SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Pascoal A) "

Search: WFRF:(Pascoal A)

  • Result 1-25 of 65
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Kang, M. S., et al. (author)
  • Amyloid-beta modulates the association between neurofilament light chain and brain atrophy in Alzheimer's disease
  • 2021
  • In: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 26, s. 5989-6001
  • Journal article (peer-reviewed)abstract
    • Neurofilament light chain (NFL) measurement has been gaining strong support as a clinically useful neuronal injury biomarker for various neurodegenerative conditions. However, in Alzheimer's disease (AD), its reflection on regional neuronal injury in the context of amyloid pathology remains unclear. This study included 83 cognitively normal (CN), 160 mild cognitive impairment (MCI), and 73 AD subjects who were further classified based on amyloid-beta (A beta) status as positive or negative (A beta+ vs A beta-). In addition, 13 rats (5 wild type and 8 McGill-R-Thy1-APP transgenic (Tg)) were examined. In the clinical study, reduced precuneus/posterior cingulate cortex and hippocampal grey matter density were significantly associated with increased NFL concentrations in cerebrospinal fluid (CSF) or plasma in MCI A beta+ and AD A beta+. Moreover, AD A beta+ showed a significant association between the reduced grey matter density in the AD-vulnerable regions and increased NFL concentrations in CSF or plasma. Congruently, Tg rats recapitulated and validated the association between CSF NFL and grey matter density in the parietotemporal cortex, entorhinal cortex, and hippocampus in the presence of amyloid pathology. In conclusion, reduced grey matter density and elevated NFL concentrations in CSF and plasma are associated in AD-vulnerable regions in the presence of amyloid positivity in the AD clinical spectrum and amyloid Tg rat model. These findings further support the NFL as a neuronal injury biomarker in the research framework of AD biomarker classification and for the evaluation of therapeutic efficacy in clinical trials.
  •  
2.
  •  
3.
  • Kang, M. S., et al. (author)
  • Preclinical in vivo longitudinal assessment of KG207-M as a disease-modifying Alzheimer's disease therapeutic
  • 2022
  • In: Journal of Cerebral Blood Flow and Metabolism. - : SAGE Publications. - 0271-678X .- 1559-7016. ; 42:5, s. 788-801
  • Journal article (peer-reviewed)abstract
    • In vivo biomarker abnormalities provide measures to monitor therapeutic interventions targeting amyloid-beta pathology as well as its effects on downstream processes associated with Alzheimer's disease pathophysiology. Here, we applied an in vivo longitudinal study design combined with imaging and cerebrospinal fluid biomarkers, mirroring those used in human clinical trials to assess the efficacy of a novel brain-penetrating anti-amyloid fusion protein treatment in the McGill-R-Thy1-APP transgenic rat model. The bi-functional fusion protein consisted of a blood-brain barrier crossing single domain antibody (FC5) fused to an amyloid-beta oligomer-binding peptide (ABP) via Fc fragment of mouse IgG (FC5-mFc2a-ABP). A five-week treatment with FC5-mFc2a-ABP (loading dose of 30 mg/Kg/iv followed by 15 mg/Kg/week/iv for four weeks) substantially reduced brain amyloid-beta levels as measured by positron emission tomography and increased the cerebrospinal fluid amyloid-beta(42/40) ratio. In addition, the 5-week treatment rectified the cerebrospinal fluid neurofilament light chain concentrations, resting-state functional connectivity, and hippocampal atrophy measured using magnetic resonance imaging. Finally, FC5-mFc2a-ABP (referred to as KG207-M) treatment did not induce amyloid-related imaging abnormalities such as microhemorrhage. Together, this study demonstrates the translational values of the designed preclinical studies for the assessment of novel therapies based on the clinical biomarkers providing tangible metrics for designing early-stage clinical trials.
  •  
4.
  • Bellaver, B., et al. (author)
  • Blood-brain barrier integrity impacts the use of plasma amyloid-beta as a proxy of brain amyloid-beta pathology
  • 2023
  • In: Alzheimers & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 19:9, s. 3815-3825
  • Journal article (peer-reviewed)abstract
    • INTRODUCTION Amyloid-beta (A beta) and tau can be quantified in blood. However, biological factors can influence the levels of brain-derived proteins in the blood. The blood-brain barrier (BBB) regulates protein transport between cerebrospinal fluid (CSF) and blood. BBB altered permeability might affect the relationship between brain and blood biomarkers.METHODS We assessed 224 participants in research (TRIAD, n = 96) and clinical (BIODEGMAR, n = 128) cohorts with plasma and CSF/positron emission tomography A beta, p-tau, and albumin measures.RESULTS Plasma A beta(42/40) better identified CSF A beta(42/40) and A beta-PET positivity in individuals with high BBB permeability. An interaction between plasma A beta(42/40) and BBB permeability on CSF A beta(42/40) was observed. Voxel-wise models estimated that the association of positron emission tomography (PET), with plasma A beta was most affected by BBB permeability in AD-related brain regions. BBB permeability did not significantly impact the relationship between brain and plasma p-tau levels.DISCUSSION These findings suggest that BBB integrity may influence the performance of plasma A beta, but not p-tau, biomarkers in research and clinical settings.
  •  
5.
  • Therriault, J., et al. (author)
  • Equivalence of plasma p-tau217 with cerebrospinal fluid in the diagnosis of Alzheimer's disease
  • 2023
  • In: Alzheimers & Dementia. - 1552-5260. ; 19:11, s. 4967-4977
  • Journal article (peer-reviewed)abstract
    • INTRODUCTION: Plasma biomarkers are promising tools for Alzheimer's disease (AD) diagnosis, but comparisons with more established biomarkers are needed.METHODS: We assessed the diagnostic performance of p-tau(181), p-tau(217), and p-tau(231) in plasma and CSF in 174 individuals evaluated by dementia specialists and assessed with amyloid-PET and tau-PET. Receiver operating characteristic (ROC) analyses assessed the performance of plasma and CSF biomarkers to identify amyloid-PET and tau-PET positivity.RESULTS: Plasma p-tau biomarkers had lower dynamic ranges and effect sizes compared to CSF p-tau. Plasma p-tau(181) (AUC = 76%) and p-tau(231) (AUC = 82%) assessments performed inferior to CSF p-tau(181) (AUC = 87%) and p-tau(231) (AUC = 95%) for amyloid-PET positivity. However, plasma p-tau(217) (AUC = 91%) had diagnostic performance indistinguishable from CSF (AUC = 94%) for amyloid-PET positivity.DISCUSSION: Plasma and CSF p-tau(217) had equivalent diagnostic performance for biomarker-defined AD. Our results suggest that plasma p-tau(217) may help reduce the need for invasive lumbar punctures without compromising accuracy in the identification of AD.
  •  
6.
  • Woo, M. S., et al. (author)
  • 14-3-3 ζ/δ-reported early synaptic injury in Alzheimer's disease is independently mediated by sTREM2
  • 2023
  • In: Journal of Neuroinflammation. - 1742-2094. ; 20:1
  • Journal article (peer-reviewed)abstract
    • Introduction Synaptic loss is closely associated with tau aggregation and microglia activation in later stages of Alzheimer's disease (AD). However, synaptic damage happens early in AD at the very early stages of tau accumulation. It remains unclear whether microglia activation independently causes synaptic cleavage before tau aggregation appears.Methods We investigated 104 participants across the AD continuum by measuring 14-3-3 zeta/delta (zeta/delta) as a cerebrospinal fluid biomarker for synaptic degradation, and fluid and imaging biomarkers of tau, amyloidosis, astrogliosis, neurodegeneration, and inflammation. We performed correlation analyses in cognitively unimpaired and impaired participants and used structural equation models to estimate the impact of microglia activation on synaptic injury in different disease stages.Results14-3-3 zeta/delta was increased in participants with amyloid pathology at the early stages of tau aggregation before hippocampal volume loss was detectable. 14-3-3 zeta/delta correlated with amyloidosis and tau load in all participants but only with biomarkers of neurodegeneration and memory deficits in cognitively unimpaired participants. This early synaptic damage was independently mediated by sTREM2. At later disease stages, tau and astrogliosis additionally mediated synaptic loss.ConclusionsOur results advertise that sTREM2 is mediating synaptic injury at the early stages of tau accumulation, underlining the importance of microglia activation for AD disease propagation.
  •  
7.
  • Ferrari-Souza, J. P., et al. (author)
  • Astrocyte biomarker signatures of amyloid-beta and tau pathologies in Alzheimer's disease
  • 2022
  • In: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 27:11, s. 4781-4789
  • Journal article (peer-reviewed)abstract
    • Astrocytes can adopt multiple molecular phenotypes in the brain of Alzheimer's disease (AD) patients. Here, we studied the associations of cerebrospinal fluid (CSF) glial fibrillary acidic protein (GFAP) and chitinase-3-like protein 1 (YKL-40) levels with brain amyloid-beta (A beta) and tau pathologies. We assessed 121 individuals across the aging and AD clinical spectrum with positron emission tomography (PET) brain imaging for A beta ([F-18]AZD4694) and tau ([F-18]MK-6240), as well as CSF GFAP and YKL-40 measures. We observed that higher CSF GFAP levels were associated with elevated A beta-PET but not tau-PET load. By contrast, higher CSF YKL-40 levels were associated with elevated tau-PET but not A beta-PET burden. Structural equation modeling revealed that CSF GFAP and YKL-40 mediate the effects of A beta and tau, respectively, on hippocampal atrophy, which was further associated with cognitive impairment. Our results suggest the existence of distinct astrocyte biomarker signatures in response to brain A beta and tau accumulation, which may contribute to our understanding of the complex link between reactive astrogliosis heterogeneity and AD progression.
  •  
8.
  • Ferreira, P. C. L., et al. (author)
  • Plasma p-tau231 and p-tau217 inform on tau tangles aggregation in cognitively impaired individuals
  • 2023
  • In: Alzheimers & Dementia. - 1552-5260. ; 19:10, s. 4463-4474
  • Journal article (peer-reviewed)abstract
    • INTRODUCTIONPhosphorylated tau (p-tau) biomarkers have been recently proposed to represent brain amyloid-& beta; (A & beta;) pathology. Here, we evaluated the plasma biomarkers' contribution beyond the information provided by demographics (age and sex) to identify A & beta; and tau pathologies in individuals segregated as cognitively unimpaired (CU) and impaired (CI). METHODSWe assessed 138 CU and 87 CI with available plasma p-tau231, 217(+), and 181, A & beta;42/40, GFAP and A & beta;- and tau-PET. RESULTSIn CU, only plasma p-tau231 and p-tau217(+) significantly improved the performance of the demographics in detecting A & beta;-PET positivity, while no plasma biomarker provided additional information to identify tau-PET positivity. In CI, p-tau217(+) and GFAP significantly contributed to demographics to identify both A & beta;-PET and tau-PET positivity, while p-tau231 only provided additional information to identify tau-PET positivity. DISCUSSIONOur results support plasma p-tau231 and p-tau217(+) as state markers of early A & beta; deposition, but in later disease stages they inform on tau tangle accumulation. HighlightsIt is still unclear how much plasma biomarkers contribute to identification of AD pathology across the AD spectrum beyond the information already provided by demographics (age + sex).Plasma p-tau231 and p-tau217(+) contribute to demographic information to identify brain A & beta; pathology in preclinical AD.In CI individuals, plasma p-tau231 contributes to age and sex to inform on the accumulation of tau tangles, while p-tau217(+) and GFAP inform on both A & beta; deposition and tau pathology.
  •  
9.
  • Leffa, D. T., et al. (author)
  • Genetic risk for attention-deficit/hyperactivity disorder predicts cognitive decline and development of Alzheimer's disease pathophysiology in cognitively unimpaired older adults
  • 2023
  • In: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 28:3, s. 1248-1255
  • Journal article (peer-reviewed)abstract
    • Attention-deficit/hyperactivity disorder (ADHD) persists in older age and is postulated as a risk factor for cognitive impairment and Alzheimer's Disease (AD). However, these findings rely primarily on electronic health records and can present biased estimates of disease prevalence. An obstacle to investigating age-related cognitive decline in ADHD is the absence of large-scale studies following patients with ADHD into older age. Alternatively, this study aimed to determine whether genetic liability for ADHD, as measured by a well-validated ADHD polygenic risk score (ADHD-PRS), is associated with cognitive decline and the development of AD pathophysiology in cognitively unimpaired (CU) older adults. We calculated a weighted ADHD-PRS in 212 CU individuals without a clinical diagnosis of ADHD (55-90 years). These individuals had baseline amyloid-beta (A beta) positron emission tomography, longitudinal cerebrospinal fluid (CSF) phosphorylated tau at threonine 181 (p-tau(181)), magnetic resonance imaging, and cognitive assessments for up to 6 years. Linear mixed-effects models were used to test the association of ADHD-PRS with cognition and AD biomarkers. Higher ADHD-PRS was associated with greater cognitive decline over 6 years. The combined effect between high ADHD-PRS and brain A beta deposition on cognitive deterioration was more significant than each individually. Additionally, higher ADHD-PRS was associated with increased CSF p-tau(181) levels and frontoparietal atrophy in CU A beta-positive individuals. Our results suggest that genetic liability for ADHD is associated with cognitive deterioration and the development of AD pathophysiology. Findings were mostly observed in A beta-positive individuals, suggesting that the genetic liability for ADHD increases susceptibility to the harmful effects of A beta pathology.
  •  
10.
  • Woo, M. S., et al. (author)
  • Plasma pTau-217 and N-terminal tau (NTA) enhance sensitivity to identify tau PET positivity in amyloid-β positive individuals
  • 2024
  • In: Alzheimers & Dementia. - 1552-5260. ; 20:2, s. 1166-1174
  • Journal article (peer-reviewed)abstract
    • INTRODUCTIONWe set out to identify tau PET-positive (A+T+) individuals among amyloid-beta (A beta) positive participants using plasma biomarkers.METHODSIn this cross-sectional study we assessed 234 participants across the AD continuum who were evaluated by amyloid PET with [18F]AZD4694 and tau-PET with [18F]MK6240 and measured plasma levels of total tau, pTau-181, pTau-217, pTau-231, and N-terminal tau (NTA-tau). We evaluated the performances of plasma biomarkers to predict tau positivity in A beta+ individuals.RESULTSHighest associations with tau positivity in A beta+ individuals were found for plasma pTau-217 (AUC [CI95%] = 0.89 [0.82, 0.96]) and NTA-tau (AUC [CI95%] = 0.88 [0.91, 0.95]). Combining pTau-217 and NTA-tau resulted in the strongest agreement (Cohen's Kappa = 0.74, CI95% = 0.57/0.90, sensitivity = 92%, specificity = 81%) with PET for classifying tau positivity.DISCUSSIONThe potential for identifying tau accumulation in later Braak stages will be useful for patient stratification and prognostication in treatment trials and in clinical practice.HighlightsWe found that in a cohort without pre-selection pTau-181, pTau-217, and NTA-tau showed the highest association with tau PET positivity.We found that in A beta+ individuals pTau-217 and NTA-tau showed the highest association with tau PET positivity.Combining pTau-217 and NTA-tau resulted in the strongest agreement with the tau PET-based classification.
  •  
11.
  •  
12.
  •  
13.
  • Ferrari-Souza, J. P., et al. (author)
  • APOEε4 potentiates amyloid β effects on longitudinal tau pathology
  • 2023
  • In: Nature Aging. - 2662-8465. ; 3:10
  • Journal article (peer-reviewed)abstract
    • The mechanisms by which the apolipoprotein E epsilon 4 (APOE epsilon 4) allele influences the pathophysiological progression of Alzheimer's disease (AD) are poorly understood. Here we tested the association of APOE epsilon 4 carriership and amyloid-beta (A beta) burden with longitudinal tau pathology. We longitudinally assessed 94 individuals across the aging and AD spectrum who underwent clinical assessments, APOE genotyping, magnetic resonance imaging, positron emission tomography (PET) for A beta ([F-18]AZD4694) and tau ([F-18]MK-6240) at baseline, as well as a 2-year follow-up tau-PET scan. We found that APOE epsilon 4 carriership potentiates A beta effects on longitudinal tau accumulation over 2 years. The APOE epsilon 4-potentiated A beta effects on tau-PET burden were mediated by longitudinal plasma phosphorylated tau at threonine 217 (p-tau217(+)) increase. This longitudinal tau accumulation as measured by PET was accompanied by brain atrophy and clinical decline. Our results suggest that the APOE epsilon 4 allele plays a key role in A beta downstream effects on the aggregation of phosphorylated tau in the living human brain.
  •  
14.
  • Tlili, A., et al. (author)
  • Pollution-induced community tolerance (PICT): towards an ecologically relevant risk assessment of chemicals in aquatic systems
  • 2016
  • In: Freshwater Biology. - : Wiley. - 0046-5070 .- 1365-2427. ; 61:12, s. 2141-2151
  • Journal article (peer-reviewed)abstract
    • A major challenge in environmental risk assessment of pollutants is establishing a causal relationship between field exposure and community effects that integrates both structural and functional complexity within ecosystems. Pollution-induced community tolerance (PICT) is a concept that evaluates whether pollutants have exerted a selection pressure on natural communities. PICT detects whether a pollutant has eliminated sensitive species from a community and thereby increased its tolerance. PICT has the potential to link assessments of the ecological and chemical status of ecosystems by providing causal analysis for effect-based monitoring of impacted field sites. Using PICT measurements and microbial community endpoints in environmental assessment schemes could give more ecological relevance to the tools that are now used in environmental risk assessment. Here, we propose practical guidance and a list of research issues that should be further considered to apply the PICT concept in the field.
  •  
15.
  • Bellaver, B., et al. (author)
  • Astrocyte reactivity influences amyloid-beta effects on tau pathology in preclinical Alzheimer's disease
  • 2023
  • In: Nature Medicine. - 1078-8956. ; 29:7
  • Journal article (peer-reviewed)abstract
    • Cross-sectional and longitudinal analyses of tau pathology in preclinical Alzheimer's disease reveal that tau tangles accumulate as a function of amyloid-beta burden only in individuals positive for an astrocyte reactivity biomarker. An unresolved question for the understanding of Alzheimer's disease (AD) pathophysiology is why a significant percentage of amyloid-beta (A beta)-positive cognitively unimpaired (CU) individuals do not develop detectable downstream tau pathology and, consequently, clinical deterioration. In vitro evidence suggests that reactive astrocytes unleash A beta effects in pathological tau phosphorylation. Here, in a biomarker study across three cohorts (n = 1,016), we tested whether astrocyte reactivity modulates the association of A beta with tau phosphorylation in CU individuals. We found that A beta was associated with increased plasma phosphorylated tau only in individuals positive for astrocyte reactivity (Ast(+)). Cross-sectional and longitudinal tau-positron emission tomography analyses revealed an AD-like pattern of tau tangle accumulation as a function of A beta only in CU Ast(+) individuals. Our findings suggest astrocyte reactivity as an important upstream event linking A beta with initial tau pathology, which may have implications for the biological definition of preclinical AD and for selecting CU individuals for clinical trials.
  •  
16.
  • Ferrari-Souza, J. P., et al. (author)
  • APOEε4 associates with microglial activation independently of Aβ plaques and tau tangles
  • 2023
  • In: Science Advances. - 2375-2548. ; 9:14
  • Journal article (peer-reviewed)abstract
    • Animal studies suggest that the apolipoprotein E epsilon 4 (APOE epsilon 4) allele is a culprit of early microglial activation in Alzheimer's disease (AD). Here, we tested the association between APOE epsilon 4 status and microglial activation in living individuals across the aging and AD spectrum. We studied 118 individuals with positron emission tomog-raphy for amyloid-beta (A beta; [18F]AZD4694), tau ([18F]MK6240), and microglial activation ([11C]PBR28). We found that APOE epsilon 4 carriers presented increased microglial activation relative to noncarriers in early Braak stage regions within the medial temporal cortex accounting for A beta and tau deposition. Furthermore, microglial acti-vation mediated the A beta-independent effects of APOE epsilon 4 on tau accumulation, which was further associated with neurodegeneration and clinical impairment. The physiological distribution of APOE mRNA expression predicted the patterns of APOE epsilon 4-related microglial activation in our population, suggesting that APOE gene expression may regulate the local vulnerability to neuroinflammation. Our results support that the APOE epsilon 4 genotype exerts A beta-independent effects on AD pathogenesis by activating microglia in brain regions associated with early tau deposition.
  •  
17.
  • Ferrari-Souza, Joao Pedro, et al. (author)
  • Vascular risk burden is a key player in the early progression of Alzheimer's disease
  • 2024
  • In: NEUROBIOLOGY OF AGING. - 0197-4580 .- 1558-1497. ; 136, s. 88-98
  • Journal article (peer-reviewed)abstract
    • Understanding whether vascular risk factors (VRFs) synergistically potentiate Alzheimer's disease (AD) progression is important in the context of emerging treatments for preclinical AD. In a group of 503 cognitively unimpaired individuals, we tested whether VRF burden interacts with AD pathophysiology to accelerate neurodegeneration and cognitive decline. Baseline VRF burden was calculated considering medical data and AD pathophysiology was assessed based on cerebrospinal fluid (CSF) amyloid-beta 1-42 (A beta 1-42) and tau phosphorylated at threonine 181 (p-tau181). Neurodegeneration was assessed with plasma neurofilament light (NfL) and global cognition with the modified version of the Preclinical Alzheimer's Cognitive Composite. The mean (SD) age of participants was 72.9 (6.1) years, and 220 (43.7%) were men. Linear mixed-effects models revealed that an elevated VRF burden synergistically interacted with AD pathophysiology to drive longitudinal plasma NfL increase and cognitive decline. Additionally, VRF burden was not associated with CSF A beta 1-42or p-tau181 changes over time. Our results suggest that VRF burden and AD pathophysiology are independent processes; however, they synergistically lead to neurodegeneration and cognitive deterioration. In preclinical stages, the combination of therapies targeting VRFs and AD pathophysiology might potentiate treatment outcomes.
  •  
18.
  • Ferreira, P. C. L., et al. (author)
  • Potential Utility of Plasma P-Tau and Neurofilament Light Chain as Surrogate Biomarkers for Preventive Clinical Trials
  • 2023
  • In: NEUROLOGY. - : Ovid Technologies (Wolters Kluwer Health). - 0028-3878 .- 1526-632X. ; 101:1, s. 38-45
  • Journal article (peer-reviewed)abstract
    • ObjectiveTo test the utility of longitudinal changes in plasma phosphorylated tau 181 (p-tau181) and neurofilament light chain (NfL) as surrogate markers for clinical trials targeting cognitively unimpaired (CU) populations.MethodsWe estimated the sample size needed to test a 25% drug effect with 80% of power at a 0.05 level on reducing changes in plasma markers in CU participants from Alzheimer's Disease Neuroimaging Initiative database.ResultsWe included 257 CU individuals (45.5% males; mean age = 73 [6] years; 32% & beta;-amyloid [A & beta;] positive). Changes in plasma NfL were associated with age, whereas changes in plasma p-tau181 with progression to amnestic mild cognitive impairment. Clinical trials using p-tau181 and NfL would require 85% and 63% smaller sample sizes, respectively, for a 24-month than a 12-month follow-up. A population enrichment strategy using intermediate levels of A & beta; PET (Centiloid 20-40) further reduced the sample size of the 24-month clinical trial using p-tau181 (73%) and NfL (59%) as a surrogate.DiscussionPlasma p-tau181/NfL can potentially be used to monitor large-scale population interventions in CU individuals. The enrollment of CU with intermediate A & beta; levels constitutes the alternative with the largest effect size and most cost-effective for trials testing drug effect on changes in plasma p-tau181 and NfL.
  •  
19.
  • Lantero Rodriguez, Juan, et al. (author)
  • Plasma and CSF concentrations of N-terminal tau fragments associate with in vivo neurofibrillary tangle burden
  • 2023
  • In: Alzheimers & Dementia. - 1552-5260. ; 19:12, s. 5343-5354
  • Journal article (peer-reviewed)abstract
    • INTRODUCTIONFluid biomarkers capable of specifically tracking tau tangle pathology in vivo are greatly needed. METHODSWe measured cerebrospinal fluid (CSF) and plasma concentrations of N-terminal tau fragments (NTA-tau), using a novel immunoassay (NTA) in the TRIAD cohort, consisting of 272 individuals assessed with amyloid beta (A beta) positron emission tomography (PET), tau PET, magnetic resonance imaging (MRI) and cognitive assessments. RESULTSCSF and plasma NTA-tau concentrations were specifically increased in cognitively impaired A beta-positive groups. CSF and plasma NTA-tau concentrations displayed stronger correlations with tau PET than with A beta PET and MRI, both in global uptake and at the voxel level. Regression models demonstrated that both CSF and plasma NTA-tau are preferentially associated with tau pathology. Moreover, plasma NTA-tau was associated with longitudinal tau PET accumulation across the aging and Alzheimer's disease (AD) spectrum. DISCUSSIONNTA-tau is a biomarker closely associated with in vivo tau deposition in the AD continuum and has potential as a tau tangle biomarker in clinical settings and trials. HIGHLIGHTSAn assay for detecting N-terminal tau fragments (NTA-tau) in plasma and CSF was evaluated.NTA-tau is more closely associated with tau PET than amyloid PET or neurodegeneration.NTA-tau can successfully track in vivo tau deposition across the AD continuum.Plasma NTA-tau increased over time only in cognitively impaired amyloid-beta positive individuals.
  •  
20.
  • Lessa Benedet, Andréa, et al. (author)
  • Differences Between Plasma and Cerebrospinal Fluid Glial Fibrillary Acidic Protein Levels Across the Alzheimer Disease Continuum
  • 2021
  • In: Jama Neurology. - : American Medical Association (AMA). - 2168-6149. ; 78:12, s. 1471-1483
  • Journal article (peer-reviewed)abstract
    • Question What are the levels of plasma glial fibrillary acidic protein (GFAP) throughout the Alzheimer disease (AD) continuum, and how do they compare with the levels of cerebrospinal fluid (CSF) GFAP? Findings In this cross-sectional study, plasma GFAP levels were elevated in the preclinical and symptomatic stages of AD, with levels higher than those of CSF GFAP. Plasma GFAP had a higher accuracy than CSF GFAP to discriminate between amyloid-beta (A beta)-positive and A beta-negative individuals, also at the preclinical stage. Meaning This study suggests that plasma GFAP is a sensitive biomarker that significantly outperforms CSF GFAP in indicating A beta pathology in the early stages of AD. Importance Glial fibrillary acidic protein (GFAP) is a marker of reactive astrogliosis that increases in the cerebrospinal fluid (CSF) and blood of individuals with Alzheimer disease (AD). However, it is not known whether there are differences in blood GFAP levels across the entire AD continuum and whether its performance is similar to that of CSF GFAP. Objective To evaluate plasma GFAP levels throughout the entire AD continuum, from preclinical AD to AD dementia, compared with CSF GFAP. Design, Setting, and Participants This observational, cross-sectional study collected data from July 29, 2014, to January 31, 2020, from 3 centers. The Translational Biomarkers in Aging and Dementia (TRIAD) cohort (Montreal, Canada) included individuals in the entire AD continuum. Results were confirmed in the Alzheimer's and Families (ALFA+) study (Barcelona, Spain), which included individuals with preclinical AD, and the BioCogBank Paris Lariboisiere cohort (Paris, France), which included individuals with symptomatic AD. Main Outcomes and Measures Plasma and CSF GFAP levels measured with a Simoa assay were the main outcome. Other measurements included levels of CSF amyloid-beta 42/40 (A beta 42/40), phosphorylated tau181 (p-tau181), neurofilament light (NfL), Chitinase-3-like protein 1 (YKL40), and soluble triggering receptor expressed on myeloid cells 2 (sTREM2) and levels of plasma p-tau181 and NfL. Results of amyloid positron emission tomography (PET) were available in TRIAD and ALFA+, and results of tau PET were available in TRIAD. Results A total of 300 TRIAD participants (177 women [59.0%]; mean [SD] age, 64.6 [17.6] years), 384 ALFA+ participants (234 women [60.9%]; mean [SD] age, 61.1 [4.7] years), and 187 BioCogBank Paris Lariboisiere participants (116 women [62.0%]; mean [SD] age, 69.9 [9.2] years) were included. Plasma GFAP levels were significantly higher in individuals with preclinical AD in comparison with cognitively unimpaired (CU) A beta-negative individuals (TRIAD: A beta-negative mean [SD], 185.1 [93.5] pg/mL, A beta-positive mean [SD], 285.0 [142.6] pg/mL; ALFA+: A beta-negative mean [SD], 121.9 [42.4] pg/mL, A beta-positive mean [SD], 169.9 [78.5] pg/mL). Plasma GFAP levels were also higher among individuals in symptomatic stages of the AD continuum (TRIAD: CU A beta-positive mean [SD], 285.0 [142.6] pg/mL, mild cognitive impairment [MCI] A beta-positive mean [SD], 332.5 [153.6] pg/mL; AD mean [SD], 388.1 [152.8] pg/mL vs CU A beta-negative mean [SD], 185.1 [93.5] pg/mL; Paris: MCI A beta-positive, mean [SD], 368.6 [158.5] pg/mL; AD dementia, mean [SD], 376.4 [179.6] pg/mL vs CU A beta-negative mean [SD], 161.2 [67.1] pg/mL). Plasma GFAP magnitude changes were consistently higher than those of CSF GFAP. Plasma GFAP more accurately discriminated A beta-positive from A beta-negative individuals than CSF GFAP (area under the curve for plasma GFAP, 0.69-0.86; area under the curve for CSF GFAP, 0.59-0.76). Moreover, plasma GFAP levels were positively associated with tau pathology only among individuals with concomitant A beta pathology. Conclusions and Relevance This study suggests that plasma GFAP is a sensitive biomarker for detecting and tracking reactive astrogliosis and A beta pathology even among individuals in the early stages of AD. This cross-sectional cohort study evaluates plasma glial fibrillary acidic protein levels throughout the entire Alzheimer disease continuum, from preclinical Alzheimer disease to Alzheimer disease dementia, compared with cerebrospinal fluid glial fibrillary acidic protein.
  •  
21.
  • Lussier, F. Z., et al. (author)
  • Plasma levels of phosphorylated tau 181 are associated with cerebral metabolic dysfunction in cognitively impaired and amyloid-positive individuals
  • 2021
  • In: Brain Communications. - : Oxford University Press (OUP). - 2632-1297. ; 3:2
  • Journal article (peer-reviewed)abstract
    • Alzheimer's disease biomarkers are primarily evaluated through MRI, PET and CSF methods in order to diagnose and monitor disease. Recently, advances in the assessment of blood-based biomarkers have shown promise for simple, inexpensive, accessible and minimally invasive tools with diagnostic and prognostic value for Alzheimer's disease. Most recently, plasma phosphorylated tau181 has shown excellent performance. The relationship between plasma phosphorylated tau181 and cerebral metabolic dysfunction assessed by [F-18]fluorodeoxyglucose PET in Alzheimer's disease is still unknown. This study was performed on 892 older individuals (297 cognitively unimpaired; 595 cognitively impaired) from the Alzheimer's Disease Neuroimaging Initiative cohort. Plasma phosphorylated tau181 was assessed using single molecular array technology and metabolic dysfunction was indexed by [F-18]fluorodeoxyglucose PET. Cross-sectional associations between plasma and CSF phosphorylated tau181 and [F-18]fluorodeoxyglucose were assessed using voxelwise linear regression models, with individuals stratified by diagnostic group and by beta-amyoid status. Associations between baseline plasma phosphorylated tau181 and longitudinal (24months) rate of brain metabolic decline were also assessed in 389 individuals with available data using correlations and voxelwise regression models. Plasma phosphorylated tau181 was elevated in beta-amyloid positive and cognitively impaired individuals as well as in apolipoprotein E epsilon 4 carriers and was significantly associated with age, worse cognitive performance and CSF phosphorylated tau181. Cross-sectional analyses showed strong associations between plasma phosphorylated tau181 and fluorodewcyglucose PET in cognitively impaired and beta-amyloid positive individuals. Voxelwise longitudinal analyses showed that baseline plasma phosphorylated taul 81 concentrations were significantly associated with annual rates of metabolic decline in cognitively impaired individuals, bilaterally in the medial and lateral temporal lobes. The associations between plasma phosphorylated tau181 and reduced brain metabolism, primarily in cognitively impaired and in beta-amyloid positive individuals, supports the use of plasma phosphorylated tau181 as a simple, low-cost, minimally invasive and accessible tool to both assess current and predict future metabolic dysfunction associated with Alzheimer's disease, comparatively to PET, MRI and CSF methods.
  •  
22.
  • Montoliu-Gaya, Laia, et al. (author)
  • Mass spectrometric simultaneous quantification of tau species in plasma shows differential associations with amyloid and tau pathologies
  • 2023
  • In: Nature Aging. - 2662-8465. ; 3:6, s. 661-669
  • Journal article (peer-reviewed)abstract
    • Blood phosphorylated tau (p-tau) biomarkers, at differing sites, demonstrate high accuracy to detect Alzheimer & apos;s disease (AD). However, knowledge on the optimal marker for disease identification across the AD continuum and the link to pathology is limited. This is partly due to heterogeneity in analytical methods. In this study, we employed an immunoprecipitation mass spectrometry method to simultaneously quantify six phosphorylated (p-tau181, p-tau199, p-tau202, p-tau205, p-tau217 and p-tau231) and two non-phosphorylated plasma tau peptides in a total of 214 participants from the Paris Lariboisiere and Translational Biomarkers of Aging and Dementia cohorts. Our results indicate that p-tau217, p-tau231 and p-tau205 are the plasma tau forms that best reflect AD-related brain changes, although with distinct emergences along the disease course and correlations with AD features-amyloid and tau. These findings support the differential association of blood p-tau variants with AD pathology, and our method offers a potential tool for disease staging in clinical trials. A mass spectrometric analysis of plasma tau species identifies phosphorylated tau peptides p-tau217, p-tau231 and p-tau205 with distinct correlations with amyloid and tau pathologies and emergences along the AD continuum.
  •  
23.
  • Nilsson, Johanna, 1993, et al. (author)
  • Quantification of SNAP-25 with mass spectrometry and Simoa: a method comparison in Alzheimer's disease
  • 2022
  • In: Alzheimer's Research & Therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 14:1
  • Journal article (peer-reviewed)abstract
    • Background Synaptic dysfunction and degeneration are central to Alzheimer's disease (AD) and have been found to correlate strongly with cognitive decline. Thus, studying cerebrospinal fluid (CSF) biomarkers reflecting synaptic degeneration, such as the presynaptic protein synaptosomal-associated protein 25 (SNAP-25), is of importance to better understand the AD pathophysiology. Methods We compared a newly developed Single molecule array (Simoa) immunoassay for SNAP-25 with an in-house immunoprecipitation mass spectrometry (IP-MS) method in a well-characterized clinical cohort (n = 70) consisting of cognitively unimpaired (CU) and cognitively impaired (CI) individuals with and without A beta pathology (A beta+ and A beta-). Results A strong correlation (Spearman's rank correlation coefficient (r(s)) > 0.88; p < 0.0001) was found between the Simoa and IP-MS methods, and no statistically significant difference was found for their clinical performance to identify AD pathophysiology in the form of A beta pathology. Increased CSF SNAP-25 levels in CI A beta+ compared with CU A beta- (Simoa, p <= 0.01; IP-MS, p <= 0.05) and CI A beta- (Simoa, p <= 0.01; IP-MS, p <= 0.05) were observed. In independent blood samples (n = 32), the Simoa SNAP-25 assay was found to lack analytical sensitivity for quantification of SNAP-25 in plasma. Conclusions These results indicate that the Simoa SNAP-25 method can be used interchangeably with the IP-MS method for the quantification of SNAP-25 in CSF. Additionally, these results confirm that CSF SNAP-25 is increased in relation to amyloid pathology in the AD continuum.
  •  
24.
  •  
25.
  • Therriault, J., et al. (author)
  • Association of plasma P-tau181 with memory decline in non-demented adults
  • 2021
  • In: Brain Communications. - : Oxford University Press (OUP). - 2632-1297. ; 3:3
  • Journal article (peer-reviewed)abstract
    • Alzheimer's disease is the leading cause of dementia worldwide and is characterized by a long preclinical phase in which amyloid-beta and tau accumulate in the absence of cognitive decline. In vivo biomarkers for Alzheimer's disease are expensive, invasive and inaccessible, yet are critical for accurate disease diagnosis and patient management. Recent ultrasensitive methods to measure plasma phosphorylated tau 181 (p-tau181) display strong correlations with tau positron emission tomography, p-tau181 in CSF, and tau pathology at autopsy. The clinical utility of plasma-based p-tau181 biomarkers is unclear. In a longitudinal multicentre observational study, we assessed 1113 non-demented individuals (509 cognitively unimpaired elderly and 604 individuals with mild cognitive impairment) from the Alzheimer's Disease Neuroimaging Initiative who underwent neuropsychological assessments and were evaluated for plasma p-tau181. The primary outcome was a memory composite z-score. Mixed-effect models assessed rates of memory decline in relation to baseline plasma p-tau181, and whether plasma p-tau181 significantly predicted memory decline beyond widely available clinical and genetic data (age, sex, years of education, cardiovascular and metabolic conditions, and APOE epsilon 4 status). Participants were followed for a median of 4.1 years. Baseline plasma p-tau181 was associated with lower baseline memory (beta estimate: -0.49, standard error: 0.06, t-value: -7.97), as well as faster rates of memory decline (beta estimate: -0.11, standard error: 0.01, t-value: -7.37). Moreover, the inclusion of plasma p-tau181 resulted in improved prediction of memory decline beyond clinical and genetic data (marginal R-2 of 16.7-23%, chi(2) = 100.81, P<0.00001). Elevated baseline plasma p-tau181 was associated with higher rates of clinical progression to mild cognitive impairment (hazard ratio = 1.82, 95% confidence interval: 1.2-2.8) and from mild cognitive impairment to dementia (hazard ratio = 2.06, 95% confidence interval: 1.55-2.74). Our results suggest that in elderly individuals without dementia at baseline, plasma p-tau181 biomarkers were associated with greater memory decline and rates of clinical progression to dementia. Plasma p-tau181 improved prediction of memory decline above a model with currently available clinical and genetic data. While the clinical importance of this improvement in the prediction of memory decline is unknown, these results highlight the potential of plasma p-tau181 as a cost-effective and scalable Alzheimer's disease biomarker.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 65
Type of publication
journal article (64)
reports (1)
Type of content
peer-reviewed (62)
other academic/artistic (3)
Author/Editor
Zetterberg, Henrik, ... (43)
Ashton, Nicholas J. (43)
Blennow, Kaj, 1958 (42)
Karikari, Thomas (38)
Lessa Benedet, André ... (37)
Rosa-Neto, P. (29)
show more...
Pascoal, Tharick A (28)
Pascoal, T. A. (27)
Gauthier, S (23)
Rosa-Neto, Pedro (22)
Therriault, J. (21)
Tissot, C. (20)
Chamoun, M. (17)
Lussier, F. Z. (17)
Stevenson, J (15)
Therriault, Joseph (14)
Gauthier, Serge (14)
Rahmouni, N. (14)
Servaes, S. (13)
Brum, Wagner S. (12)
Zimmer, E. R. (12)
Lantero Rodriguez, J ... (11)
Tudorascu, D. L. (11)
Bezgin, G. (11)
Tissot, Cecile (10)
Bellaver, B (10)
Ferreira, P. C. L. (10)
Ferrari-Souza, J. P. (10)
Wang, Y. T. (10)
Kang, M. S. (10)
Leffa, D. T. (9)
Villemagne, V. L. (9)
Klunk, W. E. (9)
Chamoun, Mira (9)
Ferreira, Pamela C L (9)
Montoliu-Gaya, Laia (8)
Stevenson, Jenna (8)
Zimmer, Eduardo R. (8)
Bellaver, Bruna (8)
Hansson, Oskar (7)
Mathotaarachchi, S. (7)
Macedo, A. C. (7)
Snellman, Anniina (6)
Leuzy, Antoine (6)
Povala, G. (6)
Lopez, O. L. (6)
Cohen, A. D. (6)
Savard, Melissa (6)
Povala, Guilherme (6)
Pallen, V. (6)
show less...
University
University of Gothenburg (55)
Lund University (13)
Karolinska Institutet (5)
Uppsala University (2)
Royal Institute of Technology (1)
Stockholm University (1)
show more...
Chalmers University of Technology (1)
RISE (1)
show less...
Language
English (65)
Research subject (UKÄ/SCB)
Medical and Health Sciences (55)
Natural sciences (5)
Engineering and Technology (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view