SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Nachman Benjamin) "

Search: WFRF:(Nachman Benjamin)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Alimena, Juliette, et al. (author)
  • Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider
  • 2020
  • In: Journal of Physics G. - : IOP Publishing. - 0954-3899 .- 1361-6471. ; 47:9
  • Journal article (peer-reviewed)abstract
    • Particles beyond the Standard Model (SM) can generically have lifetimes that are long compared to SM particles at the weak scale. When produced at experiments such as the Large Hadron Collider (LHC) at CERN, these long-lived particles (LLPs) can decay far from the interaction vertex of the primary proton-proton collision. Such LLP signatures are distinct from those of promptly decaying particles that are targeted by the majority of searches for new physics at the LHC, often requiring customized techniques to identify, for example, significantly displaced decay vertices, tracks with atypical properties, and short track segments. Given their non-standard nature, a comprehensive overview of LLP signatures at the LHC is beneficial to ensure that possible avenues of the discovery of new physics are not overlooked. Here we report on the joint work of a community of theorists and experimentalists with the ATLAS, CMS, and LHCb experiments-as well as those working on dedicated experiments such as MoEDAL, milliQan, MATHUSLA, CODEX-b, and FASER-to survey the current state of LLP searches at the LHC, and to chart a path for the development of LLP searches into the future, both in the upcoming Run 3 and at the high-luminosity LHC. The work is organized around the current and future potential capabilities of LHC experiments to generally discover new LLPs, and takes a signature-based approach to surveying classes of models that give rise to LLPs rather than emphasizing any particular theory motivation. We develop a set of simplified models; assess the coverage of current searches; document known, often unexpected backgrounds; explore the capabilities of proposed detector upgrades; provide recommendations for the presentation of search results; and look towards the newest frontiers, namely high-multiplicity 'dark showers', highlighting opportunities for expanding the LHC reach for these signals.
  •  
2.
  • Aad, G, et al. (author)
  • Measurements of fiducial cross-sections for [Formula: see text] production with one or two additional b-jets in pp collisions at [Formula: see text]=8 TeV using the ATLAS detector.
  • 2016
  • In: European Physical Journal C. Particles and Fields. - : Springer Science and Business Media LLC. - 1434-6044. ; 76
  • Journal article (peer-reviewed)abstract
    • Fiducial cross-sections for [Formula: see text] production with one or two additional b-jets are reported, using an integrated luminosity of 20.3 fb[Formula: see text] of proton-proton collisions at a centre-of-mass energy of 8 TeV at the Large Hadron Collider, collected with the ATLAS detector. The cross-section times branching ratio for [Formula: see text] events with at least one additional b-jet is measured to be 950 [Formula: see text] 70 (stat.) [Formula: see text] (syst.) fb in the lepton-plus-jets channel and 50 [Formula: see text] 10 (stat.) [Formula: see text] (syst.) fb in the [Formula: see text] channel. The cross-section times branching ratio for events with at least two additional b-jets is measured to be 19.3 [Formula: see text] 3.5 (stat.) [Formula: see text] 5.7 (syst.) fb in the dilepton channel ([Formula: see text], [Formula: see text], and ee) using a method based on tight selection criteria, and 13.5 [Formula: see text] 3.3 (stat.) [Formula: see text] 3.6 (syst.) fb using a looser selection that allows the background normalisation to be extracted from data. The latter method also measures a value of 1.30 [Formula: see text] 0.33 (stat.) [Formula: see text] 0.28 (syst.)% for the ratio of [Formula: see text] production with two additional b-jets to [Formula: see text] production with any two additional jets. All measurements are in good agreement with recent theory predictions.
  •  
3.
  •  
4.
  • Aad, G, et al. (author)
  • Searches for scalar leptoquarks in pp collisions at [Formula: see text] = 8 TeV with the ATLAS detector.
  • 2016
  • In: European Physical Journal C. Particles and Fields. - : Springer Science and Business Media LLC. - 1434-6044. ; 76
  • Journal article (peer-reviewed)abstract
    • Searches for pair-produced scalar leptoquarks are performed using 20 fb[Formula: see text] of proton-proton collision data provided by the LHC and recorded by the ATLAS detector at [Formula: see text] TeV. Events with two electrons (muons) and two or more jets in the final state are used to search for first (second)-generation leptoquarks. The results from two previously published ATLAS analyses are interpreted in terms of third-generation leptoquarks decaying to [Formula: see text] and [Formula: see text] final states. No statistically significant excess above the Standard Model expectation is observed in any channel and scalar leptoquarks are excluded at 95 % CL with masses up to [Formula: see text] 1050 GeV for first-generation leptoquarks, [Formula: see text] 1000 GeV for second-generation leptoquarks, [Formula: see text] 625 GeV for third-generation leptoquarks in the [Formula: see text] channel, and 200 [Formula: see text] 640 GeV in the [Formula: see text] channel.
  •  
5.
  • Bright-Thonney, Samuel, et al. (author)
  • Systematic quark/gluon identification with ratios of likelihoods
  • 2022
  • In: Journal of High Energy Physics. - 1029-8479. ; 2022:12
  • Journal article (peer-reviewed)abstract
    • Discriminating between quark- and gluon-initiated jets has long been a central focus of jet substructure, leading to the introduction of numerous observables and calculations to high perturbative accuracy. At the same time, there have been many attempts to fully exploit the jet radiation pattern using tools from statistics and machine learning. We propose a new approach that combines a deep analytic understanding of jet substructure with the optimality promised by machine learning and statistics. After specifying an approximation to the full emission phase space, we show how to construct the optimal observable for a given classification task. This procedure is demonstrated for the case of quark and gluons jets, where we show how to systematically capture sub-eikonal corrections in the splitting functions, and prove that linear combinations of weighted multiplicity is the optimal observable. In addition to providing a new and powerful framework for systematically improving jet substructure observables, we demonstrate the performance of several quark versus gluon jet tagging observables in parton-level Monte Carlo simulations, and find that they perform at or near the level of a deep neural network classifier. Combined with the rapid recent progress in the development of higher order parton showers, we believe that our approach provides a basis for systematically exploiting subleading effects in jet substructure analyses at the Large Hadron Collider (LHC) and beyond.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view