SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Onoda Yusuke) "

Search: WFRF:(Onoda Yusuke)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Björkman, Anne, 1981, et al. (author)
  • Plant functional trait change across a warming tundra biome
  • 2018
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 562:7725, s. 57-62
  • Journal article (peer-reviewed)abstract
    • The tundra is warming more rapidly than any other biome on Earth, and the potential ramifications are far-reaching because of global feedback effects between vegetation and climate. A better understanding of how environmental factors shape plant structure and function is crucial for predicting the consequences of environmental change for ecosystem functioning. Here we explore the biome-wide relationships between temperature, moisture and seven key plant functional traits both across space and over three decades of warming at 117 tundra locations. Spatial temperature–trait relationships were generally strong but soil moisture had a marked influence on the strength and direction of these relationships, highlighting the potentially important influence of changes in water availability on future trait shifts in tundra plant communities. Community height increased with warming across all sites over the past three decades, but other traits lagged far behind predicted rates of change. Our findings highlight the challenge of using space-for-time substitution to predict the functional consequences of future warming and suggest that functions that are tied closely to plant height will experience the most rapid change. They also reveal the strength with which environmental factors shape biotic communities at the coldest extremes of the planet and will help to improve projections of functional changes in tundra ecosystems with climate warming.
  •  
2.
  • Falster, Daniel, et al. (author)
  • AusTraits, a curated plant trait database for the Australian flora
  • 2021
  • In: Scientific Data. - : Nature Portfolio. - 2052-4463. ; 8:1
  • Journal article (peer-reviewed)abstract
    • We introduce the AusTraits database - a compilation of values of plant traits for taxa in the Australian flora (hereafter AusTraits). AusTraits synthesises data on 448 traits across 28,640 taxa from field campaigns, published literature, taxonomic monographs, and individual taxon descriptions. Traits vary in scope from physiological measures of performance (e.g. photosynthetic gas exchange, water-use efficiency) to morphological attributes (e.g. leaf area, seed mass, plant height) which link to aspects of ecological variation. AusTraits contains curated and harmonised individual- and species-level measurements coupled to, where available, contextual information on site properties and experimental conditions. This article provides information on version 3.0.2 of AusTraits which contains data for 997,808 trait-by-taxon combinations. We envision AusTraits as an ongoing collaborative initiative for easily archiving and sharing trait data, which also provides a template for other national or regional initiatives globally to fill persistent gaps in trait knowledge.
  •  
3.
  • Kattge, Jens, et al. (author)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • In: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Journal article (peer-reviewed)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
4.
  • Kumarathunge, Dushan P., et al. (author)
  • Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale
  • 2019
  • In: New Phytologist. - : John Wiley & Sons. - 0028-646X .- 1469-8137. ; 222:2, s. 768-784
  • Journal article (peer-reviewed)abstract
    • The temperature response of photosynthesis is one of the key factors determining predicted responses to warming in global vegetation models (GVMs). The response may vary geographically, owing to genetic adaptation to climate, and temporally, as a result of acclimation to changes in ambient temperature. Our goal was to develop a robust quantitative global model representing acclimation and adaptation of photosynthetic temperature responses.We quantified and modelled key mechanisms responsible for photosynthetic temperature acclimation and adaptation using a global dataset of photosynthetic CO2 response curves, including data from 141 C3 species from tropical rainforest to Arctic tundra. We separated temperature acclimation and adaptation processes by considering seasonal and common-garden datasets, respectively.The observed global variation in the temperature optimum of photosynthesis was primarily explained by biochemical limitations to photosynthesis, rather than stomatal conductance or respiration. We found acclimation to growth temperature to be a stronger driver of this variation than adaptation to temperature at climate of origin.We developed a summary model to represent photosynthetic temperature responses and showed that it predicted the observed global variation in optimal temperatures with high accuracy. This novel algorithm should enable improved prediction of the function of global ecosystems in a warming climate.
  •  
5.
  • Lin, Yan-Shih, et al. (author)
  • Optimal stomatal behaviour around the world
  • 2015
  • In: Nature Climate Change. - : Springer Science and Business Media LLC. - 1758-678X .- 1758-6798. ; 5, s. 459-464
  • Journal article (peer-reviewed)abstract
    • Stomatal conductance (gs) is a key land-surface attribute as it links transpiration, the dominant component of global land evapotranspiration, and photosynthesis, the driving force of the global carbon cycle. Despite the pivotal role of gs in predictions of global water and carbon cycle changes, a globalscale database and an associated globally applicable model of gs that allow predictions of stomatal behaviour are lacking. Here,we present a database of globally distributed gs obtained in the field for a wide range of plant functional types (PFTs) and biomes. We find that stomatal behaviour differs among PFTs according to their marginal carbon cost of water use, as predicted by the theory underpinning the optimal stomatal model1 and the leaf and wood economics spectrum2,3.We also demonstrate a global relationship with climate. These findings provide a robust theoretical framework for understanding and predicting the behaviour of gs across biomes and across PFTs that can be applied to regional, continental and global-scale modelling of ecosystem productivity, energy balance and ecohydrological processes in a future changing climate.
  •  
6.
  • Lin, Yan-Shih, et al. (author)
  • Optimal stomatal behaviour around the world
  • 2015
  • In: Nature Climate Change. - 1758-6798 .- 1758-678X. ; 5:5, s. 459-464
  • Journal article (peer-reviewed)abstract
    • Stomatal conductance (g(s)) is a key land-surface attribute as it links transpiration, the dominant component of global land evapotranspiration, and photosynthesis, the driving force of the global carbon cycle. Despite the pivotal role of g(s) in predictions of global water and carbon cycle changes, a global-scale database and an associated globally applicable model of g(s) that allow predictions of stomatal behaviour are lacking. Here, we present a database of globally distributed g(s) obtained in the field for a wide range of plant functional types (PFTs) and biomes. We find that stomatal behaviour differs among PFTs according to their marginal carbon cost of water use, as predicted by the theory underpinning the optimal stomatal model(1) and the leaf and wood economics spectrum(2,3). We also demonstrate a global relationship with climate. These findin g(s) provide a robust theoretical framework for understanding and predicting the behaviour of g(s) across biomes and across PFTs that can be applied to regional, continental and global-scale modelling of ecosystem productivity, energy balance and ecohydrological processes in a future changing climate.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6
Type of publication
journal article (6)
Type of content
peer-reviewed (6)
Author/Editor
Onoda, Yusuke (6)
Rogers, Alistair (4)
Reich, Peter B (3)
Niinemets, Ulo (3)
Tjoelker, Mark G (3)
Cornwell, William K. (3)
show more...
Wang, Han (3)
Diaz, Sandra (2)
Linderson, Maj-Lena (2)
Uddling, Johan, 1972 (2)
Wallin, Göran, 1955 (2)
Sun, Wei (2)
Zieminska, Kasia (2)
Poschlod, Peter (2)
Dainese, Matteo (2)
van Bodegom, Peter M ... (2)
Björkman, Anne, 1981 (2)
Peñuelas, Josep (2)
Zaragoza-Castells, J ... (2)
Bonal, Damien (2)
Ozinga, Wim A. (2)
Vellend, Mark (2)
Soudzilovskaia, Nade ... (2)
Chapin, F. Stuart (2)
Te Beest, Mariska (2)
Rowland, Lucy (2)
Iversen, Colleen M. (2)
Myers-Smith, Isla H. (2)
Kattge, Jens (2)
Manning, Peter (2)
Carbognani, Michele (2)
Petraglia, Alessandr ... (2)
Berner, Logan (2)
Dullinger, Stefan (2)
Rumpf, Sabine B. (2)
Venn, Susanna (2)
Bahn, Michael (2)
Blonder, Benjamin (2)
Campetella, Giandieg ... (2)
Cerabolini, Bruno E. ... (2)
Craine, Joseph (2)
Milla, Ruben (2)
Ordoñez, Jenny C. (2)
Poorter, Hendrik (2)
Schamp, Brandon (2)
Weiher, Evan (2)
Tarvainen, Lasse (2)
Moles, Angela T. (2)
Rosell, Julieta A. (2)
De Angelis, Paolo (2)
show less...
University
University of Gothenburg (4)
Swedish University of Agricultural Sciences (4)
Lund University (2)
Umeå University (1)
Stockholm University (1)
Linköping University (1)
show more...
Linnaeus University (1)
Karlstad University (1)
show less...
Language
English (6)
Research subject (UKÄ/SCB)
Natural sciences (6)
Agricultural Sciences (2)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view