SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Patrinos G. P.) "

Search: WFRF:(Patrinos G. P.)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Mullins, N., et al. (author)
  • Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology
  • 2021
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 53, s. 817-829
  • Journal article (peer-reviewed)abstract
    • Bipolar disorder is a heritable mental illness with complex etiology. We performed a genome-wide association study of 41,917 bipolar disorder cases and 371,549 controls of European ancestry, which identified 64 associated genomic loci. Bipolar disorder risk alleles were enriched in genes in synaptic signaling pathways and brain-expressed genes, particularly those with high specificity of expression in neurons of the prefrontal cortex and hippocampus. Significant signal enrichment was found in genes encoding targets of antipsychotics, calcium channel blockers, antiepileptics and anesthetics. Integrating expression quantitative trait locus data implicated 15 genes robustly linked to bipolar disorder via gene expression, encoding druggable targets such as HTR6, MCHR1, DCLK3 and FURIN. Analyses of bipolar disorder subtypes indicated high but imperfect genetic correlation between bipolar disorder type I and II and identified additional associated loci. Together, these results advance our understanding of the biological etiology of bipolar disorder, identify novel therapeutic leads and prioritize genes for functional follow-up studies. Genome-wide association analyses of 41,917 bipolar disorder cases and 371,549 controls of European ancestry provide new insights into the etiology of this disorder and identify novel therapeutic leads and potential opportunities for drug repurposing.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • van der Wouden, C. H., et al. (author)
  • Implementing Pharmacogenomics in Europe : Design and Implementation Strategy of the Ubiquitous Pharmacogenomics Consortium
  • 2017
  • In: Clinical Pharmacology and Therapeutics. - : WILEY. - 0009-9236 .- 1532-6535. ; 101:3, s. 341-358
  • Journal article (peer-reviewed)abstract
    • Despite scientific and clinical advances in the field of pharmacogenomics (PGx), application into routine care remains limited. Opportunely, several implementation studies and programs have been initiated over recent years. This article presents an overview of these studies and identifies current research gaps. Importantly, one such gap is the undetermined collective clinical utility of implementing a panel of PGx-markers into routine care, because the evidence base is currently limited to specific, individual drug-gene pairs. The Ubiquitous Pharmacogenomics (U-PGx) Consortium, which has been funded by the European Commission's Horizon-2020 program, aims to address this unmet need. In a prospective, block-randomized, controlled clinical study (PREemptive Pharmacogenomic testing for prevention of Adverse drug REactions [PREPARE]), pre-emptive genotyping of a panel of clinically relevant PGx-markers, for which guidelines are available, will be implemented across healthcare institutions in seven European countries. The impact on patient outcomes and cost-effectiveness will be investigated. The program is unique in its multicenter, multigene, multidrug, multi-ethnic, and multi-healthcare system approach.
  •  
6.
  • Thompson, Rachel, et al. (author)
  • RD-Connect : An Integrated Platform Connecting Databases, Registries, Biobanks and Clinical Bioinformatics for Rare Disease Research
  • 2014
  • In: Journal of general internal medicine. - : Springer Science and Business Media LLC. - 0884-8734 .- 1525-1497. ; 29:S3, s. S780-S787
  • Research review (peer-reviewed)abstract
    • Research into rare diseases is typically fragmented by data type and disease. Individual efforts often have poor interoperability and do not systematically connect data across clinical phenotype, genomic data, biomaterial availability, and research/trial data sets. Such data must be linked at both an individual-patient and whole-cohort level to enable researchers to gain a complete view of their disease and patient population of interest. Data access and authorization procedures are required to allow researchers in multiple institutions to securely compare results and gain new insights. Funded by the European Union's Seventh Framework Programme under the International Rare Diseases Research Consortium (IRDiRC), RD-Connect is a global infrastructure project initiated in November 2012 that links genomic data with registries, biobanks, and clinical bioinformatics tools to produce a central research resource for rare diseases.
  •  
7.
  • Patrinos, George P., et al. (author)
  • Human variome project country nodes: Documenting genetic information within a country
  • 2012
  • In: Human Mutation. - : Hindawi Limited. - 1059-7794. ; 33:11, s. 1513-1519
  • Journal article (peer-reviewed)abstract
    • The Human Variome Project (http://www.humanvariomeproject.org) is an international effort aiming to systematically collect and share information on all human genetic variation. The two main pillars of this effort are gene/disease-specific databases and a network of Human Variome Project Country Nodes. The latter are nationwide efforts to document the genomic variation reported within a specific population. The development and successful operation of the Human Variome Project Country Nodes are of utmost importance to the success of Human Variome Project's aims and goals because they not only allow the genetic burden of disease to be quantified in different countries, but also provide diagnosticians and researchers access to an up-to-date resource that will assist them in their daily clinical practice and biomedical research, respectively. Here, we report the discussions and recommendations that resulted from the inaugural meeting of the International Confederation of Countries Advisory Council, held on 12th December 2011, during the 2011 Human Variome Project Beijing Meeting. We discuss the steps necessary to maximize the impact of the Country Node effort for developing regional and country-specific clinical genetics resources and summarize a few well-coordinated genetic data collection initiatives that would serve as paradigms for similar projects. Hum Mutat 33:15131519, 2012. (c) 2012 Wiley Periodicals, Inc.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view