SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Oliveira Medeiros Adriana) "

Search: WFRF:(Oliveira Medeiros Adriana)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Householder, John Ethan, et al. (author)
  • One sixth of Amazonian tree diversity is dependent on river floodplains
  • 2024
  • In: NATURE ECOLOGY & EVOLUTION. - 2397-334X.
  • Journal article (peer-reviewed)abstract
    • Amazonia's floodplain system is the largest and most biodiverse on Earth. Although forests are crucial to the ecological integrity of floodplains, our understanding of their species composition and how this may differ from surrounding forest types is still far too limited, particularly as changing inundation regimes begin to reshape floodplain tree communities and the critical ecosystem functions they underpin. Here we address this gap by taking a spatially explicit look at Amazonia-wide patterns of tree-species turnover and ecological specialization of the region's floodplain forests. We show that the majority of Amazonian tree species can inhabit floodplains, and about a sixth of Amazonian tree diversity is ecologically specialized on floodplains. The degree of specialization in floodplain communities is driven by regional flood patterns, with the most compositionally differentiated floodplain forests located centrally within the fluvial network and contingent on the most extraordinary flood magnitudes regionally. Our results provide a spatially explicit view of ecological specialization of floodplain forest communities and expose the need for whole-basin hydrological integrity to protect the Amazon's tree diversity and its function.
  •  
2.
  • Luize, Bruno Garcia, et al. (author)
  • Geography and ecology shape the phylogenetic composition of Amazonian tree communities
  • 2024
  • In: JOURNAL OF BIOGEOGRAPHY. - 0305-0270 .- 1365-2699.
  • Journal article (peer-reviewed)abstract
    • Aim: Amazonia hosts more tree species from numerous evolutionary lineages, both young and ancient, than any other biogeographic region. Previous studies have shown that tree lineages colonized multiple edaphic environments and dispersed widely across Amazonia, leading to a hypothesis, which we test, that lineages should not be strongly associated with either geographic regions or edaphic forest types. Location: Amazonia. Taxon: Angiosperms (Magnoliids; Monocots; Eudicots). Methods: Data for the abundance of 5082 tree species in 1989 plots were combined with a mega-phylogeny. We applied evolutionary ordination to assess how phylogenetic composition varies across Amazonia. We used variation partitioning and Moran's eigenvector maps (MEM) to test and quantify the separate and joint contributions of spatial and environmental variables to explain the phylogenetic composition of plots. We tested the indicator value of lineages for geographic regions and edaphic forest types and mapped associations onto the phylogeny. Results: In the terra firme and v & aacute;rzea forest types, the phylogenetic composition varies by geographic region, but the igap & oacute; and white-sand forest types retain a unique evolutionary signature regardless of region. Overall, we find that soil chemistry, climate and topography explain 24% of the variation in phylogenetic composition, with 79% of that variation being spatially structured (R-2 = 19% overall for combined spatial/environmental effects). The phylogenetic composition also shows substantial spatial patterns not related to the environmental variables we quantified (R-2 = 28%). A greater number of lineages were significant indicators of geographic regions than forest types. Main Conclusion: Numerous tree lineages, including some ancient ones (>66 Ma), show strong associations with geographic regions and edaphic forest types of Amazonia. This shows that specialization in specific edaphic environments has played a long-standing role in the evolutionary assembly of Amazonian forests. Furthermore, many lineages, even those that have dispersed across Amazonia, dominate within a specific region, likely because of phylogenetically conserved niches for environmental conditions that are prevalent within regions.
  •  
3.
  • ter Steege, Hans, et al. (author)
  • Mapping density, diversity and species-richness of the Amazon tree flora
  • 2023
  • In: COMMUNICATIONS BIOLOGY. - 2399-3642. ; 6:1
  • Journal article (peer-reviewed)abstract
    • Using 2.046 botanically-inventoried tree plots across the largest tropical forest on Earth, we mapped tree species-diversity and tree species-richness at 0.1-degree resolution, and investigated drivers for diversity and richness. Using only location, stratified by forest type, as predictor, our spatial model, to the best of our knowledge, provides the most accurate map of tree diversity in Amazonia to date, explaining approximately 70% of the tree diversity and species-richness. Large soil-forest combinations determine a significant percentage of the variation in tree species-richness and tree alpha-diversity in Amazonian forest-plots. We suggest that the size and fragmentation of these systems drive their large-scale diversity patterns and hence local diversity. A model not using location but cumulative water deficit, tree density, and temperature seasonality explains 47% of the tree species-richness in the terra-firme forest in Amazonia. Over large areas across Amazonia, residuals of this relationship are small and poorly spatially structured, suggesting that much of the residual variation may be local. The Guyana Shield area has consistently negative residuals, showing that this area has lower tree species-richness than expected by our models. We provide extensive plot meta-data, including tree density, tree alpha-diversity and tree species-richness results and gridded maps at 0.1-degree resolution. A study mapping the tree species richness in Amazonian forests shows that soil type exerts a strong effect on species richness, probably caused by the areas of these forest types. Cumulative water deficit, tree density and temperature seasonality affect species richness at a regional scale.
  •  
4.
  • Pinotti, Felipe Eduardo, et al. (author)
  • Use of a Non-Crosslinked Collagen Membrane During Guided Bone Regeneration Does Not Interfere With the Bone Regenerative Capacity of the Periosteum
  • 2018
  • In: Journal of oral and maxillofacial surgery (Print). - : Elsevier. - 0278-2391 .- 1531-5053. ; 76:11
  • Journal article (peer-reviewed)abstract
    • PURPOSE: To assess whether the use of a non-crosslinked porcine collagen type I and III bi-layered membrane inter-positioned between the periosteum and a bone defect would interfere with the bone regenerative capacity of the periosteum. MATERIALS AND METHODS: Sixty rats, each with 1 critical-size calvarial defect (CSD; diameter, 5 mm) in the parietal bone, were randomly allocated to 1 of 3 equal-size groups after CSD creation: 1) the periosteum was excised and the flap was repositioned without interposition of a membrane (no-periosteum [NP] group); 2) the flap including the periosteum was repositioned (periosteum [P] group); and 3) a non-crosslinked collagen membrane was inter-positioned between the flap, including the periosteum, and the bone defect (membrane [M] group). Micro-computed tomography, qualitative histology, immunohistochemistry, and reverse transcription real-time quantitative polymerase chain reaction were performed at 3, 7, 15, and 30 days postoperatively. RESULTS: A markedly increased radiographic residual defect length was observed in the NP group compared with the P group at 30 days. The NP group also presented a smaller radiographic bone fill area than the P group at 15 and 30 days and then the M group at 30 days. The P and M groups exhibited considerably greater expression of bone morphogenetic protein-2 and osteocalcin than the NP group at 7 days; expression of transforming growth factor-beta1 was considerably greater in the NP group at 15 days. Further, the P group presented considerably higher gene expression levels of Runx2 and Jagged1 at 7 days and of alkaline phosphatase at 3 and 15 days compared with the M and NP groups. CONCLUSION: Interposition of this specific non-crosslinked collagen membrane between the periosteum and the bone defect during guided bone regeneration interferes only slightly, if at all, with the bone regenerative capacity of the periosteum.
  •  
5.
  • Tiegs, Scott D., et al. (author)
  • Global patterns and drivers of ecosystem functioning in rivers and riparian zones
  • 2019
  • In: Science Advances. - Washington : American Association of Advancement in Science. - 2375-2548. ; 5:1
  • Journal article (peer-reviewed)abstract
    • River ecosystems receive and process vast quantities of terrestrial organic carbon, the fate of which depends strongly on microbial activity. Variation in and controls of processing rates, however, are poorly characterized at the global scale. In response, we used a peer-sourced research network and a highly standardized carbon processing assay to conduct a global-scale field experiment in greater than 1000 river and riparian sites. We found that Earth's biomes have distinct carbon processing signatures. Slow processing is evident across latitudes, whereas rapid rates are restricted to lower latitudes. Both the mean rate and variability decline with latitude, suggesting temperature constraints toward the poles and greater roles for other environmental drivers (e.g., nutrient loading) toward the equator. These results and data set the stage for unprecedented "next-generation biomonitoring" by establishing baselines to help quantify environmental impacts to the functioning of ecosystems at a global scale.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5
Type of publication
journal article (5)
Type of content
peer-reviewed (5)
Author/Editor
Malhi, Yadvinder (3)
Phillips, Oliver L. (3)
Carvalho, Fernanda A ... (3)
ter Steege, Hans (3)
Barlow, Jos (3)
Berenguer, Erika (3)
show more...
Damasco, Gabriel, 19 ... (3)
Balslev, Henrik (3)
Holmgren, Milena (3)
Feeley, Kenneth J. (3)
Huamantupa-Chuquimac ... (3)
Rivas-Torres, Gonzal ... (3)
Farfan-Rios, William (3)
de Aguiar, Daniel P. ... (3)
Ahuite Reategui, Man ... (3)
Albuquerque, Bianca ... (3)
Alonso, Alfonso (3)
do Amaral, Dário Dan ... (3)
do Amaral, Iêda Leão (3)
Andrade, Ana (3)
de Andrade Miranda, ... (3)
Araujo-Murakami, Ale ... (3)
Arroyo, Luzmila (3)
Aymard C, Gerardo A. (3)
Baider, Cláudia (3)
Bánki, Olaf S. (3)
Baraloto, Chris (3)
Barbosa, Edelcilio M ... (3)
Barbosa, Flávia Rodr ... (3)
Brienen, Roel (3)
Camargo, José Luís (3)
Campelo, Wegliane (3)
Cano, Angela (3)
Cárdenas, Sasha (3)
Carrero Márquez, Yrm ... (3)
Castellanos, Hernán (3)
Castilho, Carolina V ... (3)
Cerón, Carlos (3)
Chave, Jerome (3)
Comiskey, James A. (3)
Correa, Diego F. (3)
Costa, Flávia R.C. (3)
Dallmeier, Francisco (3)
Dávila Doza, Hilda P ... (3)
Demarchi, Layon O. (3)
Dexter, Kyle G. (3)
Di Fiore, Anthony (3)
Peres, Carlos A. (3)
Hoffman, Bruce (3)
Galbraith, David (3)
show less...
University
University of Gothenburg (3)
Umeå University (1)
Malmö University (1)
Swedish University of Agricultural Sciences (1)
Language
English (5)
Research subject (UKÄ/SCB)
Natural sciences (3)
Medical and Health Sciences (1)
Agricultural Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view