SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Paragi Zsolt) "

Search: WFRF:(Paragi Zsolt)

  • Result 1-13 of 13
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bhandari, Shivani, et al. (author)
  • Constraints on the Persistent Radio Source Associated with FRB 20190520B Using the European VLBI Network
  • 2023
  • In: Astrophysical Journal Letters. - 2041-8213 .- 2041-8205. ; 958:2
  • Journal article (peer-reviewed)abstract
    • We present very long baseline interferometry (VLBI) observations of a continuum radio source potentially associated with the fast radio burst source FRB 20190520B. Using the European VLBI network, we find the source to be compact on VLBI scales with an angular size of <2.3 mas (3 sigma). This corresponds to a transverse physical size of <9 pc (at the z = 0.241 redshift of the host galaxy), confirming it to be as fast radio burst (FRB) persistent radio source (PRS) like that associated with the first-known repeater FRB 20121102A. The PRS has a flux density of 201 +/- 34 mu Jy at 1.7 GHz and a spectral radio luminosity of L-1.7 GHz = (3.0 +/- 0.5) x 10(29) erg s(-1) Hz(-1) (also similar to the FRB 20121102A PRS). Compared to previous lower-resolution observations, we find that no flux is resolved out on milliarcsecond scales. We have refined the PRS position, improving its precision by an order of magnitude compared to previous results. We also report the detection of the FRB 20190520B burst at 1.4 GHz and find the burst position to be consistent with the PRS position, at less than or similar to 20 mas. This strongly supports their direct physical association and the hypothesis that a single central engine powers both the bursts and the PRS. We discuss the model of a magnetar in a wind nebula and present an allowed parameter space for its age and the radius of the putative nebula powering the observed PRS emission. Alternatively, we find that an accretion-powered hypernebula model also fits our observational constraints.
  •  
2.
  • Gurvits, Leonid I., et al. (author)
  • THEZA: TeraHertz Exploration and Zooming-in for Astrophysics
  • 2021
  • In: Experimental Astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 51:3, s. 559-594
  • Journal article (peer-reviewed)abstract
    • This paper presents the ESA Voyage 2050 White Paper for a concept of TeraHertz Exploration and Zooming-in for Astrophysics (THEZA). It addresses the science case and some implementation issues of a space-borne radio interferometric system for ultra-sharp imaging of celestial radio sources at the level of angular resolution down to (sub-) microarcseconds. THEZA focuses at millimetre and sub-millimetre wavelengths (frequencies above similar to 300 GHz), but allows for science operations at longer wavelengths too. The THEZA concept science rationale is focused on the physics of spacetime in the vicinity of supermassive black holes as the leading science driver. The main aim of the concept is to facilitate a major leap by providing researchers with orders of magnitude improvements in the resolution and dynamic range in direct imaging studies of the most exotic objects in the Universe, black holes. The concept will open up a sizeable range of hitherto unreachable parameters of observational astrophysics. It unifies two major lines of development of space-borne radio astronomy of the past decades: Space VLBI (Very Long Base-line Interferometry) and mm- and sub-mm astrophysical studies with "single dish" instruments. It also builds upon the recent success of the Earth-based Event Horizon Telescope (EHT) - the first-ever direct image of a shadow of the super-massive black hole in the centre of the galaxy M87. As an amalgam of these three major areas of modern observational astrophysics, THEZA aims at facilitating a breakthrough in high-resolution high image quality studies in the millimetre and sub-millimetre domain of the electromagnetic spectrum.
  •  
3.
  • Gurvits,, et al. (author)
  • The science case and challenges of space-borne sub-millimeter interferometry
  • 2022
  • In: Acta Astronautica. - : Elsevier BV. - 0094-5765. ; 196, s. 314-333
  • Journal article (peer-reviewed)abstract
    • Ultra-high angular resolution in astronomy has always been an important vehicle for making fundamental discoveries. Recent results in direct imaging of the vicinity of the supermassive black hole in the nucleus of the radio galaxy M87 by the millimeter VLBI system Event Horizon Telescope and various pioneering results of the Space VLBI mission RadioAstron provided new momentum in high angular resolution astrophysics. In both mentioned cases, the angular resolution reached the values of about 10???20 microarcseconds (0.05???0.1 nanoradian). Further developments towards at least an order of magnitude ???sharper???values, at the level of 1 microarcsecond are dictated by the needs of advanced astrophysical studies. The paper emphasis that these higher values can only be achieved by placing millimeter and submillimeter wavelength interferometric systems in space. A concept of such the system, called Terahertz Exploration and Zooming-in for Astrophysics, has been proposed in the framework of the ESA Call for White Papers for the Voyage 2050 long term plan in 2019. In the current paper we present new science objectives for such the concept based on recent results in studies of active galactic nuclei and supermassive black holes. We also discuss several approaches for addressing technological challenges of creating a millimeter/sub-millimeter wavelength interferometric system in space. In particular, we consider a novel configuration of a space-borne millimeter/sub-millimeter antenna which might resolve several bottlenecks in creating large precise mechanical structures. The paper also presents an overview of prospective space-qualified technologies of low-noise analogue front-end instrumentation for millimeter/sub-millimeter telescopes. Data handling and processing instrumentation is another key technological component of a sub-millimeter Space VLBI system. Requirements and possible implementation options for this instrumentation are described as an extrapolation of the current state-of-the-art Earth-based VLBI data transport and processing instrumentation. The paper also briefly discusses approaches to the interferometric baseline state vector determination and synchronisation and heterodyning system. The technology-oriented sections of the paper do not aim at presenting a complete set of technological solutions for sub-millimeter (terahertz) space-borne interferometers. Rather, in combination with the original ESA Voyage 2050 White Paper, it sharpens the case for the next generation microarcsecond-level imaging instruments and provides starting points for further in-depth technology trade-off studies.
  •  
4.
  • Li, Zhixuan, et al. (author)
  • Revealing two radio-active galactic nuclei extremely near PSR J0437−4715
  • 2018
  • In: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 476:1, s. 399-406
  • Journal article (peer-reviewed)abstract
    • Newton's gravitational constant G may vary with time at an extremely low level. The time variability of G will affect the orbital motion of a millisecond pulsar in a binary system and cause a tiny difference between the orbital period-dependent measurement of the kinematic distance and the direct measurement of the annual parallax distance. PSR J0437-4715 is the nearest millisecond pulsar and the brightest at radio wavelengths. To explore the feasibility of achieving a parallax distance accuracy of one light-year, comparable to the recent timing result, with the technique of differential astrometry, we searched for compact radio sources quite close to PSR J0437-4715. Using existing data from the Very Large Array and the Australia Telescope Compact Array, we detected two sources with flat spectra, relatively stable flux densities of 0.9 and 1.0 mJy at 8.4 GHz and separations of 13 and 45 arcsec. With a network consisting of the Long Baseline Array and the Kunming 40-m radio telescope, we found that both sources have a point-like structure and a brightness temperature of >= 10(7) K. According to these radio inputs and the absence of counterparts in other bands, we argue that they are most likely the compact radio cores of extragalactic active galactic nuclei, rather than Galactic radio stars. The finding of these two radio active galactic nuclei will enable us to achieve a sub-pc distance accuracy with in-beam phase-referencing very-long-baseline interferometric observations and provide one of the most stringent constraints on the time variability of G in the near future.
  •  
5.
  • Perger, Krisztina, et al. (author)
  • Constraining the radio jet proper motion of the high-redshift quasar J2134− 0419 at z= 4.3
  • 2018
  • In: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 477:1, s. 1065-1070
  • Journal article (peer-reviewed)abstract
    • To date, PMN J2134–0419 (at a redshift z = 4.33) is the second most distant quasar known with a milliarcsecond-scale morphology permitting direct estimates of the jet proper motion. Based on two-epoch observations, we constrained its radio jet proper motion using the very long baseline interferometry (VLBI) technique. The observations were conducted with the European VLBI Network (EVN) at 5 GHz on 1999 November 26 and 2015 October 6. We imaged the central 10-pc scale radio jet emission and modelled its brightness distribution. By identifying a jet component at both epochs separated by 15.86 yr, a proper motion of μ = 0.035 ± 0.023 mas yr−1 is found. It corresponds to an apparent superluminal speed of βa = 4.1 ± 2.7 c. Relativistic beaming at both epochs suggests that the jet viewing angle with respect to the line of sight is smaller than 20°, with a minimum bulk Lorentz factor Γ = 4.3. The small value of the proper motion is in good agreement with the expectations from the cosmological interpretation of the redshift and the current cosmological model. Additionally we analysed archival Very Large Array observations of J2143−0419 and found indication of a bent jet extending to ∼30 kpc.
  •  
6.
  • Tendulkar, Shriharsh P., et al. (author)
  • The 60 pc Environment of FRB 20180916B
  • 2021
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 908:1
  • Journal article (peer-reviewed)abstract
    • Fast radio burst FRB 20180916B in its host galaxy SDSS J015800.28+654253.0 at 149 Mpc is by far the closest-known FRB with a robust host galaxy association. The source also exhibits a 16.35 day period in its bursting. Here we present optical and infrared imaging as well as integral field spectroscopy observations of FRB 20180916B with the WFC3 camera on the Hubble Space Telescope and the MEGARA spectrograph on the 10.4 m Gran Telescopio Canarias. The 60-90 milliarcsecond (mas) resolution of the Hubble imaging, along with the previous 2.3 mas localization of FRB 20180916B, allows us to probe its environment with a 30-60 pc resolution. We constrain any point-like star formation or H ii region at the location of FRB 20180916B to have an H alpha luminosity L-H alpha less than or similar to 10(37) erg s(-1), and we correspondingly constrain the local star formation rate to be less than or similar to 10(-4) M yr(-1). The constraint on H alpha suggests that possible stellar companions to FRB 20180916B should be of a cooler, less massive spectral type than O6V. FRB 20180916B is 250 pc away (in projected distance) from the brightest pixel of the nearest young stellar clump, which is similar to 380 pc in size (FWHM). With the typical projected velocities of pulsars, magnetars, or neutron stars in binaries (60-750 km s(-1)), FRB 20180916B would need 800 kyr to 7 Myr to traverse the observed distance from its presumed birth site. This timescale is inconsistent with the active ages of magnetars (less than or similar to 10 kyr). Rather, the inferred age and observed separation are compatible with the ages of high-mass X-ray binaries and gamma-ray binaries, and their separations from the nearest OB associations.
  •  
7.
  • Yang, Jun, 1979, et al. (author)
  • A compact core-jet structure in the changing-look Seyfert NGC 2617
  • 2021
  • In: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 503:3, s. 3886-3895
  • Journal article (peer-reviewed)abstract
    • The nearby face-on spiral galaxy NGC 2617 underwent an unambiguous 'inside-out' multiwavelength outburst in Spring 2013, and a dramatic Seyfert-type change probably between 2010 and 2012, with the emergence of broad optical emission lines. To search for the jet activity associated with this variable accretion activity, we carried out multiresolution and multiwavelength radio observations. Using the very long baseline interferometric (VLBI) observations with the European VLBI Network at 1.7 and 5.0 GHz, we find that NGC 2617 shows a partially synchrotron self-absorbed compact radio core with a significant core shift, and an optically thin steep-spectrum jet extending towards the north up to about 2 pc in projection. We also observed NGC 2617 with the electronic Multi-Element Remotely Linked Interferometer Network at 1.5 and 5.5 GHz, and revisited the archival data of the Very Large Array (VLA) and the Very Long Baseline Array (VLBA). The radio core had a stable flux density of similar to 1.4 mJy at 5.0 GHz between 2013 June and 2014 January, in agreement with the expectation of a supermassive black hole in the low accretion rate state. The northern jet component is unlikely to be associated with the 'inside-out' outburst of 2013. Moreover, we report that most optically selected changing-look active galactic nuclei (AGN) at z < 0.83 are sub-mJy radio sources in the existing VLA surveys at 1.4 GHz, and it is unlikely that they are more active than normal AGN at radio frequencies.
  •  
8.
  • Yang, Jun, 1979, et al. (author)
  • A parsec-scale radio jet launched by the central intermediate-mass black hole in the dwarf galaxy SDSS J090613.77+561015.2
  • 2020
  • In: Monthly Notices of the Royal Astronomical Society: Letters. - : Oxford University Press (OUP). - 1745-3925 .- 1745-3933. ; 495:1, s. L71-L75
  • Journal article (peer-reviewed)abstract
    • The population of intermediate-mass black holes (IMBHs) in nearby dwarf galaxies plays an important 'ground truth' role in exploring black hole formation and growth in the early Universe. In the dwarf elliptical galaxy SDSS J090613.77+561015.2 (z = 0.0465), an accreting IMBH has been revealed by optical and X-ray observations. Aiming to search for possible radio core and jet associated with the IMBH, we carried out very long baseline interferometry (VLBI) observations with the European VLBI Network at 1.66 GHz. Our imaging results show that there are two 1-mJy components with a separation of about 52 mas (projected distance 47 pc) and themore compact component is located within the 1s error circle of the optical centroid from available Gaia astrometry. Based on their positions, elongated structures and relatively high brightness temperatures, as well as the absence of star-forming activity in the host galaxy, we argue that the radio morphology originates from the jet activity powered by the central IMBH. The existence of the large-scale jet implies that violent jet activity might occur in the early epochs of black hole growth and thus help to regulate the co-evolution of black holes and galaxies.
  •  
9.
  • Yang, Jun, 1979, et al. (author)
  • A two-sided but significantly beamed jet in the supercritical accretion quasar IRAS F11119+3257
  • 2020
  • In: Monthly Notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 494:2, s. 1744-1750
  • Journal article (peer-reviewed)abstract
    • Highly accreting quasars are quite luminous in the X-ray and optical regimes; while, they tend to become radio quiet and have optically thin radio spectra. Among the known quasars, IRAS F11119+3257 is a supercritical accretion source because it has a bolometric luminosity slightly above the Eddington limit and extremely powerful X-ray outflows. To probe its radio structure, we investigated its radio spectrum between 0.15 and 96.15 GHz and performed very-long-baseline interferometric (VLBI) observations with the European VLBI Network (EVN) at 1.66 and 4.93 GHz. The deep EVN image at 1.66 GHz shows a two-sided jet with a projected separation about 200 pc and a very high flux density ratio of about 290. Together with the best-fitting value of the integrated spectral index of -1.31 +/- 0.02 in the optically thin part, we infer that the approaching jet has an intrinsic speed at least 0.57 times of the light speed. This is a new record among the known all kinds of super-Eddington accreting sources and unlikely accelerated by the radiation pressure in a certain models. We propose a scenario in which IRAS F11119+3257 is an unusual compact symmetric object with a small jet viewing angle and a radio spectrum peaking at 0.53 +/- 0.06 GHz mainly due to the synchrotron self-absorption.
  •  
10.
  • Yang, Jun, 1979, et al. (author)
  • Intermediate-mass black holes: finding of episodic, large-scale, and powerful jet activity in a dwarf galaxy
  • 2023
  • In: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 520:4, s. 5964-5973
  • Journal article (peer-reviewed)abstract
    • Dwarf galaxies are characterized by a very low luminosity and low mass. Because of significant accretion and ejection activity of massive black holes, some dwarf galaxies also host lo w-luminosity acti ve galactic nuclei (AGNs). In a few dwarf AGNs, very long baseline interferometry (VLBI) observations have found faint non-thermal radio emission. SDSS J090613.77 + 561015.2 is a dwarf AGN owning an intermediate-mass black hole (IMBH) with a mass of M-BH = 3 . 6 (+5.9) (-2.3 )x 10 (5) M(? )and showing a rarely seen two-component radio structure in its radio nucleus. To further probe their nature, i.e. the IMBH jet activity, we performed additional deep observations with the European VLBI Network (EVN) at 1.66 and 4.99 GHz. We find the more diffuse emission regions and structure details. These new EVN imaging results allow us to reveal a two-sided jet morphology with a size up to about 150 mas (projected length similar to 140 pc) and a radio luminosity of about 3 x 10( 38) erg s( -1). The peak feature has an optically thin radio spectrum and thus more likely represents a relatively young ejecta instead of a jet base. The EVN study on SDSS J090613.77 + 561015.2 demonstrates the existence of episodic, relatively large-scale, and powerful IMBH jet activity in dwarf AGNs. Moreo v er, we collected a small sample of VLBI-detected dwarf AGNs and investigated their connections with normal AGNs. We notice that these radio sources in the dwarf AGNs tend to have steep spectra and small linear sizes, and possibly represent ejecta from scaled-down episodic jet activity.
  •  
11.
  • Yang, Jun, 1979, et al. (author)
  • Is there a sub-parsec-scale jet base in the nearby dwarf galaxy NGC 4395?
  • 2022
  • In: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 514:4, s. 6215-6224
  • Journal article (peer-reviewed)abstract
    • NGC 4395 is a dwarf galaxy at a distance of about 4.3 Mpc (scale: similar to 0.021 pc mas(-1)). It hosts an intermediate-mass black hole (IMBH) with a mass between similar to 10(4) and similar to 10(5) solar masses. The early radio observations of NGC 4395 with the very long baseline interferometry (VLBI) network, High Sensitivity Array (HSA), at 1.4 GHz in 2005 showed that its nucleus has a sub-mJy outflow-like feature (E) extending over 15 mas. To probe the possibility of the feature E as a continuous jet with a base physically coupled with the accretion disc, we performed deep VLBI observations with the European VLBI Network (EVN) at 5 GHz, and analysed the archival data obtained with the HSA at 1.4 GHz in 2008, NSF's Karl G. Jansky Very Large Array (VLA) at 12-18 GHz and the Atacama Large Millimetre/submillimetre Array (ALMA) at 237 GHz. The feature E displays more diffuse structure in the HSA image of 2008 and has no compact substructure detected in the EVN image. Together with the optically thin steep spectrum and the extremely large angular offset (about 220 mas) from the accurate optical Gaia position, we explain the feature E as nuclear shocks likely formed by the IMBH's episodic ejection or wide-angle outflow. The VLA and ALMA observations find a sub-mJy pc-scale diffuse feature, possibly tracing a thermal free-free emission region near the IMBH. There is no detection of a jet base at the IMBH position in the VLBI maps. The non-detections give an extremely low luminosity of <= 4.7 x 10(33) erg s(-1) at 5 GHz and indicate no evidence of a disc-jet coupling on sub-pc scales.
  •  
12.
  • Yang, Jun, 1979, et al. (author)
  • Structural and spectral properties of Galactic plane variable radio sources
  • 2022
  • In: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 511:1, s. 280-294
  • Journal article (peer-reviewed)abstract
    • In the time domain, the radio sky in particular along the Galactic plane direction may vary significantly because of various energetic activities associated with stars, stellar, and supermassive black holes. Multi-epoch Very Large Array surveys of the Galactic plane at 5.0 GHz enabled the finding of a catalogue of 39 variable radio sources in the flux density range 1-70 mJy. To probe their radio structures and spectra, we observed 17 sources with the very-long-baseline interferometric (VLBI) imaging technique and collected additional multifrequency data from the literature. We detected all of the sources at 5 GHz with the Westerbork Synthesis Radio Telescope, but only G23.6644-0.0372 with the European VLBI Network (EVN). Together with its decadal variability and multifrequency radio spectrum, we interpret it as an extragalactic peaked-spectrum source with a size of less than or similar to 10 pc. The remaining sources were resolved out by the long baselines of the EVN because of either strong scatter broadening at the Galactic latitude < 1 degrees or intrinsically very extended structures on centi-arcsec scales. According to their spectral and structural properties, we find that the sample has a diverse nature. We notice two young H ii regions and spot a radio star and a candidate planetary nebula. The rest of the sources are very likely associated with radio active galactic nuclei (AGNs). Two of them also display arcsec-scale faint jet activity. The sample study indicates that AGNs are common place even among variable radio sources in the Galactic plane.
  •  
13.
  • Yang, Jun, 1979, et al. (author)
  • The nearby extreme accretion and feedback system PDS 456: finding a complex radio-emitting nucleus
  • 2021
  • In: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 500:2, s. 2620-2626
  • Journal article (peer-reviewed)abstract
    • When a black hole accretes close to the Eddington limit, the astrophysical jet is often accompanied by radiatively driven, wide-aperture and mildly relativistic winds. Powerful winds can produce significant non-thermal radio emission via shocks. Among the nearby critical accretion quasars, PDS 456 has a very massive black hole (about 1 billion solar masses), shows a significant star-forming activity (about 70 solar masses per year), and hosts exceptionally energetic X-ray winds (power up to 20 per cent of the Eddington luminosity). To probe the radio activity in this extreme accretion and feedback system, we performed very long baseline interferometric (VLBI) observations of PDS 456 at 1.66 GHz with the European VLBI Network and the enhanced Multi-Element Remotely Linked Interferometry Network. We find a rarely seen complex radio-emitting nucleus consisting of a collimated jet and an extended non-thermal radio emission region. The diffuse emission region has a size of about 360 pc and a radio luminosity about three times higher than that of the nearby extreme starburst galaxy Arp 220. The powerful nuclear radio activity could result either from a relic jet with a peculiar geometry (nearly along the line of sight) or more likely from diffuse shocks formed naturally by the existing high-speed winds impacting on high-density star-forming regions.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-13 of 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view