SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Pawitan Y) "

Search: WFRF:(Pawitan Y)

  • Result 1-25 of 182
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Menden, MP, et al. (author)
  • Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen
  • 2019
  • In: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1, s. 2674-
  • Journal article (peer-reviewed)abstract
    • The effectiveness of most cancer targeted therapies is short-lived. Tumors often develop resistance that might be overcome with drug combinations. However, the number of possible combinations is vast, necessitating data-driven approaches to find optimal patient-specific treatments. Here we report AstraZeneca’s large drug combination dataset, consisting of 11,576 experiments from 910 combinations across 85 molecularly characterized cancer cell lines, and results of a DREAM Challenge to evaluate computational strategies for predicting synergistic drug pairs and biomarkers. 160 teams participated to provide a comprehensive methodological development and benchmarking. Winning methods incorporate prior knowledge of drug-target interactions. Synergy is predicted with an accuracy matching biological replicates for >60% of combinations. However, 20% of drug combinations are poorly predicted by all methods. Genomic rationale for synergy predictions are identified, including ADAM17 inhibitor antagonism when combined with PIK3CB/D inhibition contrasting to synergy when combined with other PI3K-pathway inhibitors in PIK3CA mutant cells.
  •  
2.
  •  
3.
  •  
4.
  • Demichelis, F., et al. (author)
  • TMPRSS2:ERG gene fusion associated with lethal prostate cancer in a watchful waiting cohort
  • 2007
  • In: Oncogene. - Basingstoke : Nature Publ. Group. - 0950-9232 .- 1476-5594. ; 26:31, s. 4596-4599
  • Journal article (peer-reviewed)abstract
    • The identification of the TMPRSS2:ERG fusion in prostate cancer suggests that distinct molecular subtypes may define risk for disease progression. In surgical series, TMPRSS2:ERG fusion was identified in 50% of the tumors. Here, we report on a population-based cohort of men with localized prostate cancers followed by expectant (watchful waiting) therapy with 15% (17/111) TMPRSS2:ERG fusion. We identified a statistically significant association between TMPRSS2:ERG fusion and prostate cancer specific death (cumulative incidence ratio=2.7, P<0.01, 95% confidence interval=1.3–5.8). Quantitative reverse-transcription–polymerase chain reaction demonstrated high estrogen-regulated gene (ERG) expression to be associated with TMPRSS2:ERG fusion (P<0.005). These data suggest that TMPRSS2:ERG fusion prostate cancers may have a more aggressive phenotype, possibly mediated through increased ERG expression.
  •  
5.
  •  
6.
  • Hwang, W, et al. (author)
  • CREDO: Highly confident disease-relevant A-to-I RNA-editing discovery in breast cancer
  • 2019
  • In: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9:1, s. 5064-
  • Journal article (peer-reviewed)abstract
    • Adenosine-to-Inosine (A-to-I) RNA editing is the most prevalent post-transcriptional modification of RNA molecules. Researchers have attempted to find reliable RNA editing using next generation sequencing (NGS) data. However, most of these attempts suffered from a high rate of false positives, and they did not consider the clinical relevance of the identified RNA editing, for example, in disease progression. We devised an effective RNA-editing discovery pipeline called CREDO, which includes novel statistical filtering modules based on integration of DNA- and RNA-seq data from matched tumor-normal tissues. CREDO was compared with three other RNA-editing discovery pipelines and found to give significantly fewer false positives. Application of CREDO to breast cancer data from the Cancer Genome Atlas (TCGA) project discovered highly confident RNA editing with clinical relevance to cancer progression in terms of patient survival. RNA-editing detection using DNA- and RNA-seq data from matched tumor-normal tissues should be more routinely performed as multiple omics data are becoming commonly available from each patient sample. We believe CREDO is an effective and reliable tool for this problem.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  • Lee, W, et al. (author)
  • Sparse Canonical Covariance Analysis for High-throughput Data
  • 2011
  • In: STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY. - : Walter de Gruyter GmbH. - 2194-6302 .- 1544-6115. ; 10:1
  • Journal article (other academic/artistic)abstract
    • Canonical covariance analysis (CCA) has gained popularity as a method for the analysis of two sets of high-dimensional genomic data. However, it is often difficult to interpret the results because canonical vectors are linear combinations of all variables, and the coefficients are typically nonzero. Several sparse CCA methods have recently been proposed for reducing the number of nonzero coefficients, but these existing methods are not satisfactory because they still give too many nonzero coefficients. In this paper, we propose a new random-effect model approach for sparse CCA; the proposed algorithm can adapt arbitrary penalty functions to CCA without much computational demands. Through simulation studies, we compare various penalty functions in terms of the performance of correct model identification. We also develop an extension of sparse CCA to address more than two sets of variables on the same set of observations. We illustrate the method with an analysis of the NCI cancer dataset.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  • Pawitan, Y, et al. (author)
  • Confidence as Likelihood
  • 2021
  • In: STATISTICAL SCIENCE. - 0883-4237. ; 36:4, s. 509-517
  • Journal article (other academic/artistic)
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  • Penney, K. L., et al. (author)
  • mRNA expression signature of Gleason grade predicts lethal prostate cancer
  • 2011
  • In: Journal of Clinical Oncology. - : American Society of Clinical Oncology. - 0732-183X .- 1527-7755. ; 29:17, s. 2391-2396
  • Journal article (peer-reviewed)abstract
    • PURPOSE: Prostate-specific antigen screening has led to enormous overtreatment of prostate cancer because of the inability to distinguish potentially lethal disease at diagnosis. We reasoned that by identifying an mRNA signature of Gleason grade, the best predictor of prognosis, we could improve prediction of lethal disease among men with moderate Gleason 7 tumors, the most common grade, and the most indeterminate in terms of prognosis.PATIENTS AND METHODS: Using the complementary DNA-mediated annealing, selection, extension, and ligation assay, we measured the mRNA expression of 6,100 genes in prostate tumor tissue in the Swedish Watchful Waiting cohort (n = 358) and Physicians' Health Study (PHS; n = 109). We developed an mRNA signature of Gleason grade comparing individuals with Gleason ≤ 6 to those with Gleason ≥ 8 tumors and applied the model among patients with Gleason 7 to discriminate lethal cases.RESULTS: We built a 157-gene signature using the Swedish data that predicted Gleason with low misclassification (area under the curve [AUC] = 0.91); when this signature was tested in the PHS, the discriminatory ability remained high (AUC = 0.94). In men with Gleason 7 tumors, who were excluded from the model building, the signature significantly improved the prediction of lethal disease beyond knowing whether the Gleason score was 4 + 3 or 3 + 4 (P = .006).CONCLUSION: Our expression signature and the genes identified may improve our understanding of the de-differentiation process of prostate tumors. Additionally, the signature may have clinical applications among men with Gleason 7, by further estimating their risk of lethal prostate cancer and thereby guiding therapy decisions to improve outcomes and reduce overtreatment.
  •  
21.
  •  
22.
  •  
23.
  •  
24.
  •  
25.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 182

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view