SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Palmqvist Sebastian) "

Search: WFRF:(Palmqvist Sebastian)

  • Result 1-25 of 158
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Schneider, Edith, et al. (author)
  • MicroRNA-708 is a novel regulator of the Hoxa9 program in myeloid cells.
  • 2020
  • In: Leukemia. - : Springer Science and Business Media LLC. - 1476-5551 .- 0887-6924. ; 34, s. 1253-1265
  • Journal article (peer-reviewed)abstract
    • MicroRNAs (miRNAs) are commonly deregulated in acute myeloid leukemia (AML), affecting critical genes not only through direct targeting, but also through modulation of downstream effectors. Homeobox (Hox) genes balance self-renewal, proliferation, cell death, and differentiation in many tissues and aberrant Hox gene expression can create a predisposition to leukemogenesis in hematopoietic cells. However, possible linkages between the regulatory pathways of Hox genes and miRNAs are not yet fully resolved. We identified miR-708 to be upregulated in Hoxa9/Meis1 AML inducing cell lines as well as in AML patients. We further showed Meis1 directly targeting miR-708 and modulating its expression through epigenetic transcriptional regulation. CRISPR/Cas9 mediated knockout of miR-708 in Hoxa9/Meis1 cells delayed disease onset in vivo, demonstrating for the first time a pro-leukemic contribution of miR-708 in this context. Overexpression of miR-708 however strongly impeded Hoxa9 mediated transformation and homing capacity in vivo through modulation of adhesion factors and induction of myeloid differentiation. Taken together, we reveal miR-708, a putative tumor suppressor miRNA and direct target of Meis1, as a potent antagonist of the Hoxa9 phenotype but an effector of transformation in Hoxa9/Meis1. This unexpected finding highlights the yet unexplored role of miRNAs as indirect regulators of the Hox program during normal and aberrant hematopoiesis.
  •  
2.
  • Ahmadi, Khazar, et al. (author)
  • Gray matter hypoperfusion is a late pathological event in the course of Alzheimer's disease
  • 2023
  • In: Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. - 1559-7016. ; 43:4, s. 565-580
  • Journal article (peer-reviewed)abstract
    • Several studies have shown decreased cerebral blood flow (CBF) in Alzheimer's disease (AD). However, the role of hypoperfusion in the disease pathogenesis remains unclear. Combining arterial spin labeling MRI, PET, and CSF biomarkers, we investigated the associations between gray matter (GM)-CBF and the key mechanisms in AD including amyloid-β (Aβ) and tau pathology, synaptic and axonal degeneration. Further, we applied a disease progression modeling to characterize the temporal sequence of different AD biomarkers. Lower perfusion was observed in temporo-occipito-parietal cortex in the Aβ-positive cognitively impaired compared to both Aβ-negative and Aβ-positive cognitively unimpaired individuals. In participants along the AD spectrum, GM-CBF was associated with tau, synaptic and axonal dysfunction, but not Aβ in similar cortical regions. Axonal degeneration was further associated with hypoperfusion in cognitively unimpaired individuals. Disease progression modeling revealed that GM-CBF disruption Followed the abnormality of biomarkers of Aβ, tau and brain atrophy. These findings indicate that tau tangles and neurodegeneration are more closely connected with GM-CBF changes than Aβ pathology. Although subjected to the sensitivity of the employed neuroimaging techniques and the modeling approach, these findings suggest that hypoperfusion might not be an early event associated with the build-up of Aβ in preclinical phase of AD.
  •  
3.
  • Arvidsson, Ida, et al. (author)
  • Comparing a pre-defined versus deep learning approach for extracting brain atrophy patterns to predict cognitive decline due to Alzheimer’s disease in patients with mild cognitive symptoms
  • 2024
  • In: Alzheimer's Research and Therapy. - 1758-9193. ; 16:1
  • Journal article (peer-reviewed)abstract
    • Background: Predicting future Alzheimer’s disease (AD)-related cognitive decline among individuals with subjective cognitive decline (SCD) or mild cognitive impairment (MCI) is an important task for healthcare. Structural brain imaging as measured by magnetic resonance imaging (MRI) could potentially contribute when making such predictions. It is unclear if the predictive performance of MRI can be improved using entire brain images in deep learning (DL) models compared to using pre-defined brain regions. Methods: A cohort of 332 individuals with SCD/MCI were included from the Swedish BioFINDER-1 study. The goal was to predict longitudinal SCD/MCI-to-AD dementia progression and change in Mini-Mental State Examination (MMSE) over four years. Four models were evaluated using different predictors: (1) clinical data only, including demographics, cognitive tests and APOE ε4 status, (2) clinical data plus hippocampal volume, (3) clinical data plus all regional MRI gray matter volumes (N = 68) extracted using FreeSurfer software, (4) a DL model trained using multi-task learning with MRI images, Jacobian determinant images and baseline cognition as input. A double cross-validation scheme, with five test folds and for each of those ten validation folds, was used. External evaluation was performed on part of the ADNI dataset, including 108 patients. Mann-Whitney U-test was used to determine statistically significant differences in performance, with p-values less than 0.05 considered significant. Results: In the BioFINDER cohort, 109 patients (33%) progressed to AD dementia. The performance of the clinical data model for prediction of progression to AD dementia was area under the curve (AUC) = 0.85 and four-year cognitive decline was R2 = 0.14. The performance was improved for both outcomes when adding hippocampal volume (AUC = 0.86, R2 = 0.16). Adding FreeSurfer brain regions improved prediction of four-year cognitive decline but not progression to AD (AUC = 0.83, R2 = 0.17), while the DL model worsened the performance for both outcomes (AUC = 0.84, R2 = 0.08). A sensitivity analysis showed that the Jacobian determinant image was more informative than the MRI image, but that performance was maximized when both were included. In the external evaluation cohort from ADNI, 23 patients (21%) progressed to AD dementia. The results for predicted progression to AD dementia were similar to the results for the BioFINDER test data, while the performance for the cognitive decline was deteriorated. Conclusions: The DL model did not significantly improve the prediction of clinical disease progression in AD, compared to regression models with a single pre-defined brain region.
  •  
4.
  • Ashton, Nicholas J., et al. (author)
  • A multicentre validation study of the diagnostic value of plasma neurofilament light
  • 2021
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12, s. 1-12
  • Journal article (peer-reviewed)abstract
    • Increased cerebrospinal fluid neurofilament light (NfL) is a recognized biomarker for neurodegeneration that can also be assessed in blood. Here, we investigate plasma NfL as a marker of neurodegeneration in 13 neurodegenerative disorders, Down syndrome, depression and cognitively unimpaired controls from two multicenter cohorts: King's College London (n = 805) and the Swedish BioFINDER study (n = 1,464). Plasma NfL was significantly increased in all cortical neurodegenerative disorders, amyotrophic lateral sclerosis and atypical parkinsonian disorders. We demonstrate that plasma NfL is clinically useful in identifying atypical parkinsonian disorders in patients with parkinsonism, dementia in individuals with Down syndrome, dementia among psychiatric disorders, and frontotemporal dementia in patients with cognitive impairment. Data-driven cut-offs highlighted the fundamental importance of age-related clinical cut-offs for disorders with a younger age of onset. Finally, plasma NfL performs best when applied to indicate no underlying neurodegeneration, with low false positives, in all age-related cut-offs.
  •  
5.
  • Ashton, Nicholas J., et al. (author)
  • Differential roles of Aβ42/40, p-tau231 and p-tau217 for Alzheimer's trial selection and disease monitoring.
  • 2022
  • In: Nature medicine. - : Springer Science and Business Media LLC. - 1546-170X .- 1078-8956. ; 28:12, s. 2555-2562
  • Journal article (peer-reviewed)abstract
    • Blood biomarkers indicative of Alzheimer's disease (AD) pathology are altered in both preclinical and symptomatic stages of the disease. Distinctive biomarkers may be optimal for the identification of AD pathology or monitoring of disease progression. Blood biomarkers that correlate with changes in cognition and atrophy during the course of the disease could be used in clinical trials to identify successful interventions and thereby accelerate the development of efficient therapies. When disease-modifying treatments become approved for use, efficient blood-based biomarkers might also inform on treatment implementation and management in clinical practice. In the BioFINDER-1 cohort, plasma phosphorylated (p)-tau231 and amyloid-β42/40 ratio were more changed at lower thresholds of amyloid pathology. Longitudinally, however, only p-tau217 demonstrated marked amyloid-dependent changes over 4-6years in both preclinical and symptomatic stages of the disease, with no such changes observed in p-tau231, p-tau181, amyloid-β42/40, glial acidic fibrillary protein or neurofilament light. Only longitudinal increases of p-tau217 were also associated with clinical deterioration and brain atrophy in preclinical AD. The selective longitudinal increase of p-tau217 and its associations with cognitive decline and atrophy was confirmed in an independent cohort (Wisconsin Registry for Alzheimer's Prevention). These findings support the differential association of plasma biomarkers with disease development and strongly highlight p-tau217 as a surrogate marker of disease progression in preclinical and prodromal AD, with impact for the development of new disease-modifying treatments.
  •  
6.
  • Ayton, Scott, et al. (author)
  • Acute phase markers in CSF reveal inflammatory changes in Alzheimer's disease that intersect with pathology, APOE ε4, sex and age
  • 2021
  • In: Progress in Neurobiology. - : Elsevier BV. - 0301-0082. ; 198
  • Journal article (peer-reviewed)abstract
    • It is unknown how neuroinflammation may feature in the etiology of Alzheimer's disease (AD). We profiled acute phase response (APR) proteins (α1-antitrypsin, α1-antichymotrypsin, ceruloplasmin, complement C3, ferritin, α-fibrinogen, β-fibrinogen, γ-fibrinogen, haptoglobin, hemopexin) in CSF of 1291 subjects along the clinical and biomarker spectrum of AD to investigate the association between inflammatory changes, disease outcomes, and demographic variables. Subjects were stratified by Aβ42/t-tau as well as the following clinical diagnoses: cognitively normal (CN); subjective cognitive decline (SCD); mild cognitive impairment (MCI); and AD dementia. In separate multiple regressions (adjusting for diagnosis, age, sex, APOE-ε4) of each APR protein and a composite of all APR proteins, CSF Aβ42/t-tau status was associated with elevated ferritin, but not any other APR protein in CN and SCD subjects. Rather, the APR was elevated along with symptomatic progression (CN < SCD < MCI < AD), and this was elevation was mediated by CSF p-tau181. APOE ε4 status did not affect levels of any APR proteins in CSF, while these were elevated in males and with increased age. The performance of the APR in predicting clinical diagnosis was influenced by APOE ε4 status, sex, and age. These data provide new insight into inflammatory changes in AD and how this intersects with pathology changes and patient demographics.
  •  
7.
  • Ayton, Scott, et al. (author)
  • CSF ferritin in the clinicopathological progression of Alzheimer's disease and associations with APOE and inflammation biomarkers
  • 2023
  • In: Journal of Neurology, Neurosurgery and Psychiatry. - : BMJ. - 0022-3050 .- 1468-330X. ; 94:3, s. 211-219
  • Journal article (peer-reviewed)abstract
    • Background: A putative role for iron in driving Alzheimer's disease (AD) progression is complicated by previously reported associations with neuroinflammation, apolipoprotein E and AD proteinopathy. To establish how iron interacts with clinicopathological features of AD and at what disease stage iron influences cognitive outcomes, we investigated the association of cerebrospinal fluid (CSF) biomarkers of iron (ferritin), inflammation (acute phase response proteins) and apolipoproteins with pathological biomarkers (CSF Aβ42/t-tau, p-tau181), clinical staging and longitudinal cognitive deterioration in subjects from the BioFINDER cohort, with replication of key results in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. Methods: Ferritin, acute phase response proteins (n=9) and apolipoproteins (n=6) were measured in CSF samples from BioFINDER (n=1239; 4 years cognitive follow-up) participants stratified by cognitive status (cognitively unimpaired, mild cognitive impairment, AD) and for the presence of amyloid and tangle pathology using CSF Aβ42/t-tau (A+) and p-tau181 (T+). The ferritin and apolipoprotein E associations were replicated in the ADNI (n=264) cohort. Results: In both cohorts, ferritin and apoE were elevated in A-T+ and A+T+ subjects (16%-40%), but not clinical diagnosis. Other apolipoproteins and acute phase response proteins increased with clinical diagnosis, not pathology. CSF ferritin was positively associated with p-tau181, which was mediated by apolipoprotein E. An optimised threshold of ferritin predicted cognitive deterioration in mild cognitive impairment subjects in the BioFINDER cohort, especially those people classified as A-T- and A+T-. Conclusions: CSF markers of iron and neuroinflammation have distinct associations with disease stages, while iron may be more intimately associated with apolipoprotein E and tau pathology.
  •  
8.
  • Ayton, Scott, et al. (author)
  • The Neuroinflammatory Acute Phase Response in Parkinsonian-Related Disorders
  • 2022
  • In: Movement Disorders. - : Wiley. - 0885-3185 .- 1531-8257. ; 37:5, s. 993-1003
  • Journal article (peer-reviewed)abstract
    • Background: Neuroinflammation is implicated in the pathophysiology of Parkinson's disease (PD) and related conditions, yet prior clinical biomarker data report mixed findings. Objectives: The aim was to measure a panel of neuroinflammatory acute phase response (APR) proteins in the cerebrospinal fluid (CSF) of participants with PD and related disorders. Methods: Eleven APR proteins were measured in the CSF of 867 participants from the BioFINDER cohort who were healthy (612) or had a diagnosis of PD (155), multiple system atrophy (MSA) (26), progressive supranuclear palsy (PSP) (22), dementia with Lewy bodies (DLB) (23), or Parkinson’s disease with dementia (PDD) (29). Results: CSF APR proteins were mostly unchanged in PD, with only haptoglobin and α1-antitrypsin significantly elevated compared to controls. These proteins were variably increased in the other disorders. Certain protein components yielded unique signatures according to diagnosis: ferritin and transthyretin were selectively elevated in MSA and discriminated these patients from all others. Haptoglobin was selectively increased in PSP, discriminating this disease from MSA when used in combination with ferritin and transthyretin. This panel of proteins did not correlate well with severity of motor impairment in any disease category, but several (particularly ceruloplasmin and ferritin) were associated with memory performance (Mini-Mental State Examination) in patients with DLB and PDD. Conclusions: These findings provide new insights into inflammatory changes in PD and related disorders while also introducing biomarkers of potential clinical diagnostic utility.
  •  
9.
  • Barthélemy, Nicolas R, et al. (author)
  • Highly Accurate Blood Test for Alzheimer's Disease Comparable or Superior to Clinical CSF Tests
  • In: Nature Medicine. - 1546-170X.
  • Journal article (peer-reviewed)abstract
    • With the emergence of Alzheimer's disease (AD) disease-modifying therapies, identifying patients who could benefit from these treatments becomes critical. We evaluated whether a precise blood test could perform as well as established cerebrospinal fluid (CSF) tests in detecting amyloid-β (Aβ) plaques and tau tangles. Plasma %p-tau217 (ratio of phosporylated-tau217 to non-phosphorylated tau) was analyzed by mass spectrometry in the Swedish BioFINDER-2 cohort (n=1,422) and the US Knight ADRC cohort (n=337). Matched CSF samples were analyzed with clinically used and FDA-approved automated immunoassays for Aβ42/40 and p-tau181/Aβ42. The primary and secondary outcomes were detection of brain Aβ or tau pathology, respectively, using PET imaging as the reference standard. Main analyses were focused on individuals with cognitive impairment (mild cognitive impairment and mild dementia), which is the target population for available disease-modifying treatments. Plasma %p-tau217 was clinically equivalent to FDA-approved CSF tests in classifying Aβ PET status, with an area-under-the-curve (AUC) for both between 0.95-0.97. Plasma %p-tau217 was generally superior to CSF tests in classification of tau-PET with AUCs of 0.95-0.98. In cognitively impaired sub-cohorts (BioFINDER-2: n=720; Knight ADRC: n=50), plasma %p-tau217 had an accuracy, positive predictive value and negative predictive value of 89-90% for Aβ PET and 87-88% for tau-PET status, which was clinically equivalent to CSF tests, further improving to 95% using a two cut-off approach. Blood plasma %p-tau217 demonstrated performance clinically equivalent or superior to clinically used FDA-approved CSF tests in the detection of AD pathology. Use of high performance blood tests in clinical practice can improve access to accurate AD diagnosis and AD-specific treatments.
  •  
10.
  • Baumeister, Hannah, et al. (author)
  • A generalizable data-driven model of atrophy heterogeneity and progression in memory clinic settings
  • In: Brain : a journal of neurology. - 1460-2156. ; 147:7, s. 2400-2413
  • Journal article (peer-reviewed)abstract
    • Memory clinic patients are a heterogeneous population representing various aetiologies of pathological aging. It is unknown if divergent spatiotemporal progression patterns of brain atrophy, as previously described in Alzheimer's disease (AD) patients, are prevalent and clinically meaningful in this group of older adults. To uncover distinct atrophy subtypes, we applied the Subtype and Stage Inference (SuStaIn) algorithm to baseline structural MRI data from 813 participants enrolled in the DELCODE cohort (mean ± SD age = 70.67 ± 6.07 years, 52% females). Participants were cognitively unimpaired (CU; n = 285) or fulfilled diagnostic criteria for subjective cognitive decline (SCD; n = 342), mild cognitive impairment (MCI; n = 118), or dementia of the Alzheimer's type (n = 68). Atrophy subtypes were compared in baseline demographics, fluid AD biomarker levels, the Preclinical Alzheimer Cognitive Composite (PACC-5), as well as episodic memory and executive functioning. PACC-5 trajectories over up to 240 weeks were examined. To test if baseline atrophy subtype and stage predicted clinical trajectories before manifest cognitive impairment, we analysed PACC-5 trajectories and MCI conversion rates of CU and SCD participants. Limbic-predominant and hippocampal-sparing atrophy subtypes were identified. Limbic-predominant atrophy first affected the medial temporal lobes, followed by further temporal and, finally, the remaining cortical regions. At baseline, this subtype was related to older age, more pathological AD biomarker levels, APOE ε4 carriership, and an amnestic cognitive impairment. Hippocampal-sparing atrophy initially occurred outside the temporal lobe with the medial temporal lobe spared up to advanced atrophy stages. This atrophy pattern also affected individuals with positive AD biomarkers and was associated with more generalised cognitive impairment. Limbic-predominant atrophy, in all and in only unimpaired participants, was linked to more negative longitudinal PACC-5 slopes than observed in participants without or with hippocampal-sparing atrophy and increased the risk of MCI conversion. SuStaIn modelling was repeated in a sample from the Swedish BioFINDER-2 cohort. Highly similar atrophy progression patterns and associated cognitive profiles were identified. Cross-cohort model generalizability, both on the subject and group level, were excellent, indicating reliable performance in previously unseen data. The proposed model is a promising tool for capturing heterogeneity among older adults at early at-risk states for AD in applied settings. The implementation of atrophy subtype- and stage-specific end-points may increase the statistical power of pharmacological trials targeting early AD.
  •  
11.
  • Berron, David, et al. (author)
  • Early stages of tau pathology and its associations with functional connectivity, atrophy and memory
  • 2021
  • In: Brain. - : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 144:9, s. 2771-2783
  • Journal article (peer-reviewed)abstract
    • In Alzheimer's disease, post-mortem studies have shown that the first cortical site where neurofibrillary tangles appear is the transentorhinal region, a subregion within the medial temporal lobe that largely overlaps with Brodmann area 35, and the entorhinal cortex. Here we used tau-PET imaging to investigate the sequence of tau pathology progression within the human medial temporal lobe and across regions in the posterior-medial system. Our objective was to study how medial temporal tau is related to functional connectivity, regional atrophy, and memory performance. We included 215 amyloid-β- cognitively unimpaired, 81 amyloid-β+ cognitively unimpaired and 87 amyloid-β+ individuals with mild cognitive impairment, who each underwent 18F-RO948 tau and 18F-flutemetamol amyloid PET imaging, structural T1-MRI and memory assessments as part of the Swedish BioFINDER-2 study. First, event-based modelling revealed that the entorhinal cortex and Brodmann area 35 show the earliest signs of tau accumulation followed by the anterior and posterior hippocampus, Brodmann area 36 and the parahippocampal cortex. In later stages, tau accumulation became abnormal in neocortical temporal and finally parietal brain regions. Second, in cognitively unimpaired individuals, increased tau load was related to local atrophy in the entorhinal cortex, Brodmann area 35 and the anterior hippocampus and tau load in several anterior medial temporal lobe subregions was associated with distant atrophy of the posterior hippocampus. Tau load, but not atrophy, in these regions was associated with lower memory performance. Further, tau-related reductions in functional connectivity in critical networks between the medial temporal lobe and regions in the posterior-medial system were associated with this early memory impairment. Finally, in patients with mild cognitive impairment, the association of tau load in the hippocampus with memory performance was partially mediated by posterior hippocampal atrophy. In summary, our findings highlight the progression of tau pathology across medial temporal lobe subregions and its disease stage-specific association with memory performance. While tau pathology might affect memory performance in cognitively unimpaired individuals via reduced functional connectivity in critical medial temporal lobe-cortical networks, memory impairment in mild cognitively impaired patients is associated with posterior hippocampal atrophy.
  •  
12.
  • Binette, Alexa Pichet, et al. (author)
  • Amyloid-associated increases in soluble tau is a key driver in accumulation of tau aggregates and cognitive decline in early Alzheimer
  • 2022
  • In: Alzheimer's and Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 18:S1
  • Journal article (peer-reviewed)abstract
    • Background: For optimal design of anti-amyloid-β (Aβ) and anti-tau clinical trials, it is important to understand how Aβ and soluble phosphorylated tau (p-tau) relate to the accumulation of tau aggregates assessed with positron emission tomography (PET) and subsequent cognitive decline across the Alzheimer's disease (AD) continuum. Method: We included 327 participants from the Swedish BioFINDER-2 cohort with cerebrospinal fluid (CSF) p-tau217, Aβ-PET, longitudinal tau-PET, and longitudinal cognition. The main groups of interest were Aβ-positive non-demented participants and AD dementia patients (Table 1 and Figure 1), and analyses were conducted separately in each group. First, we investigated how soluble p-tau217 and regional Aβ-PET were associated with tau-PET rate of change across the 200 brain parcels from the Schaefer atlas. We also tested the mediating effect of p-tau217 between Aβ-PET and tau-PET change. Second, we investigated how soluble p-tau217 and tau-PET change related to change in cognition, and mediation between these variables. Result: In early AD stages (non-demented participants), increased concentration of soluble p-tau217 was the main driver of accumulation of insoluble tau aggregates across the brain (measured as tau-PET rate of change), beyond the effect of regional Aβ-PET and baseline tau-PET (Figure 2A-C). Further, averaged across all regions, soluble p-tau217 mediated 54% of the association between Aβ and tau aggregation (Figure 2D). Higher soluble p-tau217 concentrations were also associated with cognitive decline, which was mediated by faster increase of tau aggregates (Figure 3). Repeating the same analyses in the AD dementia group, results were different. In late stage of AD, when Aβ fibrils and soluble p-tau levels have plateaued, soluble p-tau217 was not associated with accumulation of tau aggregates beyond baseline tau-PET (Figure 4A), and cognitive decline was driven by the accumulation rate of insoluble tau aggregates and not soluble p-tau217 (Figure 4B-C). Conclusion: Soluble p-tau is a main driver of tau aggregation and future cognitive decline in earlier stages of AD, whereas tau aggregation accumulation is more likely an important driver of disease in later stages. Overall, our data suggest that therapeutic approaches reducing soluble p-tau levels might be most favorable in early AD.
  •  
13.
  • Borland, Emma, et al. (author)
  • Clinically Relevant Changes for Cognitive Outcomes in Preclinical and Prodromal Cognitive Stages : Implications for Clinical Alzheimer Trials
  • 2022
  • In: Neurology. - 0028-3878. ; 99:11, s. 1142-1153
  • Journal article (peer-reviewed)abstract
    • Background and ObjectivesIdentifying a clinically meaningful change in cognitive test score is essential when using cognition as an outcome in clinical trials. This is especially relevant because clinical trials increasingly feature novel composites of cognitive tests. Our primary objective was to establish minimal clinically important differences (MCIDs) for commonly used cognitive tests, using anchor-based and distribution-based methods, and our secondary objective was to investigate a composite cognitive measure that best predicts a minimal change in the Clinical Dementia Rating - Sum of Boxes (CDR-SB).MethodsFrom the Swedish BioFINDER cohort study, we consecutively included cognitively unimpaired (CU) individuals with and without subjective or mild cognitive impairment (MCI). We calculated MCIDs associated with a change of ≥0.5 or ≥1.0 on CDR-SB for Mini-Mental State Examination (MMSE), ADAS-Cog delayed recall 10-word list, Stroop, Letter S Fluency, Animal Fluency, Symbol Digit Modalities Test (SDMT) and Trailmaking Test (TMT) A and B, and triangulated MCIDs for clinical use for CU, MCI, and amyloid-positive CU participants. For investigating cognitive measures that best predict a change in CDR-SB of ≥0.5 or ≥1.0 point, we conducted receiver operating characteristic analyses.ResultsOur study included 451 cognitively unimpaired individuals, 90 with subjective cognitive decline and 361 without symptoms of cognitive decline (pooled mean follow-up time 32.4 months, SD 26.8, range 12-96 months), and 292 people with MCI (pooled mean follow-up time 19.2 months, SD 19.0, range 12-72 months). We identified potential triangulated MCIDs (cognitively unimpaired; MCI) on a range of cognitive test outcomes: MMSE -1.5, -1.7; ADAS delayed recall 1.4, 1.1; Stroop 5.5, 9.3; Animal Fluency: -2.8, -2.9; Letter S Fluency -2.9, -1.8; SDMT: -3.5, -3.8; TMT A 11.7, 13.0; and TMT B 24.4, 20.1. For amyloid-positive CU, we found the best predicting composite cognitive measure included gender and changes in ADAS delayed recall, MMSE, SDMT, and TMT B. This produced an AUC of 0.87 (95% CI 0.79-0.94, sensitivity 75%, specificity 88%).DiscussionOur MCIDs may be applied in clinical practice or clinical trials for identifying whether a clinically relevant change has occurred. The composite measure can be useful as a clinically relevant cognitive test outcome in preclinical AD trials.
  •  
14.
  •  
15.
  • Borland, Emma, et al. (author)
  • The age-related effect on cognitive performance in cognitively healthy elderly is mainly caused by underlying AD pathology or cerebrovascular lesions : implications for cutoffs regarding cognitive impairment
  • 2020
  • In: Alzheimer's Research & Therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 12:1
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: As research in treatments for neurocognitive diseases progresses, there is an increasing need to identify cognitive decline in the earliest stages of disease for initiation of treatment in addition to determining the efficacy of treatment. For early identification, accurate cognitive tests cutoff values for cognitive impairment are essential. METHODS: We conducted a study on 297 cognitively healthy elderly people from the BioFINDER study and created subgroups excluding people with signs of underlying neuropathology, i.e., abnormal cerebrospinal fluid [CSF] β-amyloid or phosphorylated tau, CSF neurofilament light (neurodegeneration), or cerebrovascular pathology. We compared cognitive test results between groups and examined the age effect on cognitive test results. RESULTS: In our subcohort without any measurable pathology (n = 120), participants achieved better test scores and significantly stricter cutoffs for cognitive impairment for almost all the examined tests. The age effect in this subcohort disappeared for all cognitive tests, apart from some attention/executive tests, predominantly explained by the exclusion of cerebrovascular pathology. CONCLUSION: Our study illustrates a new approach to establish normative data that could be useful to identify earlier cognitive changes in preclinical dementias. Future studies need to investigate if there is a genuine effect of healthy aging on cognitive tests or if this age effect is a proxy for higher prevalence of preclinical neurodegenerative diseases.
  •  
16.
  • Borland, Emma, et al. (author)
  • The Montreal Cognitive Assessment : Normative Data from a Large Swedish Population-Based Cohort
  • 2017
  • In: Journal of Alzheimer's Disease. - : IOS Press. - 1387-2877 .- 1875-8908. ; 59:3, s. 893-901
  • Journal article (peer-reviewed)abstract
    • Background: The Montreal Cognitive Assessment (MoCA) has a high sensitivity for detecting cognitive dysfunction. Swedish normative data does not exist and international norms are often derived from populations where cognitive impairment has not been screened for and not been thoroughly assessed to exclude subjects with dementia or mild cognitive impairment. Objective: To establish norms for MoCA and develop a regression-based norm calculator based on a large, well-examined cohort. Methods: MoCA was administered on 860 randomly selected elderly people from a population-based cohort from the EPIC study. Cognitive dysfunction was screened for and further assessed at a memory clinic. After excluding cognitively impaired participants, normative data was derived from 758 people, aged 65-85. Results: MoCA cut-offs (-1 to -2 standard deviations) for cognitive impairment ranged from <25 to <21 for the lowest educated and <26 to <24 for the highest educated, depending on age group. Significant predictors for MoCA score were age, sex and level of education. Conclusion: We present detailed normative MoCA data and cut-offs according to the DSM-5 criteria for cognitive impairment based on a large population-based cohort of elderly individuals, screened and thoroughly investigated to rule out cognitive impairment. Level of education, sex, and age should be taken in account when evaluating MoCA score, which is facilitated by our online regression-based calculator that provide percentile and z-score for a subject's MoCA score.
  •  
17.
  •  
18.
  • Brum, Wagner S., et al. (author)
  • A two-step workflow based on plasma p-tau217 to screen for amyloid β positivity with further confirmatory testing only in uncertain cases
  • 2023
  • In: Nature Aging. - 2662-8465. ; 3:9, s. 1079-1090
  • Journal article (peer-reviewed)abstract
    • Cost-effective strategies for identifying amyloid-beta (A beta) positivity in patients with cognitive impairment are urgently needed with recent approvals of anti-A beta immunotherapies for Alzheimer's disease (AD). Blood biomarkers can accurately detect AD pathology, but it is unclear whether their incorporation into a full diagnostic workflow can reduce the number of confirmatory cerebrospinal fluid (CSF) or positron emission tomography (PET) tests needed while accurately classifying patients. We evaluated a two-step workflow for determining A beta-PET status in patients with mild cognitive impairment (MCI) from two independent memory clinic-based cohorts (n = 348). A blood-based model including plasma tau protein 217 (p-tau217), age and APOE epsilon 4 status was developed in BioFINDER-1 (area under the curve (AUC) = 89.3%) and validated in BioFINDER-2 (AUC = 94.3%). In step 1, the blood-based model was used to stratify the patients into low, intermediate or high risk of A beta-PET positivity. In step 2, we assumed referral only of intermediate-risk patients to CSF A beta 42/A beta 40 testing, whereas step 1 alone determined A beta-status for low-and high-risk groups. Depending on whether lenient, moderate or stringent thresholds were used in step 1, the two-step workflow overall accuracy for detecting A beta-PET status was 88.2%, 90.5% and 92.0%, respectively, while reducing the number of necessary CSF tests by 85.9%, 72.7% and 61.2%, respectively. In secondary analyses, an adapted version of the BioFINDER-1 model led to successful validation of the two-step workflow with a different plasma p-tau217 immunoassay in patients with cognitive impairment from the TRIAD cohort (n = 84). In conclusion, using a plasma p-tau217-based model for risk stratification of patients with MCI can substantially reduce the need for confirmatory testing while accurately classifying patients, offering a cost-effective strategy to detect AD in memory clinic settings.
  •  
19.
  • Caldwell, Jessica Z.K., et al. (author)
  • Cognitively normal women with Alzheimer's disease proteinopathy show relative preservation of memory but not of hippocampal volume
  • 2019
  • In: Alzheimer's Research & Therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 11:1
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: We examined interactive effects of sex, diagnosis, and cerebrospinal fluid (CSF) amyloid beta/phosphorylated tau ratio (Aβ/P-tau) on verbal memory and hippocampal volumes. METHODS: We assessed 682 participants (350 women) from BioFINDER (250 cognitively normal [CN]; and 432 symptomatic: 186 subjective cognitive decline [SCD], 246 mild cognitive impairment [MCI]). General linear models evaluated effects of Alzheimer's disease (AD) proteinopathy (CSF Aß/p-tau ratio), diagnosis, and sex on verbal memory (ADAS-cog 10-word recall), semantic fluency (animal naming fluency), visuospatial skills (cube copy), processing speed/attention functions (Symbol Digit Modalities Test and Trail Making Part A), and hippocampal volumes. RESULTS: Amyloid-positive (Aβ/P-tau+) CN women (women with preclinical AD) showed memory equivalent to amyloid-negative (Aβ/P-tau-) CN women. In contrast, Aβ/P-tau+ CN men (men with preclinical AD) showed poorer memory than Aβ/P-tau- CN men. Symptomatic groups showed no sex differences in effect of AD proteinopathy on memory. There was no interactive effect of sex, diagnosis, and Aβ/P-tau on other measures of cognition or on hippocampal volume. CONCLUSIONS: CN women show relatively preserved verbal memory, but not general cognitive reserve or preserved hippocampal volume in the presence of Aβ/P-tau+. Results have implications for diagnosing AD in women, and for clinical trials.
  •  
20.
  • Cicognola, Claudia, et al. (author)
  • Associations of CSF PDGFRβ With Aging, Blood-Brain Barrier Damage, Neuroinflammation, and Alzheimer Disease Pathologic Changes
  • 2023
  • In: Neurology. - 1526-632X. ; 101:1, s. 30-39
  • Journal article (peer-reviewed)abstract
    • BACKGROUND AND OBJECTIVES: Injured pericytes in the neurovascular unit release platelet-derived growth factor β (PDGFRβ) into the cerebrospinal fluid (CSF). However, it is not clear how pericyte injury contributes to Alzheimer's disease (AD)-related changes and blood brain barrier (BBB) damage. We aimed to test if CSF PDGFRβ was associated with different AD- and age-associated pathological changes leading to dementia.METHODS: PDGFRβ was measured in the CSF of 771 cognitively unimpaired (CU, n=408), mild cognitive impairment (MCI, n=175) and dementia subjects (n=188) from the Swedish BioFINDER-2 cohort. We then checked association Aβ-PET and tau-PET SUVR, APOE ε4 genotype and MRI measurements of cortical thickness, white matter lesions (WML) and cerebral blood flow (CBF). We also analysed the role of CSF PDGFRβ in the relationship between aging, BBB dysfunction (measured by CSF/plasma albumin ratio, QAlb) and neuroinflammation (i.e., CSF levels of YKL-40 and glial fibrillary acidic protein [GFAP], preferentially expressed in reactive astrocytes). RESULTS: The cohort had a mean age of 67 years (CU=62.8, MCI=69.9, dementia=70.4) and 50.1% were male (CU=46.6%, MCI=53.7%, dementia=54.3%). Higher CSF PDGFRβ concentrations were related to higher age (b=19.1, β=0.5, 95% CI=16-22.2, p<0.001), increased CSF neuroinflammatory markers of glial activation YKL-40 (b=3.4, β=0.5, 95% CI=2.8-3.9, p<0.001) and GFAP (b=27.4, β=0.4, 95% CI=20.9-33.9, p<0.001), and worse BBB integrity measured by QAlb (b=37.4, β=0.2, 95% CI=24.9-49.9, p<0.001). Age was also associated with worse BBB integrity, and this was partly mediated by PDGFRβ and neuroinflammatory markers (16-33% of total effect). However, PDGFRβ showed no associations with APOE ε4 genotype, PET imaging of Aβ and tau pathology or MRI measures of brain atrophy and white matter lesions (p>0.05).DISCUSSION: In summary, pericyte damage, reflected by CSF PDGFRβ, may be involved in age-related BBB disruption together with neuroinflammation, but is not related to Alzheimer-related pathological changes.
  •  
21.
  • Coomans, Emma M., et al. (author)
  • Interactions between vascular burden and amyloid-β pathology on trajectories of tau accumulation
  • 2024
  • In: Brain. - 0006-8950. ; 147:3, s. 949-960
  • Journal article (peer-reviewed)abstract
    • Cerebrovascular pathology often co-exists with Alzheimer’s disease pathology and can contribute to Alzheimer’s disease-related clinical progression. However, the degree to which vascular burden contributes to Alzheimer’s disease pathological progression is still unclear. This study aimed to investigate interactions between vascular burden and amyloid-β pathology on both baseline tau tangle load and longitudinal tau accumulation. We included 1229 participants from the Swedish BioFINDER-2 Study, including cognitively unimpaired and impaired participants with and without biomarker-confirmed amyloid-β pathology. All underwent baseline tau-PET (18F-RO948), and a subset (n = 677) underwent longitudinal tau-PET after 2.5 ± 1.0 years. Tau-PET uptake was computed for a temporal meta-region-of-interest. We focused on four main vascular imaging features and risk factors: microbleeds; white matter lesion volume; stroke-related events (infarcts, lacunes and haemorrhages); and the Framingham Heart Study Cardiovascular Disease risk score. To validate our in vivo results, we examined 1610 autopsy cases from an Arizona-based neuropathology cohort on three main vascular pathological features: cerebral amyloid angiopathy; white matter rarefaction; and infarcts. For the in vivo cohort, primary analyses included age-, sex- and APOE ε4-corrected linear mixed models between tau-PET (outcome) and interactions between time, amyloid-β and each vascular feature (predictors). For the neuropathology cohort, age-, sex- and APOE ε4-corrected linear models between tau tangle density (outcome) and an interaction between plaque density and each vascular feature (predictors) were performed. In cognitively unimpaired individuals, we observed a significant interaction between microbleeds and amyloid-β pathology on greater baseline tau load (β = 0.68, P < 0.001) and longitudinal tau accumulation (β = 0.11, P < 0.001). For white matter lesion volume, we did not observe a significant independent interaction effect with amyloid-β on tau after accounting for microbleeds. In cognitively unimpaired individuals, we further found that stroke-related events showed a significant negative interaction with amyloid-β on longitudinal tau (β = −0.08, P < 0.001). In cognitively impaired individuals, there were no significant interaction effects between cerebrovascular and amyloid-β pathology at all. In the neuropathology dataset, the in vivo observed interaction effects between cerebral amyloid angiopathy and plaque density (β = 0.38, P < 0.001) and between infarcts and plaque density (β = −0.11, P = 0.005) on tau tangle density were replicated. To conclude, we demonstrated that cerebrovascular pathology—in the presence of amyloid-β pathology—modifies tau accumulation in early stages of Alzheimer’s disease. More specifically, the co-occurrence of microbleeds and amyloid-β pathology was associated with greater accumulation of tau aggregates during early disease stages. This opens the possibility that interventions targeting microbleeds may attenuate the rate of tau accumulation in Alzheimer’s disease.
  •  
22.
  • Cullen, Nicholas, et al. (author)
  • Association of CSF Aβ38Levels with Risk of Alzheimer Disease-Related Decline
  • 2022
  • In: Neurology. - 0028-3878. ; 98:9, s. 958-967
  • Journal article (peer-reviewed)abstract
    • Background and ObjectiveExperimental studies suggest that the balance between short and long β-amyloid (Aβ) species might modulate the toxic effects of Aβ in Alzheimer disease (AD), but clinical evidence is lacking. We studied whether Aβ38 levels in CSF relate to risk of AD dementia and cognitive decline.MethodsCSF Aβ38 levels were measured in 656 individuals across 2 clinical cohorts: the Swedish BioFINDER study and the Alzheimer's Disease Neuroimaging Initiative (ADNI). Cox regression models were used to evaluate the association between baseline Aβ38 levels and risk of AD dementia in AD biomarker-positive individuals (AD+; determined by CSF phosphorylated tau [P-tau]/Aβ42 ratio) with subjective cognitive decline (SCD) or mild cognitive impairment (MCI). Linear mixed-effects models were used to evaluate the association between baseline Aβ38 levels and cognitive decline as measured by the Mini-Mental State Examination (MMSE) in AD+ participants with SCD, MCI, or AD dementia.ResultsIn the BioFINDER cohort, high Aβ38 levels were associated with slower decline in MMSE score (β = 0.30 points per SD, p = 0.001) and with lower risk of conversion to AD dementia (hazard ratio 0.83 per SD, p = 0.03). In the ADNI cohort, higher Aβ38 levels were associated with less decline in MMSE score (β = 0.27, p = 0.01) but not risk of conversion to AD dementia (p = 0.66). Aβ38 levels in both cohorts were significantly associated with both cognitive and clinical outcomes when further adjusted for CSF P-tau or CSF Aβ42 levels.DiscussionHigher CSF Aβ38 levels are associated with lower risk of AD-related changes in 2 independent clinical cohorts. These findings suggest that γ-secretase modulators could be effective as disease-altering therapy.Trial Registration InformationClinicalTrials.gov Identifier: NCT03174938.
  •  
23.
  • Cullen, Nicholas C., et al. (author)
  • Individualized prognosis of cognitive decline and dementia in mild cognitive impairment based on plasma biomarker combinations
  • 2021
  • In: Nature Aging. - : Springer Science and Business Media LLC. - 2662-8465. ; 1, s. 114-123
  • Journal article (peer-reviewed)abstract
    • We developed models for individualized risk prediction of cognitive decline in mild cognitive impairment (MCI) using plasma biomarkers of β-amyloid (Aβ), tau and neurodegeneration. A total of 573 patients with MCI from the Swedish BioFINDER study and the Alzheimer’s Disease Neuroimaging Initiative (ADNI) were included in the study. The primary outcomes were longitudinal cognition and conversion to Alzheimer’s disease (AD) dementia. A model combining tau phosphorylated at threonine 181 (P-tau181) and neurofilament light (NfL), but not Aβ42/Aβ40, had the best prognosis performance of all models (area under the curve = 0.88 for 4-year conversion to AD in BioFINDER, validated in ADNI), was stronger than a basic model of age, sex, education and baseline cognition, and performed similarly to cerebrospinal fluid biomarkers. A publicly available online tool for individualized prognosis in MCI based on our combined plasma biomarker models is introduced. Combination of plasma biomarkers may be of high value to identify individuals with MCI who will progress to AD dementia in clinical trials and in clinical practice.
  •  
24.
  • Cullen, Nicholas C., et al. (author)
  • Plasma amyloid-β42/40 and apolipoprotein E for amyloid PET pre-screening in secondary prevention trials of Alzheimer's disease
  • 2023
  • In: Brain Communications. - : Oxford University Press (OUP). - 2632-1297. ; 5:2
  • Journal article (peer-reviewed)abstract
    • The extent to which newly developed blood-based biomarkers could reduce screening costs in secondary prevention trials of Alzheimer's disease is mostly unexplored. We collected plasma amyloid-β42/40, apolipoprotein E ϵ4 status and amyloid PET at baseline in 181 cognitively unimpaired participants [the age of 72.9 (5.3) years; 61.9% female; education of 11.9 (3.4) years] from the Swedish BioFINDER-1 study. We tested whether a model predicting amyloid PET status from plasma amyloid-β42/40, apolipoprotein E status and age (combined) reduced cost of recruiting amyloid PET + cognitively unimpaired participants into a theoretical trial. We found that the percentage of cognitively unimpaired participants with an amyloid PET + scan rose from 29% in an unscreened population to 64% [(49, 79); P < 0.0001] when using the biomarker model to screen for high risk for amyloid PET + status. In simulations, plasma screening also resulted in a 54% reduction of the total number of amyloid PET scans required and reduced total recruitment costs by 43% [(31, 56), P < 0.001] compared to no pre-screening when assuming a 16× PET-to-plasma cost ratio. Total savings remained significant when the PET-to-plasma cost ratio was assumed to be 8× or 4×. This suggests that a simple plasma biomarker model could lower recruitment costs in Alzheimer's trials requiring amyloid PET positivity for inclusion.
  •  
25.
  • Cullen, Nicholas C., et al. (author)
  • Plasma biomarkers of Alzheimer’s disease improve prediction of cognitive decline in cognitively unimpaired elderly populations
  • 2021
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1
  • Journal article (peer-reviewed)abstract
    • Plasma biomarkers of amyloid, tau, and neurodegeneration (ATN) need to be characterized in cognitively unimpaired (CU) elderly individuals. We therefore tested if plasma measurements of amyloid-β (Aβ)42/40, phospho-tau217 (P-tau217), and neurofilament light (NfL) together predict clinical deterioration in 435 CU individuals followed for an average of 4.8 ± 1.7 years in the BioFINDER study. A combination of all three plasma biomarkers and basic demographics best predicted change in cognition (Pre-Alzheimer’s Clinical Composite; R2 = 0.14, 95% CI [0.12–0.17]; P < 0.0001) and subsequent AD dementia (AUC = 0.82, 95% CI [0.77–0.91], P < 0.0001). In a simulated clinical trial, a screening algorithm combining all three plasma biomarkers would reduce the required sample size by 70% (95% CI [54–81]; P < 0.001) with cognition as trial endpoint, and by 63% (95% CI [53–70], P < 0.001) with subsequent AD dementia as trial endpoint. Plasma ATN biomarkers show usefulness in cognitively unimpaired populations and could make large clinical trials more feasible and cost-effective.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 158
Type of publication
journal article (152)
research review (3)
other publication (1)
conference paper (1)
doctoral thesis (1)
Type of content
peer-reviewed (154)
other academic/artistic (4)
Author/Editor
Palmqvist, Sebastian (155)
Hansson, Oskar (140)
Stomrud, Erik (102)
Janelidze, Shorena (71)
Mattsson-Carlgren, N ... (66)
Strandberg, Olof (42)
show more...
Smith, Ruben (40)
Blennow, Kaj, 1958 (36)
Ossenkoppele, Rik (32)
Zetterberg, Henrik, ... (31)
van Westen, Danielle (26)
Leuzy, Antoine (24)
Mattsson, Niklas (22)
Insel, Philip S (14)
Minthon, Lennart (13)
Ashton, Nicholas J. (13)
Blennow, Kaj (11)
Pereira, Joana B. (11)
Zetterberg, Henrik (11)
Dage, Jeffrey L. (10)
Cullen, Nicholas C (10)
Jögi, Jonas (9)
Binette, Alexa Piche ... (9)
Londos, Elisabet (8)
Ohlsson, Tomas (8)
Berron, David (7)
Spotorno, Nicola (7)
Salvadó, Gemma (7)
Cullen, Nicholas (7)
Tideman, Pontus (7)
Nilsson, Maria H. (6)
Rabinovici, Gil D (6)
La Joie, Renaud (6)
Bateman, Randall J (6)
Dage, J. L. (6)
Klein, Gregory (6)
Rosa-Neto, Pedro (5)
Lessa Benedet, André ... (5)
Hall, Sara (5)
Vogel, Jacob W (5)
Westman, Eric (4)
Karikari, Thomas (4)
Ewers, Michael (4)
Groot, Colin (4)
Schöll, Michael (4)
Mattsson, Niklas, 19 ... (4)
Pascoal, Tharick A (4)
Schöll, Michael, 198 ... (4)
Brum, Wagner S. (4)
Therriault, Joseph (4)
show less...
University
Lund University (150)
University of Gothenburg (52)
Karolinska Institutet (25)
Linköping University (5)
Linnaeus University (3)
Örebro University (2)
show more...
Umeå University (1)
Uppsala University (1)
University of Skövde (1)
Blekinge Institute of Technology (1)
show less...
Language
English (156)
Swedish (2)
Research subject (UKÄ/SCB)
Medical and Health Sciences (157)
Natural sciences (2)
Social Sciences (2)
Engineering and Technology (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view