SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Persson Per O. A.) "

Search: WFRF:(Persson Per O. A.)

  • Result 1-25 of 146
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Andersson, Per A., et al. (author)
  • Anger and disgust shape judgments of social sanctions across cultures, especially in high individual autonomy societies
  • 2024
  • In: Scientific Reports. - : Nature Research. - 2045-2322. ; 14:1
  • Journal article (peer-reviewed)abstract
    • When someone violates a social norm, others may think that some sanction would be appropriate. We examine how the experience of emotions like anger and disgust relate to the judged appropriateness of sanctions, in a pre-registered analysis of data from a large-scale study in 56 societies. Across the world, we find that individuals who experience anger and disgust over a norm violation are more likely to endorse confrontation, ostracism and, to a smaller extent, gossip. Moreover, we find that the experience of anger is consistently the strongest predictor of judgments of confrontation, compared to other emotions. Although the link between state-based emotions and judgments may seem universal, its strength varies across countries. Aligned with theoretical predictions, this link is stronger in societies, and among individuals, that place higher value on individual autonomy. Thus, autonomy values may increase the role that emotions play in guiding judgments of social sanctions.
  •  
2.
  • van Dishoeck, E. F., et al. (author)
  • Water in star-forming regions: Physics and chemistry from clouds to disks as probed by Herschel spectroscopy
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 648
  • Journal article (peer-reviewed)abstract
    • Context. Water is a key molecule in the physics and chemistry of star and planet formation, but it is difficult to observe from Earth. The Herschel Space Observatory provided unprecedented sensitivity as well as spatial and spectral resolution to study water. The Water In Star-forming regions with Herschel (WISH) key program was designed to observe water in a wide range of environments and provide a legacy data set to address its physics and chemistry. Aims. The aim of WISH is to determine which physical components are traced by the gas-phase water lines observed with Herschel and to quantify the excitation conditions and water abundances in each of these components. This then provides insight into how and where the bulk of the water is formed in space and how it is transported from clouds to disks, and ultimately comets and planets. Methods. Data and results from WISH are summarized together with those from related open time programs. WISH targeted ∼80 sources along the two axes of luminosity and evolutionary stage: from low- to high-mass protostars (luminosities from <1 to > 10Lpdbl) and from pre-stellar cores to protoplanetary disks. Lines of H2O and its isotopologs, HDO, OH, CO, and [O I], were observed with the HIFI and PACS instruments, complemented by other chemically-related molecules that are probes of ultraviolet, X-ray, or grain chemistry. The analysis consists of coupling the physical structure of the sources with simple chemical networks and using non-LTE radiative transfer calculations to directly compare models and observations. Results. Most of the far-infrared water emission observed with Herschel in star-forming regions originates from warm outflowing and shocked gas at a high density and temperature (> 10cm-3, 300-1000 K, v ∼ 25 km s-1), heated by kinetic energy dissipation. This gas is not probed by single-dish low-J CO lines, but only by CO lines with Jup > 14. The emission is compact, with at least two different types of velocity components seen. Water is a significant, but not dominant, coolant of warm gas in the earliest protostellar stages. The warm gas water abundance is universally low: orders of magnitude below the H2O/H2 abundance of 4 × 10-4 expected if all volatile oxygen is locked in water. In cold pre-stellar cores and outer protostellar envelopes, the water abundance structure is uniquely probed on scales much smaller than the beam through velocity-resolved line profiles. The inferred gaseous water abundance decreases with depth into the cloud with an enhanced layer at the edge due to photodesorption of water ice. All of these conclusions hold irrespective of protostellar luminosity. For low-mass protostars, a constant gaseous HDO/H2O ratio of ∼0.025 with position into the cold envelope is found. This value is representative of the outermost photodesorbed ice layers and cold gas-phase chemistry, and much higher than that of bulk ice. In contrast, the gas-phase NH3 abundance stays constant as a function of position in low-mass pre- and protostellar cores. Water abundances in the inner hot cores are high, but with variations from 5 × 10-6 to a few × 10-4 for low- and high-mass sources. Water vapor emission from both young and mature disks is weak. Conclusions. The main chemical pathways of water at each of the star-formation stages have been identified and quantified. Low warm water abundances can be explained with shock models that include UV radiation to dissociate water and modify the shock structure. UV fields up to 102-10times the general interstellar radiation field are inferred in the outflow cavity walls on scales of the Herschel beam from various hydrides. Both high temperature chemistry and ice sputtering contribute to the gaseous water abundance at low velocities, with only gas-phase (re-)formation producing water at high velocities. Combined analyses of water gas and ice show that up to 50% of the oxygen budget may be missing. In cold clouds, an elegant solution is that this apparently missing oxygen is locked up in larger μm-sized grains that do not contribute to infrared ice absorption. The fact that even warm outflows and hot cores do not show H2O at full oxygen abundance points to an unidentified refractory component, which is also found in diffuse clouds. The weak water vapor emission from disks indicates that water ice is locked up in larger pebbles early on in the embedded Class I stage and that these pebbles have settled and drifted inward by the Class II stage. Water is transported from clouds to disks mostly as ice, with no evidence for strong accretion shocks. Even at abundances that are somewhat lower than expected, many oceans of water are likely present in planet-forming regions. Based on the lessons for galactic protostars, the low-J H2O line emission (Eup < 300 K) observed in extragalactic sources is inferred to be predominantly collisionally excited and to originate mostly from compact regions of current star formation activity. Recommendations for future mid- to far-infrared missions are made.
  •  
3.
  • Allentoft, Morten E., et al. (author)
  • Population genomics of post-glacial western Eurasia
  • 2024
  • In: Nature. - 0028-0836 .- 1476-4687. ; 625:7994, s. 301-311
  • Journal article (peer-reviewed)abstract
    • Western Eurasia witnessed several large-scale human migrations during the Holocene1–5. Here, to investigate the cross-continental effects of these migrations, we shotgun-sequenced 317 genomes—mainly from the Mesolithic and Neolithic periods—from across northern and western Eurasia. These were imputed alongside published data to obtain diploid genotypes from more than 1,600 ancient humans. Our analyses revealed a ‘great divide’ genomic boundary extending from the Black Sea to the Baltic. Mesolithic hunter-gatherers were highly genetically differentiated east and west of this zone, and the effect of the neolithization was equally disparate. Large-scale ancestry shifts occurred in the west as farming was introduced, including near-total replacement of hunter-gatherers in many areas, whereas no substantial ancestry shifts happened east of the zone during the same period. Similarly, relatedness decreased in the west from the Neolithic transition onwards, whereas, east of the Urals, relatedness remained high until around 4,000 bp, consistent with the persistence of localized groups of hunter-gatherers. The boundary dissolved when Yamnaya-related ancestry spread across western Eurasia around 5,000 bp, resulting in a second major turnover that reached most parts of Europe within a 1,000-year span. The genetic origin and fate of the Yamnaya have remained elusive, but we show that hunter-gatherers from the Middle Don region contributed ancestry to them. Yamnaya groups later admixed with individuals associated with the Globular Amphora culture before expanding into Europe. Similar turnovers occurred in western Siberia, where we report new genomic data from a ‘Neolithic steppe’ cline spanning the Siberian forest steppe to Lake Baikal. These prehistoric migrations had profound and lasting effects on the genetic diversity of Eurasian populations.
  •  
4.
  • Bouhafs, Chamseddine, et al. (author)
  • Structural properties and dielectric function of graphene grown by high-temperature sublimation on 4H-SiC(000-1)
  • 2015
  • In: Journal of Applied Physics. - : American Institute of Physics (AIP). - 0021-8979 .- 1089-7550. ; 117:8, s. 085701-
  • Journal article (peer-reviewed)abstract
    • Understanding and controlling growth of graphene on the carbon face (C-face) of SiC presents a significant challenge. In this work, we study the structural, vibrational, and dielectric function properties of graphene grown on the C-face of 4H-SiC by high-temperature sublimation in an argon atmosphere. The effect of growth temperature on the graphene number of layers and crystallite size is investigated and discussed in relation to graphene coverage and thickness homogeneity. An amorphous carbon layer at the interface between SiC and the graphene is identified, and its evolution with growth temperature is established. Atomic force microscopy, micro-Raman scattering spectroscopy, spectroscopic ellipsometry, and high-resolution cross-sectional transmission electron microscopy are combined to determine and correlate thickness, stacking order, dielectric function, and interface properties of graphene. The role of surface defects and growth temperature on the graphene growth mechanism and stacking is discussed, and a conclusion about the critical factors to achieve decoupled graphene layers is drawn. (C) 2015 AIP Publishing LLC.
  •  
5.
  •  
6.
  • Dahlqvist, Martin, et al. (author)
  • Complex magnetism in nanolaminated Mn2GaC
  • 2014
  • Other publication (other academic/artistic)abstract
    • We have used first-principles calculations and Heisenberg Monte Carlo simulations to search for the magnetic ground state of Mn2GaC, a recently synthesized magnetic nanolaminate. We have, independent on method, identified a range of low energy collinear as well as non-collinear magnetic configurations, indicating a highly frustrated magnetic material with several nearly degenerate magnetic states. An experimentally obtained magnetization of only 0.29 per Mn atom in Mn2GaC may be explained by canted spins in an antiferromagnetic configuration of ferromagnetically ordered sub-layers with alternating spin orientation, denoted AFM[0001]. Furthermore, low temperature X-ray diffraction show a new basal plane peak appearing upon a magnetic transition, which is consistent with the here predicted change in inter-layer spacing for the AFM[0001] configuration.
  •  
7.
  • Ekström, Erik, et al. (author)
  • The effects of microstructure, Nb content and secondary Ruddlesden-Popper phase on thermoelectric properties in perovskite CaMn1-xNbxO3 (x=0-0.10) thin films
  • 2020
  • In: RSC Advances. - : Royal Society of Chemistry. - 2046-2069. ; 10:13, s. 7918-7926
  • Journal article (peer-reviewed)abstract
    • CaMn1-xNbxO3 (x = 0, 0.5, 0.6, 0.7 and 0.10) thin films have been grown by a two-step sputtering/annealing method. First, rock-salt-structured (Ca,Mn1-x,Nb-x)O thin films were deposited on 11 & x304;00 sapphire using reactive RF magnetron co-sputtering from elemental targets of Ca, Mn and Nb. The CaMn1-xNbxO3 films were then obtained by thermally induced phase transformation from rock-salt-structured (Ca,Mn1-xNbx)O to orthorhombic during post-deposition annealing at 700 degrees C for 3 h in oxygen flow. The X-ray diffraction patterns of pure CaMnO3 showed mixed orientation, while Nb-containing films were epitaxially grown in [101] out of-plane-direction. Scanning transmission electron microscopy showed a Ruddlesden-Popper (R-P) secondary phase in the films, which results in reduction of the electrical and thermal conductivity of CaMn1-xNbxO3. The electrical resistivity and Seebeck coefficient of the pure CaMnO3 film were measured to 2.7 omega cm and -270 mu V K-1 at room temperature, respectively. The electrical resistivity and Seebeck coefficient were reduced by alloying with Nb and was measured to 0.09 omega cm and -145 mu V K-1 for x = 0.05. Yielding a power factor of 21.5 mu W K-2 m(-1) near room temperature, nearly eight times higher than for pure CaMnO3 (2.8 mu W K-2 m(-1)). The power factors for alloyed samples are low compared to other studies on phase-pure material. This is due to high electrical resistivity originating from the secondary R-P phase. The thermal conductivity of the CaMn1-xNbxO3 films is low for all samples and is the lowest for x = 0.07 and 0.10, determined to 1.6 W m(-1) K-1. The low thermal conductivity is attributed to grain boundary scattering and the secondary R-P phase.
  •  
8.
  • Halim, Joseph, et al. (author)
  • Electronic and optical characterization of 2D Ti2C and Nb2C (MXene) thin films
  • 2019
  • In: Journal of Physics. - : IOP PUBLISHING LTD. - 0953-8984 .- 1361-648X. ; 31:16
  • Journal article (peer-reviewed)abstract
    • Two-dimensional (2D) transition metal carbides and/or nitrides (MXenes) are a new class of 2D materials, with extensive opportunities for property tailoring due to the numerous possibilities for varying chemistries and surface terminations. Here, Ti2AlC and Nb2AlC MAX phase epitaxial thin films were deposited on sapphire substrates by physical vapor deposition. The films were then etched in LiF/HCl solutions, yielding Li-intercalated, 2D Ti2CTz and Nb2CTz films, whose terminations, transport and optical properties were characterized. The former exhibits metallic conductivity, with weak localization below 50 K. In contrast, the Nb-based film exhibits an increase in resistivity with decreasing temperature from RT down to 40K consistent with variable range hopping transport. The optical properties of both films were determined from spectroscopic ellipsometry in the 0.75 to 3.50 eV range. The results for Ti2Clz films confirm the metallic behavior. In contrast, no evidence of metallic behavior is observed for the Nb2CT(z) film. The present work therefore demonstrates that one fruitful approach to alter the electronic and optical properties of MXenes is to change the nature of the transition metal.
  •  
9.
  • Halim, Joseph, et al. (author)
  • Sodium hydroxide and vacuum annealing modifications of the surface terminations of a Ti3C2 (MXene) epitaxial thin film
  • 2018
  • In: RSC Advances. - : ROYAL SOC CHEMISTRY. - 2046-2069. ; 8:64, s. 36785-36790
  • Journal article (peer-reviewed)abstract
    • We investigate, and quantify, changes in structure and surface terminations of epitaxial thin films of titanium carbide (Ti3C2) MXene, when treated by sodium hydroxide solution followed by vacuum annealing at 550 degrees C. Using X-ray photoelectron spectroscopy and scanning transmission electron microscopy, we show that NaOH treatment produce an increase in the c-lattice parameter together with an increase in the O terminations and a decrease in the F terminations. There is also an increase in the percentage of the binding energy of Ti-species in Ti 2p XPS region, which suggests an increase in the overall oxidation state of Ti. After subsequent annealing, the c-lattice parameter is slightly reduced, the overall oxidation state of Ti is decreased, and the F surface terminations are further diminished, leaving a surface with predominantly O as the surface terminating species. It is important to note that NaOH treatment facilitates removal of F at lower annealing temperatures than previously reported, which in turn is important for the range of attainable properties.
  •  
10.
  • Muratov, Dmitry S., et al. (author)
  • Slot-Die-Printed Two-Dimensional ZrS3 Charge Transport Layer for Perovskite Light-Emitting Diodes
  • 2019
  • In: ACS Applied Materials and Interfaces. - : AMER CHEMICAL SOC. - 1944-8244 .- 1944-8252. ; 11:51, s. 48021-48028
  • Journal article (peer-reviewed)abstract
    • Liquid-phase exfoliation of zirconium trisulfide (ZrS3) was used to produce stable and ready-to-use inks for solution-processed semiconductor thin-film deposition. Ribbon-like layered crystals of ZrS3 were produced by the chemical vapor transport method and were then exfoliated in three different solvents: dimethylformamide, ethanol, and isopropyl alcohol. The resulting ZrS3 dispersions were compared for stability and the ability to form continuous films on top of the perovskite layer in light-emitting diodes with the ITO/PEDOT:PSS/MAPbBr(3)/2D-ZrS3/LiF/Al structure. Film deposition was performed by using either spray or slot-die coating methods. The slot-die coating route proved to produce better and more uniform films with respect to spray coating. We found that the 2D ZrS3 electron injection layer (EIL) stabilized the interface between the perovskite and LiF/Al cathode, reducing the turn-on voltage to 2.8 V and showing a luminance that does not degrade during voltage sweep. On the other hand, ELL-free devices show electroluminescence on the first voltage sweep that reduces almost to zero in the subsequent sweeps. Combining physical device simulation and density functional theory calculation, we are able to explain these results in terms of lowering the electron injection barrier at the cathode.
  •  
11.
  • Papamichail, A., et al. (author)
  • Compositionally graded channel HEMTs towards improved linearity for low-noise RF amplifiers
  • 2022
  • In: 2022 Compound Semiconductor Week, CSW 2022.
  • Conference paper (peer-reviewed)abstract
    • Although AlGaN/GaN HEMTs with high power and current gain have been demonstrated in RF device applications, at high signal operation they show an inherent non-linear behavior which leads to gain compression and signal distortion. Polarization-doped AlGaN/GaN HEMTs, with a compositionally graded channel enables a linear response improvement through formation of a 3-D electron gas. In this work, we develop the growth process for graded channel HEMTs in a hot-wall MOCVD reactor. Control of the grading profile is established through growth parameter tuning. Afterwards, analysis by EDS allows for precise determination of Al composition across the channel. Conventional and graded channel HEMT structures were fabricated and characterized. Furthermore, the sheet resistance, carrier density and mobility in HEMT structures with different grading profiles are compared and discussed. The conventional (non-graded) structure revealed the highest electron mobility of ~2350 cm2/V.s, which is among the highest values reported.
  •  
12.
  • Singh, Niraj Kumar, et al. (author)
  • Electron-phonon coupling and quantum correction to topological magnetoconductivity in Bi2GeTe4
  • 2022
  • In: Physical Review B. - : AMER PHYSICAL SOC. - 2469-9950 .- 2469-9969. ; 105:4
  • Journal article (peer-reviewed)abstract
    • We report structure, vibrational properties, and weak antilocalization-induced quantum correction to magnetoconductivity in single-crystal Bi2GeTe4. Surface band-structure calculations show a single Dirac cone corresponding to topological surface states in Bi2GeTe4. An estimated phase coherence length, lΦ ~ to 143 nm and prefactor α~-1.54 from Hikami-Larkin-Nagaoka fitting of magnetoconductivity describe the quantum correction to conductivity. An anomalous temperature dependence of A1g Raman modes confirms enhanced electron-phonon interactions. Our results establish that electrons of the topological state can interact with the phonons involving the vibrations of Bi-Te in Bi2GeTe4.
  •  
13.
  • Xie, Mengyao, et al. (author)
  • Structural, free-charge carrier and phonon properties of zinc-blende and wurtizte polymorphs in InN epitaxial layers
  • Other publication (other academic/artistic)abstract
    • We present a comprehensive study of the structural, phonon and free electron properties of zincblende InN films containing inclusion of wurtzite InN. Appropriate methods based on X-ray diffraction and Infrared spectroscopic ellipsometry to identify wurtizte and zinc-blende InN and quantify their phase ratio are developed and discussed. Thorough analysis on the formation of the cubic and wurtzite phases is presented and their evolution with film thickness is discussed in detail. The freecharge carrier and phonon properties of the two phases are discussed together with the determination of electron accumulation at the zinc-blende InN (001) and wurtzite (10̅11) surfaces.
  •  
14.
  • Zhang, Xiaofu, et al. (author)
  • Suppression of the transition to superconductivity in crystal/glass high-entropy alloy nanocomposites
  • 2022
  • In: Communications Physics. - : NATURE PORTFOLIO. - 2399-3650. ; 5:1
  • Journal article (peer-reviewed)abstract
    • High entropy alloys are multielement materials exhibiting enhanced properties compared to their binary or ternary equivalents. Here, the authors investigate the influence of microstructure and elemental distribution on the transport and superconducting properties of (TaNb)(1-x)(ZrHfTi)(x) thin films. Superconducting high entropy alloys (HEAs) may combine extraordinary mechanical properties with robust superconductivity. They are suitable model systems for the investigation of the interplay of disorder and superconductivity. Here, we report on the superconductivity in (TaNb)(1-x)(ZrHfTi)(x) thin films. Beyond the near-equimolar region, the films comprise hundreds-of-nanometer-sized crystalline grains and show robust bulk superconductivity. However, the superconducting transitions in these nanocomposites are dramatically suppressed in the near-equimolar configurations, i.e., 0.45 < x < 0.64, where elemental distributions are equivalently homogeneous. Crystal/glass high entropy alloy nanocomposite phase separation was observed for the films in the near-equimolar region, which yields a broadened two-step normal to superconducting transition. Furthermore, the diamagnetic shielding in these films is only observed far below the onset temperature of superconductivity. As these unusual superconducting transitions are observed only in the samples with the high mixing entropy, this compositional range influences the collective electronic properties in these materials.
  •  
15.
  • Alnoor, Hatim, et al. (author)
  • Exploring MXenes and their MAX phase precursors by electron microscopy
  • 2021
  • In: Materials Today Advances. - : Elsevier. - 2590-0498. ; 9
  • Journal article (peer-reviewed)abstract
    • This review celebrates the width and depth of electron microscopy methods and how these have enabled massive research efforts on MXenes. MXenes constitute a powerful recent addition to 2-dimensional materials, derived from their parent family of nanolaminated materials known as MAX phases. Owing to their rich chemistry, MXenes exhibit properties that have revolutionized ranges of applications, including energy storage, electromagnetic interference shielding, water filtering, sensors, and catalysis. Few other methods have been more essential in MXene research and development of corresponding applications, compared with electron microscopy, which enables structural and chemical identification at the atomic scale. In the following, the electron microscopy methods that have been applied to MXene and MAX phase precursor research are presented together with research examples and are discussed with respect to advantages and challenges.
  •  
16.
  • Azina, Clio, et al. (author)
  • Deposition of MAX phase-containing thin films from a (Ti,Zr)(2)AlC compound target
  • 2021
  • In: Applied Surface Science. - : Elsevier. - 0169-4332 .- 1873-5584. ; 551
  • Journal article (peer-reviewed)abstract
    • This work reports on sputter depositions carried out from a compound (Ti,Zr)(2)AlC target on Al2O3(0 0 0 1) substrates at temperatures ranging between 500 and 900 degrees C. Short deposition times yielded 30-40 nm-thick Al-containing (Ti,Zr)C films, whereas longer depositions yielded thicker films up to 90 nm which contained (Ti,Zr)C and intermetallics. At 900 degrees C, the longer depositions led to films that also consisted of solid solution MAX phases. Detailed transmission electron microscopy showed that both (Ti,Zr)(2)AlC and (Ti,Zr)(3)AlC2 solid solution MAX phases were formed. Moreover, this work discusses the growth mechanism of the thicker films, which started with the formation of the mixed (Ti,Zr)C carbide, followed by the nucleation and growth of aluminides, eventually leading to solid state diffusion of Al within the carbide, at the highest temperature (900 degrees C) to form the MAX phases.
  •  
17.
  • Badr, Hussein O., et al. (author)
  • Bottom-up, scalable synthesis of anatase nanofilament-based two-dimensional titanium carbo-oxide flakes
  • 2022
  • In: Materials Today. - : ELSEVIER SCI LTD. - 1369-7021 .- 1873-4103. ; 54
  • Journal article (peer-reviewed)abstract
    • Two-dimensional (2D) materials offer advantages that their 3D counterparts do not. The conventional method for the bulk synthesis of 2D materials has predominantly been through etching layered solids. Herein, we convert - through a bottom-up approach - 10 binary and ternary titanium carbides, nitrides, borides, phosphides, and silicides into 2D flakes by immersing them in a tetramethylammonium hydroxide solution at temperatures in the 25-85 degrees C range. Based on X-ray diffraction, density functional theory, X-ray photoelectron, electron energy loss, Raman, X-ray absorption near edge structure spectroscopies, transmission and scanning electron microscope images and selected area diffraction, we conclude that the resulting flakes are carbon containing anatase-based layers that are, in turn, comprised of approximate to 6 x 10 angstrom(2) nanofilaments in cross-section some of which are few microns long. Electrodes made from some of these films performed well in lithium-ion and lithium-sulphur systems. These materials also reduce the viability of cancer cells thus showing potential in biomedical applications. Synthesizing 2D materials, at near ambient conditions, with non-layered, inexpensive, green precursors (e.g., TiC) is paradigm shifting and will undoubtedly open new and exciting avenues of research and applications.
  •  
18.
  • Chen, Ding-Yuan, 1991, et al. (author)
  • Structural investigation of ultra-low resistance deeply recessed sidewall ohmic contacts for AlGaN/GaN HEMTs based on Ti/Al/Ti-metallization
  • 2023
  • In: Semiconductor Science and Technology. - : IOP Publishing Ltd. - 1361-6641 .- 0268-1242. ; 38:10
  • Journal article (peer-reviewed)abstract
    • This study presents a novel approach to forming low-resistance ohmic contacts for AlGaN/GaN HEMTs. The optimized contacts exhibit an outstanding contact resistance of approximately 0.15 & omega;& BULL;mm. This is achieved by firstly recessing the barrier of the heterostructure to a depth beyond the channel. In this way, the channel region is exposed on the sidewall of the recess. The coverage of the Ti/Al/Ti ohmic metalization on the sidewall is ensured through tilting of the sample during evaporation. The annealing process is performed at a low temperature of 550 & DEG;C. The approach does not require precise control of the recess etching. Furthermore, the method is directly applicable to most barrier designs in terms of thickness and Al-concentration. The impact of recessed sidewall angle, thickness and ratio of Ti and Al layers, and the annealing procedure are investigated. Structural and chemical analyses of the interface between the ohmic contacts and epi-structure indicate the formation of ohmic contacts by the extraction of nitrogen from the epi-structure. The approach is demonstrated on HEMT-structures with two different barrier designs in terms of Al-concentration and barrier thickness. The study demonstrate large process window in regard to recess depth and duration of the annealing as well as high uniformity of the contact resistance across the samples, rendering the approach highly suitable for industrial production processes.
  •  
19.
  • Chen, Yen-Ting, et al. (author)
  • Nucleation of single GaN nanorods with diameters smaller than 35 nm by molecular beam epitaxy
  • 2013
  • In: Applied Physics Letters. - : American Institute of Physics (AIP). - 0003-6951 .- 1077-3118. ; 103:20, s. 203108-
  • Journal article (peer-reviewed)abstract
    • Nucleation mechanism of catalyst-free GaN nanorod grown on Si(111) is investigated by the fabrication of uniform and narrow (andlt; 35 nm) nanorods without a pre-defined mask by molecular beam epitaxy. Direct evidences show that the nucleation of GaN nanorods stems from the sidewall of the underlying islands down to the Si(111) substrate, different from commonly reported ones on top of the island directly. Accordingly, the growth and density control of the nanorods is exploited by a "narrow-pass" approach that only narrow nanorod can be grown. The optimal size of surrounding non-nucleation area around single nanorod is estimated as 88 nm.
  •  
20.
  • Ding, Haoming, et al. (author)
  • Chemical scissor-mediated structural editing of layered transition metal carbides
  • 2023
  • In: Science. - : AMER ASSOC ADVANCEMENT SCIENCE. - 0036-8075 .- 1095-9203. ; 379:6637, s. 1130-1135
  • Journal article (peer-reviewed)abstract
    • Intercalated layered materials offer distinctive properties and serve as precursors for important two-dimensional (2D) materials. However, intercalation of non-van der Waals structures, which can expand the family of 2D materials, is difficult. We report a structural editing protocol for layered carbides (MAX phases) and their 2D derivatives (MXenes). Gap-opening and species-intercalating stages were respectively mediated by chemical scissors and intercalants, which created a large family of MAX phases with unconventional elements and structures, as well as MXenes with versatile terminals. The removal of terminals in MXenes with metal scissors and then the stitching of 2D carbide nanosheets with atom intercalation leads to the reconstruction of MAX phases and a family of metal-intercalated 2D carbides, both of which may drive advances in fields ranging from energy to printed electronics.
  •  
21.
  • Ding Yuan, Chen, 1991, et al. (author)
  • Impact of in situ NH3 pre-treatment of LPCVD SiN passivation on GaN HEMT performance
  • 2022
  • In: Semiconductor Science and Technology. - : IOP Publishing. - 1361-6641 .- 0268-1242. ; 37:3
  • Journal article (peer-reviewed)abstract
    • The impact on the performance of GaN high electron mobility transistors (HEMTs) of in situ ammonia (NH3) pre-treatment prior to the deposition of silicon nitride (SiN) passivation with low-pressure chemical vapor deposition (LPCVD ) is investigated. Three different NH3 pre-treatment durations (0, 3, and 10 min) were compared in terms of interface properties and device performance. A reduction of oxygen (O) at the interface between SiN and epi-structure is detected by scanning transmission electron microscopy (STEM )-electron energy loss spectroscopy (EELS) measurements in the sample subjected to 10 min of pre-treatment. The samples subjected to NH3 pre-treatment show a reduced surface-related current dispersion of 9% (compared to 16% for the untreated sample), which is attributed to the reduction of O at the SiN/epi interface. Furthermore, NH3 pre-treatment for 10 min significantly improves the current dispersion uniformity from 14.5% to 1.9%. The reduced trapping effects result in a high output power of 3.4 W mm(-1) at 3 GHz (compared to 2.6 W mm(-1) for the untreated sample). These results demonstrate that the in situ NH3 pre-treatment before LPCVD of SiN passivation is critical and can effectively improves the large-signal microwave performance of GaN HEMTs.
  •  
22.
  • Eklund, Per, et al. (author)
  • Layered ternary M(n+1)AX(n) phases and their 2D derivative MXene: an overview from a thin-film perspective
  • 2017
  • In: Journal of Physics D. - : IOP PUBLISHING LTD. - 0022-3727 .- 1361-6463. ; 50:11
  • Research review (peer-reviewed)abstract
    • Inherently and artificially layered materials are commonly investigated both for fundamental scientific purposes and for technological application. When a layered material is thinned or delaminated to its physical limits, a two-dimensional (2D) material is formed and exhibits novel properties compared to its bulk parent phase. The complex layered phases known as MAX phases (where M = early transition metal, A = A-group element, e.g. Al or Si, and X = C or N) are an exciting model system for materials design and the understanding of process-structure-property relationships. When the A layers are selectively etched from the MAX phases, a new type of 2D material is formed, named MXene to emphasize the relation to the MAX phases and the parallel with graphene. Since their discovery in 2011, MXenes have rapidly become established as a novel class of 2D materials with remarkable possibilities for composition variations and property tuning. This article gives a brief overview of MAX phases and MXene from a thin-film perspective, reviewing theory, characterization by electron microscopy, properties and how these are affected by the change in dimensionality, and outstanding challenges.
  •  
23.
  • Ekström, Erik, et al. (author)
  • Microstructure control and property switching in stress-free van der Waals epitaxial VO2 films on mica
  • 2023
  • In: Materials & design. - : ELSEVIER SCI LTD. - 0264-1275 .- 1873-4197. ; 229
  • Journal article (peer-reviewed)abstract
    • Realizing stress-free inorganic epitaxial films on weakly bonding substrates is of importance for applications that require film transfer onto surfaces that do not seed epitaxy. Film-substrate bonding is usually weakened by harnessing natural van der Waals layers (e.g., graphene) on substrate surfaces, but this is difficult to achieve in non-layered materials. Here, we demonstrate van der Waals epitaxy of stress-free films of a non-layered material VO2 on mica. The films exhibit out-of-plane 010 texture with three inplane orientations inherited from the crystallographic domains of the substrate. The lattice parameters are invariant with film thickness, indicating weak film-substrate bonding and complete interfacial stress relaxation. The out-of-plane domain size scales monotonically with film thickness, but the in-plane domain size exhibits a minimum, indicating that the nucleation of large in-plane domains supports subsequent island growth. Complementary ab initio investigations suggest that VO2 nucleation and van der Waals epitaxy involves subtle polarization effects around, and the active participation of, surface potassium atoms on the mica surface. The VO2 films show a narrow domain-size-sensitive electrical-conductiv ity-temperature hysteresis. These results offer promise for tuning the properties of stress-free van der Waals epitaxial films of non-layered materials such as VO2 through microstructure control (C) 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
  •  
24.
  • Gangaprasad Rao, Smita, et al. (author)
  • Phase formation in CrFeCoNi nitride thin films
  • 2023
  • In: Physical Review Materials. - : AMER PHYSICAL SOC. - 2475-9953. ; 7:4
  • Journal article (peer-reviewed)abstract
    • As a single-phase alloy, CrFeCoNi is a face centered cubic (fcc) material related to the archetypical highentropy Cantor alloy CrFeCoNiMn. For thin films, CrFeCoNi of approximately equimolar composition tends to assume an fcc structure when grown at room temperature by magnetron sputtering. However, the single-phase solid solution state is typically not achieved for thin films grown at higher temperatures. The same holds true for Cantor alloy-based ceramics (nitrides and oxides), where phase formation is extremely sensitive to process parameters such as the amount of reactive gas. This study combines theoretical and experimental methods to understand the phase formation in nitrogen-containing CrFeCoNi thin films. Density functional theory calculations considering three competing phases (CrN, Fe-Ni and Co) show that the free energy of mixing, Delta G of (CrFeCoNi)(1-x)N-x solid solutions has a maximum at x = 0.20-0.25, and AG becomes lower when x < 0.20 and x > 0.25. Thin films of (CrFeCoNi)1-xNx (0.14 >= x <= 0.41) grown by magnetron sputtering show stabilization of the metallic fcc when x <= 0.22 and the stabilization of the NaCl B1 structure when x > 0.33, consistent with the theoretical prediction. In contrast, films with intermediate amounts of nitrogen (x = 0.22) grown at higher temperatures show segregation into multiple phases of CrN, Fe-Ni-rich and Co. These results offer an explanation for the requirement of kinetically limited growth conditions at low temperature for obtaining single-phase CrFeCoNi Cantor-like nitrogen-containing thin films and are of importance for understanding the phase-formation mechanisms in multicomponent ceramics. The results from the study further aid in making correlations between the observed mechanical properties and the crystal structure of the films.
  •  
25.
  • Gustafsson, Anders, et al. (author)
  • Cathodoluminescence investigations of dark-line defects in platelet-based InGaN nano-LED structures
  • 2024
  • In: Nanotechnology. - : IOP Publishing Ltd. - 0957-4484 .- 1361-6528. ; 35:25
  • Journal article (peer-reviewed)abstract
    • We have investigated the optical properties of heterostructured InGaN platelets aiming at red emission, intended for use as nano-scaled light-emitting diodes. The focus is on the presence of non-radiative emission in the form of dark line defects. We have performed the study using hyperspectral cathodoluminescence imaging. The platelets were grown on a template consisting of InGaN pyramids, flattened by chemical mechanical polishing. These templates are defect free, whereas the dark line defects are introduced in the lower barrier and tend to propagate through all the subsequent layers, as revealed by the imaging of different layers in the structure. We conclude that the dark line defects are caused by stacking mismatch boundaries introduced by multiple seeding and step bunching at the edges of the as-polished, dome shaped templates. To avoid these defects, we suggest that the starting material must be flat rather than dome shaped.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 146
Type of publication
journal article (133)
other publication (5)
conference paper (3)
research review (2)
doctoral thesis (1)
book chapter (1)
show more...
licentiate thesis (1)
show less...
Type of content
peer-reviewed (136)
other academic/artistic (10)
Author/Editor
Persson, Per O A (124)
Palisaitis, Justinas (57)
Rosén, Johanna (55)
Hultman, Lars (50)
Lu, Jun (23)
Eklund, Per (23)
show more...
Halim, Joseph (18)
Darakchieva, Vanya (18)
Dahlqvist, Martin (17)
Birch, Jens (16)
Persson, Ingemar (14)
Hsiao, Ching-Lien (10)
Thörnberg, Jimmy (9)
Petrov, Ivan (8)
Alling, Björn (7)
Elsukova, Anna (7)
Chen, Ke (7)
Petruhins, Andrejs (7)
Näslund, Lars-Åke (6)
Barsoum, Michel (6)
Lind, Hans (5)
Schneider, Jochen M. (5)
Magnus, Fridrik (5)
Zhou, Jie (5)
Primetzhofer, Daniel (4)
Le Febvrier, Arnaud (4)
Eriksson, Fredrik (4)
El Ghazaly, Ahmed (4)
Chen, Jr-Tai (4)
Schubert, M. (4)
Tunca, Bensu (4)
Vleugels, Jozef (4)
Lambrinou, Konstanti ... (4)
Bakhit, Babak (4)
Fahlman, Mats (3)
Hjörvarsson, Björgvi ... (3)
Jensen, Jens (3)
Sortica, Mauricio A. (3)
Persson, Per O. Å. (3)
Greene, Joseph E (3)
Yildizhan Özyar, Mel ... (3)
Barsoum, Michel W. (3)
Rorsman, Niklas, 196 ... (3)
Kühne, Philipp (3)
Schaff, W.J. (3)
Rosén, Johanna, 1975 ... (3)
Ghafoor, Naureen (3)
Mayrhofer, P. H. (3)
Hellgren, Niklas (3)
Kota, Sankalp (3)
show less...
University
Linköping University (137)
Uppsala University (19)
Lund University (8)
Chalmers University of Technology (8)
Royal Institute of Technology (3)
University of Gothenburg (1)
show more...
Stockholm University (1)
Mälardalen University (1)
Örebro University (1)
Jönköping University (1)
Linnaeus University (1)
RISE (1)
show less...
Language
English (146)
Research subject (UKÄ/SCB)
Natural sciences (113)
Engineering and Technology (26)
Medical and Health Sciences (1)
Social Sciences (1)
Humanities (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view