SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Parchi P) "

Search: WFRF:(Parchi P)

  • Result 1-18 of 18
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • 2019
  • Journal article (peer-reviewed)
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Minikel, EV, et al. (author)
  • Quantifying prion disease penetrance using large population control cohorts
  • 2016
  • In: Science translational medicine. - : American Association for the Advancement of Science (AAAS). - 1946-6242 .- 1946-6234. ; 8:322, s. 322ra9-
  • Journal article (peer-reviewed)abstract
    • Large genomic reference data sets reveal a spectrum of pathogenicity in the prion protein gene and provide genetic validation for a therapeutic strategy in prion disease.
  •  
8.
  • Schmitt, A, et al. (author)
  • How a neuropsychiatric brain bank should be run : a consensus paper of Brainnet Europe II.
  • 2007
  • In: Journal of neural transmission. - : Springer Science and Business Media LLC. - 0300-9564 .- 1435-1463. ; 114:5, s. 527-37
  • Journal article (peer-reviewed)abstract
    • The development of new molecular and neurobiological methods, computer-assisted quantification techniques and neurobiological investigation methods which can be applied to the human brain, all have evoked an increased demand for post-mortem tissue in research. Psychiatric disorders are considered to be of neurobiological origin. Thus far, however, the etiology and pathophysiology of schizophrenia, depression and dementias are not well understood at the cellular and molecular level. The following will outline the consensus of the working group for neuropsychiatric brain banking organized in the Brainnet Europe II, on ethical guidelines for brain banking, clinical diagnostic criteria, the minimal clinical data set of retrospectively analyzed cases as well as neuropathological standard investigations to perform stageing for neurodegenerative disorders in brain tissue. We will list regions of interest for assessments in psychiatric disorder, propose a dissection scheme and describe preservation and storage conditions of tissue. These guidelines may be of value for future implementations of additional neuropsychiatric brain banks world-wide.
  •  
9.
  •  
10.
  •  
11.
  • Alafuzoff, Irina, et al. (author)
  • The need to unify neuropathological assessments of vascular alterations in the ageing brain : Multicentre survey by the BrainNet Europe consortium
  • 2012
  • In: Experimental Gerontology. - : Elsevier BV. - 0531-5565 .- 1873-6815. ; 47:11, s. 825-833
  • Journal article (peer-reviewed)abstract
    • Here, we summarise the results after carrying out a large survey regarding the assessment of vascular alterations, both vessel changes and vascular lesions in an inter-laboratory setting. In total, 32 neuropathologists from 22 centres, most being members of BrainNet Europe (BNE), participated by filling out a questionnaire with emphasis on assessment of common vascular alterations seen in the brains of aged subjects. A certain level of harmonisation has been reached among BNE members regarding sectioning of the brain, harvesting of brain tissue for histology and staining used when compared to the survey carried out in 2006 by Pantoni and colleagues. The most significant variability was seen regarding the assessment of severity and of clinical significance of vascular alterations. Two strategies have recently been recommended regarding the assessment of vascular alterations in aged and demented subjects. The National Institute on Aging - Alzheimer's Association (NIA-AA) recommends the assessment of hippocampal sclerosis, vascular brain injury and microvascular lesions in 12 regions. Although this strategy will be easy to follow, the recommendations do not inform how the load of observed alterations should be assessed and when the observed lesions are of significance. Deramecourt and his colleagues recommend an assessment and semiquantitative grading of various pathologies in 4 brain regions. This strategy yielded a total score of 0 to 20 as an estimate of pathology load. It is, however, not clear which score is considered to be of clinical significance. Furthermore, in several BNE trials the semiquantitative assessment has yielded poor agreement rates; an observation that might negatively influence the strategy proposed by Deramecourt and his colleagues. In line with NIA-AA, a dichotomised approach of easily recognisable lesions in a standardised set of brain regions harvested for neuropathological assessment and applying reproducible sampling and staining strategies is recommended by BNE. However, a simple strategy regarding assessment of load of alteration is urgently needed to yield reproducible, and at the same time, comparable results between centres.
  •  
12.
  • Levin, Johannes, et al. (author)
  • α-Synuclein seed amplification assay detects Lewy body co-pathology in autosomal dominant Alzheimer's disease late in the disease course and dependent on Lewy pathology burden
  • 2024
  • In: Alzheimer's and Dementia. - 1552-5260. ; 20:6, s. 4351-4365
  • Journal article (peer-reviewed)abstract
    • INTRODUCTION: Amyloid beta and tau pathology are the hallmarks of sporadic Alzheimer's disease (AD) and autosomal dominant AD (ADAD). However, Lewy body pathology (LBP) is found in ≈ 50% of AD and ADAD brains. METHODS: Using an α-synuclein seed amplification assay (SAA) in cerebrospinal fluid (CSF) from asymptomatic (n = 26) and symptomatic (n = 27) ADAD mutation carriers, including 12 with known neuropathology, we investigated the timing of occurrence and prevalence of SAA positive reactivity in ADAD in vivo. RESULTS: No asymptomatic participant and only 11% (3/27) of the symptomatic patients tested SAA positive. Neuropathology revealed LBP in 10/12 cases, primarily affecting the amygdala or the olfactory areas. In the latter group, only the individual with diffuse LBP reaching the neocortex showed α-synuclein seeding activity in CSF in vivo. DISCUSSION: Results suggest that in ADAD LBP occurs later than AD pathology and often as amygdala- or olfactory-predominant LBP, for which CSF α-synuclein SAA has low sensitivity. Highlights: Cerebrospinal fluid (CSF) real-time quaking-induced conversion (RT-QuIC) detects misfolded α-synuclein in ≈ 10% of symptomatic autosomal dominant Alzheimer's disease (ADAD) patients. CSF RT-QuIC does not detect α-synuclein seeding activity in asymptomatic mutation carriers. Lewy body pathology (LBP) in ADAD mainly occurs as olfactory only or amygdala-predominant variants. LBP develops late in the disease course in ADAD. CSF α-synuclein RT-QuIC has low sensitivity for focal, low-burden LBP.
  •  
13.
  • Mattsson, Niklas, 1979, et al. (author)
  • CSF biomarker variability in the Alzheimer's Association quality control program
  • 2013
  • In: Alzheimers & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 9:3, s. 251-261
  • Journal article (peer-reviewed)abstract
    • Background The cerebrospinal fluid (CSF) biomarkers amyloid beta 1–42, total tau, and phosphorylated tau are used increasingly for Alzheimer's disease (AD) research and patient management. However, there are large variations in biomarker measurements among and within laboratories. Methods Data from the first nine rounds of the Alzheimer's Association quality control program was used to define the extent and sources of analytical variability. In each round, three CSF samples prepared at the Clinical Neurochemistry Laboratory (Mölndal, Sweden) were analyzed by single-analyte enzyme-linked immunosorbent assay (ELISA), a multiplexing xMAP assay, or an immunoassay with electrochemoluminescence detection. Results A total of 84 laboratories participated. Coefficients of variation (CVs) between laboratories were around 20% to 30%; within-run CVs, less than 5% to 10%; and longitudinal within-laboratory CVs, 5% to 19%. Interestingly, longitudinal within-laboratory CV differed between biomarkers at individual laboratories, suggesting that a component of it was assay dependent. Variability between kit lots and between laboratories both had a major influence on amyloid beta 1–42 measurements, but for total tau and phosphorylated tau, between-kit lot effects were much less than between-laboratory effects. Despite the measurement variability, the between-laboratory consistency in classification of samples (using prehoc-derived cutoffs for AD) was high (>90% in 15 of 18 samples for ELISA and in 12 of 18 samples for xMAP). Conclusions The overall variability remains too high to allow assignment of universal biomarker cutoff values for a specific intended use. Each laboratory must ensure longitudinal stability in its measurements and use internally qualified cutoff levels. Further standardization of laboratory procedures and improvement of kit performance will likely increase the usefulness of CSF AD biomarkers for researchers and clinicians.
  •  
14.
  • Popova, Svetlana N, et al. (author)
  • Divergent clinical and neuropathological phenotype in a Gerstmann-Sträussler-Scheinker P102L family
  • 2012
  • In: Acta Neurologica Scandinavica. - : Hindawi Limited. - 0001-6314 .- 1600-0404. ; 126:5, s. 315-323
  • Journal article (peer-reviewed)abstract
    • OBJECTIVES:Gerstmann-Sträussler-Scheinker syndrome belongs to the genetic prion diseases being associated with mutations in the prion protein gene (PRNP). The most common is the point mutation at codon 102, leading to the substitution of proline to leucine (P102L). Previous reports have indicated a phenotypic heterogeneity among individuals with this mutation. Here, we describe the clinical and pathological phenotype in members of the first Finnish kindred with the P102L mutation in the PNRP gene.MATERIALS AND METHODS:Genetic and clinical information was available in five members of a family, while a systematic histologic and immunohistochemical assessment of the post-mortem brain was carried out in three.RESULTS:Clinical presentation, disease duration and the clinical phenotype (ataxia vs dementia) varied between patients. There was a significant correlation between clinical symptoms and the neuroanatomical distribution of prion protein-immunoreactive aggregates, i.e. subtentorial predominance in ataxia vs cortical predominance in dementia. A significant concomitant Alzheimer is disease-related pathology was observed in the brain of one patient with dementia as onset symptom.CONCLUSIONS:This is the first Scandinavian family carrying the P102L mutation in the PRNP gene. Gerstmann-Sträussler-Scheinker syndrome should be considered in the differential diagnosis when handling with patients with ataxia and/or dementia of unclear aetiology.
  •  
15.
  •  
16.
  • Brockmann, K., et al. (author)
  • Association between CSF alpha-synuclein seeding activity and genetic status in Parkinson's disease and dementia with Lewy bodies
  • 2021
  • In: Acta Neuropathologica Communications. - : Springer Science and Business Media LLC. - 2051-5960. ; 9:1
  • Journal article (peer-reviewed)abstract
    • The clinicopathological heterogeneity in Lewy-body diseases (LBD) highlights the need for pathology-driven biomarkers in-vivo. Misfolded alpha-synuclein (alpha-Syn) is a lead candidate based on its crucial role in disease pathophysiology. Real-time quaking-induced conversion (RT-QuIC) analysis of CSF has recently shown high sensitivity and specificity for the detection of misfolded alpha-Syn in patients with Parkinson's disease (PD) and dementia with Lewy bodies (DLB). In this study we performed the CSF RT-QuIC assay in 236 PD and 49 DLB patients enriched for different genetic forms with mutations in GBA, parkin, PINK1, DJ1, and LRRK2. A subgroup of 100 PD patients was also analysed longitudinally. We correlated kinetic seeding parameters of RT-QuIC with genetic status and CSF protein levels of molecular pathways linked to alpha-Syn proteostasis. Overall, 85% of PD and 86% of DLB patients showed positive RT-QuIC alpha-Syn seeding activity. Seeding profiles were significantly associated with mutation status across the spectrum of genetic LBD. In PD patients, we detected positive alpha-Syn seeding in 93% of patients carrying severe GBA mutations, in 78% with LRRK2 mutations, in 59% carrying heterozygous mutations in recessive genes, and in none of those with bi-allelic mutations in recessive genes. Among PD patients, those with severe GBA mutations showed the highest seeding activity based on RT-QuIC kinetic parameters and the highest proportion of samples with 4 out of 4 positive replicates. In DLB patients, 100% with GBA mutations showed positive alpha-Syn seeding compared to 79% of wildtype DLB. Moreover, we found an association between alpha-Syn seeding activity and reduced CSF levels of proteins linked to alpha-Syn proteostasis, specifically lysosome-associated membrane glycoprotein 2 and neurosecretory protein VGF. These findings highlight the value of alpha-Syn seeding activity as an in-vivo marker of Lewy-body pathology and support its use for patient stratification in clinical trials targeting alpha-Syn.
  •  
17.
  • Quadri, Marialuisa, et al. (author)
  • LRP10 genetic variants in familial Parkinson's disease and dementia with Lewy bodies : a genome-wide linkage and sequencing study
  • 2018
  • In: The Lancet Neurology. - 1474-4422. ; 17:7, s. 597-608
  • Journal article (peer-reviewed)abstract
    • Background: Most patients with Parkinson's disease, Parkinson's disease dementia, and dementia with Lewy bodies do not carry mutations in known disease-causing genes. The aim of this study was to identify a novel gene implicated in the development of these disorders. Methods: Our study was done in three stages. First, we did genome-wide linkage analysis of an Italian family with dominantly inherited Parkinson's disease to identify the disease locus. Second, we sequenced the candidate gene in an international multicentre series of unrelated probands who were diagnosed either clinically or pathologically with Parkinson's disease, Parkinson's disease dementia, or dementia with Lewy bodies. As a control, we used gene sequencing data from individuals with abdominal aortic aneurysms (who were not examined neurologically). Third, we enrolled an independent series of patients diagnosed clinically with Parkinson's disease and controls with no signs or family history of Parkinson's disease, Parkinson's disease dementia, or dementia with Lewy bodies from centres in Portugal, Sardinia, and Taiwan, and screened them for specific variants. We also did mRNA and brain pathology studies in three patients from the international multicentre series carrying disease-associated variants, and we did functional protein studies in in-vitro models, including neurons from induced pluripotent stem-like cells. Findings: Molecular studies were done between Jan 1, 2008, and Dec 31, 2017. In the initial kindred of ten affected Italian individuals (mean age of disease onset 59·8 years [SD 8·7]), we detected significant linkage of Parkinson's disease to chromosome 14 and nominated LRP10 as the disease-causing gene. Among the international series of 660 probands, we identified eight individuals (four with Parkinson's disease, two with Parkinson's disease dementia, and two with dementia with Lewy bodies) who carried different, rare, potentially pathogenic LRP10 variants; one carrier was found among 645 controls with abdominal aortic aneurysms. In the independent series, two of these eight variants were detected in three additional Parkinson's disease probands (two from Sardinia and one from Taiwan) but in none of the controls. Of the 11 probands from the international and independent cohorts with LRP10 variants, ten had a positive family history of disease and DNA was available from ten affected relatives (in seven of these families). The LRP10 variants were present in nine of these ten relatives, providing independent—albeit limited—evidence of co-segregation with disease. Post-mortem studies in three patients carrying distinct LRP10 variants showed severe Lewy body pathology. Of nine variants identified in total (one in the initial family and eight in stage 2), three severely affected LRP10 expression and mRNA stability (1424+5delG, 1424+5G→A, and Ala212Serfs*17, shown by cDNA analysis), four affected protein stability (Tyr307Asn, Gly603Arg, Arg235Cys, and Pro699Ser, shown by cycloheximide-chase experiments), and two affected protein localisation (Asn517del and Arg533Leu; shown by immunocytochemistry), pointing to loss of LRP10 function as a common pathogenic mechanism. Interpretation: Our findings implicate LRP10 gene defects in the development of inherited forms of α-synucleinopathies. Future elucidation of the function of the LRP10 protein and pathways could offer novel insights into mechanisms, biomarkers, and therapeutic targets. Funding: Stichting ParkinsonFonds, Dorpmans-Wigmans Stichting, Erasmus Medical Center, ZonMw—Memorabel programme, EU Joint Programme Neurodegenerative Disease Research (JPND), Parkinson's UK, Avtal om Läkarutbildning och Forskning (ALF) and Parkinsonfonden (Sweden), Lijf and Leven foundation, and cross-border grant of Alzheimer Netherlands–Ligue Européene Contre la Maladie d'Alzheimer (LECMA).
  •  
18.
  • Vallabh, S. M., et al. (author)
  • Prion protein quantification in human cerebrospinal fluid as a tool for prion disease drug development
  • 2019
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424. ; 116:16, s. 7793-7798
  • Journal article (peer-reviewed)abstract
    • Reduction of native prion protein (PrP) levels in the brain is an attractive strategy for the treatment or prevention of human prion disease. Clinical development of any PrP-reducing therapeutic will require an appropriate pharmacodynamic biomarker: a practical and robust method for quantifying PrP, and reliably demonstrating its reduction in the central nervous system (CNS) of a living patient. Here we evaluate the potential of ELISA-based quantification of human PrP in human cerebrospinal fluid (CSF) to serve as a biomarker for PrP-reducing therapeutics. We show that CSF PrP is highly sensitive to plastic adsorption during handling and storage, but its loss can be minimized by the addition of detergent. We find that blood contamination does not affect CSF PrP levels, and that CSF PrP and hemoglobin are uncorrelated, together suggesting that CSF PrP is CNS derived, supporting its relevance for monitoring the tissue of interest and in keeping with high PrP abundance in brain relative to blood. In a cohort with controlled sample handling, CSF PrP exhibits good within-subject test–retest reliability (mean coefficient of variation, 13% in samples collected 8–11 wk apart), a sufficiently stable baseline to allow therapeutically meaningful reductions in brain PrP to be readily detected in CSF. Together, these findings supply a method for monitoring the effect of a PrP-reducing drug in the CNS, and will facilitate development of prion disease therapeutics with this mechanism of action. © 2019 National Academy of Sciences. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-18 of 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view