms were used in the IGAP data to identify associated functional pathways and correlated gene expression networks in human brain. Results: ALIGATOR identified an excess of curated biological pathways showing enrichment of association. Enriched areas of biology included the immune response (P = 3.27 X 10(-12) after multiple testing correction for pathways), regulation of endocytosis (P = 1.31 X 10(-11)), cholesterol transport (P = 2.96 X 10(-9)), and proteasome-ubiquitin activity (P = 1.34 X 10(-6)). Correlated gene expression analysis identified four significant network modules, all related to the immune response (corrected P = .002-.05). Conclusions: The immime response, regulation of endocytosis, cholesterol transport, and protein ubiquitination represent prime targets for AD therapeutics.
  •  
6.
  • Conway, Marie C, et al. (author)
  • Maternal and child FADS genotype as determinants of cord blood long chain polyunsaturated fatty acid (LCPUFA) concentrations in the Seychelles Child Development Study
  • 2021
  • In: British Journal of Nutrition. - 1475-2662. ; 126:11, s. 1687-1697
  • Journal article (peer-reviewed)abstract
    • Optimal maternal long chain polyunsaturated fatty acid (LCPUFA) status is essential for the developing foetus. The fatty acid desaturase (FADS) genes are involved in the endogenous synthesis of LCPUFA. The minor allele of various FADS single nucleotide polymorphisms (SNPs) have been associated with increased maternal concentrations of the precursors linoleic acid (LA) and α-linolenic acid (ALA), and lower concentrations of arachidonic acid (AA) and docosahexaenoic acid (DHA). There is limited research on the influence of FADS genotype on cord PUFA status. The current study investigated the influence of maternal and child genetic variation in FADS genotype on cord blood PUFA status in a high fish-eating cohort. Cord blood samples (n=1088) collected from the Seychelles Child Development Study (SCDS) Nutrition Cohort 2 (NC2) were analysed for total serum PUFA. Of those with cord PUFA data available, maternal (n=1062) and child (n=916), FADS1 (rs174537, rs174561), FADS2 (rs174575), and FADS1-FADS2 (rs3834458) were determined. Regression analysis determined that maternal minor allele homozygosity was associated with lower cord blood concentrations of docosahexaenoic acid (DHA) and the sum of EPA+DHA. Lower cord blood AA concentrations were observed in children who were minor allele homozygous for rs3834458 (β=0.075; p=0.037). Children who were minor allele carriers for rs174537, rs174561, rs174575 and rs3834458 had a lower cord blood AA:LA ratio (p<0.05 for all). Both maternal and child FADS genotype were associated with cord LCPUFA concentrations, and therefore, the influence of FADS genotype was observed despite the high intake of preformed dietary LCPUFA from fish in this population.
  •  
7.
  • Strain, J. J., et al. (author)
  • Associations of prenatal methylmercury exposure and maternal polyunsaturated fatty acid status with neurodevelopmental outcomes at 7 years of age : results from the Seychelles Child Development Study Nutrition Cohort 2
  • 2021
  • In: The American journal of clinical nutrition. - : Elsevier BV. - 1938-3207 .- 0002-9165. ; 113:2, s. 304-313
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Fish is a primary source of protein and n-3 PUFA but also contains methylmercury (MeHg), a naturally occurring neurotoxicant to which, at sufficient exposure levels, the developing fetal brain is particularly sensitive. OBJECTIVES: To examine the association between prenatal MeHg and maternal status of n-3 and n-6 PUFA with neurodevelopment, and to determine whether PUFA might modify prenatal MeHg associations with neurodevelopment. METHODS: We examined the Seychelles Child Development Study Nutrition Cohort 2 (NC2) at age 7 y. We used a sophisticated and extensive neurodevelopmental test battery that addressed 17 specific outcomes in multiple neurodevelopmental domains: cognition, executive and psychomotor function, language development, behavior, scholastic achievement, and social communication. Analyses were undertaken on 1237 mother-child pairs with complete covariate data (after exclusions) and a measure of at least 1 outcome. We examined the main and interactive associations of prenatal MeHg exposure (measured as maternal hair mercury) and prenatal PUFA status (measured in maternal serum at 28 weeks' gestation) on child neurodevelopmental outcomes using linear regression models. We applied the Bonferroni correction to account for multiple comparisons and considered P values <0.0029 to be statistically significant. RESULTS: Prenatal MeHg exposure and maternal DHA and arachidonic acid (20:4n-6) (AA) status were not significantly associated with any neurodevelopmental outcomes. Findings for 4 outcomes encompassing executive function, cognition, and linguistic skills suggested better performance with an increasing maternal n-6:n-3 PUFA ratio (P values ranging from 0.004 to 0.05), but none of these associations were significant after adjusting for multiple comparisons. No significant interaction between MeHg exposure and PUFA status was present. CONCLUSIONS: Our findings do not support an association between prenatal MeHg exposure or maternal DHA and AA status with neurodevelopmental outcomes at age 7 y. The roles of n-6 and n-3 PUFA in child neurodevelopment need further research.
  •  
8.
  • Yeates, Alison J., et al. (author)
  • PUFA status and methylmercury exposure are not associated with leukocyte telomere length in mothers or their children in the seychelles child development study
  • 2017
  • In: Journal of Nutrition. - : Elsevier BV. - 0022-3166 .- 1541-6100. ; 147:11, s. 2018-2024
  • Journal article (peer-reviewed)abstract
    • Background: Leukocyte telomere length (TL) is associated with age-related diseases and early mortality, but there is a lack of data on the determinants of TL in early life. Evidence suggests that dietary intake ofmarine n-3 (v-3) polyunsaturated fatty acids (PUFAs) is protective of telomere attrition, yet the effect of methylmercury exposure, also found in fish, on TL is unknown. Objective: The aim of this study was to investigate the associations between prenatal PUFA status, methylmercury exposure, and TL in mothers and children in the SCDS (Seychelles Child Development Study), for whom fish consumption is high. Methods: Blood samples collected from 229 mothers (at 28 wk gestation and delivery) and children (at 5 y of age) in the SCDS first nutrition cohort were analyzed for PUFA concentrations. Prenatal mercury was measured in maternal hair collected at delivery. Postnatalmercury was alsomeasured in children's hair samples with the use of a cumulativemetric derived from values obtained at 3-5 y of age. Relative TL wasmeasured in blood obtained from mothers at delivery, in cord blood, and in children at 5 y of age by quantitative polymerase chain reaction. Linear regression models were used to investigate the associations between PUFA status, methylmercury exposure, and TL. Results: Neither prenatal PUFA status or methylmercury exposure was associated with TL of the mother or child or with TL attrition rate. However, a higher prenatal n-6:n-3 PUFA ratiowas significantly associated with longer TLs in the mothers (β = 0.001, P = 0.048). Child PUFA status andmethylmercury exposurewere not associated with child TL. However, higher family Hollingshead socioeconomic status (SES) scores at 9 mo of agewere significantly associatedwith longer TLs in cord blood (β = 0.005, P=0.03). Conclusions: We found no evidence that PUFA status or methylmercury exposure are determinants of TL in either the mother or child. However, our results support the hypothesis that family SES may be associated with child TL.
  •  
9.
  • Cediel Ulloa, Andrea, et al. (author)
  • Prenatal methylmercury exposure and DNA methylation in seven-year-old children in the Seychelles Child Development Study
  • 2021
  • In: Environment International. - : Elsevier. - 0160-4120 .- 1873-6750. ; 147
  • Journal article (peer-reviewed)abstract
    • BackgroundMethylmercury (MeHg) is present in fish and is a neurotoxicant at sufficiently high levels. One potential mechanism of MeHg toxicity early in life is epigenetic dysregulation that may affect long-term neurodevelopment. Altered DNA methylation of nervous system-related genes has been associated with adult mental health outcomes.ObjectiveTo assess associations between prenatal MeHg exposure and DNA methylation (at the cytosine of CG dinucleotides, CpGs) in three nervous system-related genes, encoding brain-derived neurotropic factor (BDNF), glutamate receptor subunit NR2B (GRIN2B), and the glucocorticoid receptor (NR3C1), in children who were exposed to MeHg in utero.MethodsWe tested 406 seven-year-old Seychellois children participating in the Seychelles Child Development Study (Nutrition Cohort 2), who were prenatally exposed to MeHg from maternal fish consumption. Total mercury in maternal hair (prenatal MeHg exposure measure) collected during pregnancy was measured using atomic absorption spectroscopy. Methylation in DNA from the children’s saliva was measured by pyrosequencing. To assess associations between prenatal MeHg exposure and CpG methylation at seven years of age, we used multivariable linear regression models adjusted for covariates.ResultsWe identified associations with prenatal MeHg exposure for DNA methylation of one GRIN2B CpG and two NR3C1 CpGs out of 12 total CpG sites. Higher prenatal MeHg was associated with higher methylation for each CpG site. For example, NR3C1 CpG3 had an expected increase of 0.03-fold for each additional 1 ppm of prenatal MeHg (B = 0.030, 95% CI 0.001, 0.059; p = 0.047). Several CpG sites associated with MeHg are located in transcription factor binding sites and the observed methylation changes are predicted to lead to lower gene expression.ConclusionsIn a population of people who consume large amounts of fish, we showed that higher prenatal MeHg exposure was associated with differential DNA methylation at seven years of age at specific CpG sites that may influence neurodevelopment and mental health.
  •  
10.
  • Yeates, Alison Jayne, et al. (author)
  • Maternal Long-Chain Polyunsaturated Fatty Acid Status, Methylmercury Exposure, and Birth Outcomes in a High-Fish-Eating Mother-Child Cohort
  • 2020
  • In: The Journal of nutrition. - : Elsevier BV. - 1541-6100 .- 0022-3166. ; 150:7, s. 1749-1756
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Maternal status of long-chain PUFAs (LC-PUFAs) may be related to fetal growth. Maternal fish consumption exposes the mother to the neurotoxicant methylmercury (MeHg), which, in contrast, may restrict fetal growth. OBJECTIVE: Our aim was to examine relations between maternal LC-PUFA status at 28 wk and birth outcomes (birth weight, length, and head circumference), controlling for MeHg exposure throughout pregnancy, in the Seychelles Child Development Study Nutrition Cohort 2. Our secondary aim was to examine the influence of maternal variation in genes regulating the desaturation of LC-PUFAs [fatty acid desaturase (FADS)] on birth outcomes. METHODS: From nonfasting blood samples collected at 28 wk of gestation, we measured serum total LC-PUFA concentrations and FADS1 (rs174537, rs174561), FADS1-FADS2rs3834458, and FADS2rs174575 genotypes, with hair total mercury concentrations assessed at delivery. Data were available for n = 1236 mother-child pairs. Associations of maternal LC-PUFAs, MeHg, and FADS genotype with birth outcomes were assessed by multiple linear regression models, adjusting for child sex, gestational age, maternal age, BMI, alcohol use, socioeconomic status, and parity. RESULTS: In our cohort of healthy mothers, neither maternal LC-PUFA status nor MeHg exposure were significant determinants of birth outcomes. However, when compared with major allele homozygotes, mothers who were heterozygous for the minor allele of FADS1 (rs174537 and rs174561, GT compared with TT, β = 0.205, P = 0.03; TC compared with CC, β = 0.203, P = 0.04) and FADS1-FADS2 (rs3834458, Tdel compared with DelDel, β = 0.197, P = 0.04) had infants with a greater head circumference (all P < 0.05). Homozygosity for the minor allele of FADS2 (rs174575) was associated with a greater birth weight (GG compared with CC, β = 0.109, P = 0.04). CONCLUSIONS: In our mother-child cohort, neither maternal LC-PUFA status nor MeHg exposure was associated with birth outcomes. The observed associations of variation in maternal FADS genotype with birth outcomes should be confirmed in other populations.
  •  
11.
  •  
12.
  • Llop, Sabrina, et al. (author)
  • CYP3A genes and the association between prenatal methylmercury exposure and neurodevelopment
  • 2017
  • In: Environment International. - : Elsevier BV. - 0160-4120 .- 1873-6750. ; 105, s. 34-42
  • Journal article (peer-reviewed)abstract
    • Background Results on the association between prenatal exposure to methylmercury (MeHg) and child neuropsychological development are heterogeneous. Underlying genetic differences across study populations could contribute to this varied response to MeHg. Studies in Drosophila have identified the cytochrome p450 3A (CYP3A) family as candidate MeHg susceptibility genes. Objectives We evaluated whether genetic variation in CYP3A genes influences the association between prenatal exposure to MeHg and child neuropsychological development. Methods The study population included 2639 children from three birth cohort studies: two subcohorts in Seychelles (SCDS) (n = 1160, 20 and 30 months of age, studied during the years 2001–2012), two subcohorts from Spain (INMA) (n = 625, 14 months of age, 2003–2009), and two subcohorts from Italy and Greece (PHIME) (n = 854, 18 months of age, 2006–2011). Total mercury, as a surrogate of MeHg, was analyzed in maternal hair and/or cord blood samples. Neuropsychological development was evaluated using Bayley Scales of Infant Development (BSID). Three functional polymorphisms in the CYP3A family were analyzed: rs2257401 (CYP3A7), rs776746 (CYP3A5), and rs2740574 (CYP3A4). Results There was no association between CYP3A polymorphisms and cord mercury concentrations. The scores for the BSID mental scale improved with increasing cord blood mercury concentrations for carriers of the most active alleles (β[95% CI]: = 2.9[1.53,4.27] for CYP3A7 rs2257401 GG + GC, 2.51[1.04,3.98] for CYP3A5 rs776746 AA + AG and 2.31[0.12,4.50] for CYP3A4 rs2740574 GG + AG). This association was near the null for CYP3A7 CC, CYP3A5 GG and CYP3A4 AA genotypes. The interaction between the CYP3A genes and total mercury was significant (p < 0.05) in European cohorts only. Conclusions Our results suggest that the polymorphisms in CYP3A genes may modify the response to dietary MeHg exposure during early life development.
  •  
13.
  • Love, Tanzy M, et al. (author)
  • Contribution of child ABC-transporter genetics to prenatal MeHg exposure and neurodevelopment
  • 2022
  • In: NeuroToxicology. - : Elsevier BV. - 1872-9711 .- 0161-813X. ; 91, s. 228-233
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: There is emerging evidence that exposure to prenatal methylmercury (MeHg) from maternal fish consumption during pregnancy can differ between individuals due to genetic variation. In previous studies, we have reported that maternal polymorphisms in ABC-transporter genes were associated with maternal hair MeHg concentrations, and with children's early neurodevelopmental tests. In this study, we add to these findings by evaluating the contribution of genetic variation in children's ABC-transporter genes to prenatal MeHg exposure and early child neurodevelopmental tests.METHODS: We genotyped six polymorphisms (rs2032582, rs10276499 and rs1202169 in ABCB1; rs11075290 and rs215088 in ABCC1; rs717620 in ABCC2) in DNA from cord blood and maternal blood of the Seychelles Child Development Study Nutrition Cohort 2. We determined prenatal MeHg exposure by measuring total mercury (Hg) in cord blood by atomic fluorescence spectrometry. We assessed neurodevelopment in children at approximately 20 months using the Bayley Scales of Infant Development (BSID-II). We used linear regression models to analyze covariate-adjusted associations of child genotype with cord MeHg and BSID-II outcomes (Mental Developmental and Psychomotor Developmental Indexes). We also evaluated interactions between genotypes, cord MeHg, and neurodevelopmental outcomes. All models were run with and without adjustment for maternal genotype.RESULTS: Of the six evaluated polymorphisms, only ABCC1 rs11075290 was associated with cord blood MeHg; children homozygous for the T-allele had on average 29.99µg/L MeHg in cord blood while those homozygous for the C-allele had on average 38.06µg/L MeHg in cord blood (p<0.001). No polymorphisms in the children were associated with either subscale of the BSID. However, the association between cord MeHg and the Mental Developmental Index (MDI) of the BSID differed significantly across the three genotypes of ABCB1 rs10276499 (2df F-test, p=0.045). With increasing cord MeHg, the MDI decreased (slope=-0.091, p=0.014) among children homozygous for the rare C-allele.CONCLUSIONS: These findings support the possibility that child ABC genetics might influence prenatal MeHg exposure.
  •  
14.
  • Zhao, Mei, et al. (author)
  • Assembly and Initial Characterization of a Panel of 85 Genomically Validated Cell Lines from Diverse Head and Neck Tumor Sites
  • 2011
  • In: Clinical Cancer Research. - 1078-0432 .- 1557-3265. ; 17:23, s. 7248-7264
  • Journal article (peer-reviewed)abstract
    • Purpose: Human cell lines are useful for studying cancer biology and preclinically modeling cancer therapy, but can be misidentified and cross-contamination is unfortunately common. The purpose of this study was to develop a panel of validated head and neck cell lines representing the spectrum of tissue sites and histologies that could be used for studying the molecular, genetic, and phenotypic diversity of head and neck cancer. Methods: A panel of 122 clinically and phenotypically diverse head and neck cell lines from head and neck squamous cell carcinoma, thyroid cancer, cutaneous squamous cell carcinoma, adenoid cystic carcinoma, oral leukoplakia, immortalized primary keratinocytes, and normal epithelium was assembled from the collections of several individuals and institutions. Authenticity was verified by carrying out short tandem repeat analysis. Human papillomavirus (HPV) status and cell morphology were also determined. Results: Eighty-five of the 122 cell lines had unique genetic profiles. HPV-16 DNA was detected in 2 cell lines. These 85 cell lines included cell lines from the major head and neck primary tumor sites, and close examination shows a wide range of in vitro phenotypes. Conclusions: This panel of 85 genomically validated head and neck cell lines represents a valuable resource for the head and neck cancer research community that can help advance understanding of the disease by providing a standard reference for cell lines that can be used for biological as well as preclinical studies.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-14 of 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view