SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Prentki Marc) "

Search: WFRF:(Prentki Marc)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Iglesias, José, et al. (author)
  • PPARβ/δ affects pancreatic β cell mass and insulin secretion in mice
  • 2012
  • In: Journal of Clinical Investigation. - 0021-9738 .- 1558-8238. ; 122:11, s. 4105-4117
  • Journal article (peer-reviewed)abstract
    • PPARβ/δ protects against obesity by reducing dyslipidemia and insulin resistance via effects in muscle, adipose tissue, and liver. However, its function in pancreas remains ill defined. To gain insight into its hypothesized role in β cell function, we specifically deleted Pparb/d in the epithelial compartment of the mouse pancreas. Mutant animals presented increased numbers of islets and, more importantly, enhanced insulin secretion, causing hyperinsulinemia. Gene expression profiling of pancreatic β cells indicated a broad repressive function of PPARβ/δ affecting the vesicular and granular compartment as well as the actin cytoskeleton. Analyses of insulin release from isolated PPARβ/δ-deficient islets revealed an accelerated second phase of glucose-stimulated insulin secretion. These effects in PPARβ/δ-deficient islets correlated with increased filamentous actin (F-actin) disassembly and an elevation in protein kinase D activity that altered Golgi organization. Taken together, these results provide evidence for a repressive role for PPARβ/δ in β cell mass and insulin exocytosis, and shed a new light on PPARβ/δ metabolic action.
  •  
2.
  • Motterle, Anna, et al. (author)
  • Identification of islet-enriched long non-coding RNAs contributing to β-cell failure in type 2 diabetes
  • 2017
  • In: Molecular Metabolism. - : Elsevier BV. - 2212-8778. ; 6:11, s. 1407-1418
  • Journal article (peer-reviewed)abstract
    • Objective: Non-coding RNAs constitute a major fraction of the β-cell transcriptome. While the involvement of microRNAs is well established, the contribution of long non-coding RNAs (lncRNAs) in the regulation of β-cell functions and in diabetes development remains poorly understood. The aim of this study was to identify novel islet lncRNAs differently expressed in type 2 diabetes models and to investigate their role in β-cell failure and in the development of the disease. Methods: Novel transcripts dysregulated in the islets of diet-induced obese mice were identified by high throughput RNA-sequencing coupled with de novo annotation. Changes in the level of the lncRNAs were assessed by real-time PCR. The functional role of the selected lncRNAs was determined by modifying their expression in MIN6 cells and primary islet cells. Results: We identified about 1500 novel lncRNAs, a number of which were differentially expressed in obese mice. The expression of two lncRNAs highly enriched in β-cells, βlinc2, and βlinc3, correlated to body weight gain and glycemia levels in obese mice and was also modified in diabetic db/. db mice. The expression of both lncRNAs was also modulated in vitro in isolated islet cells by glucolipotoxic conditions. Moreover, the expression of the human orthologue of βlinc3 was altered in the islets of type 2 diabetic patients and was associated to the BMI of the donors. Modulation of the level of βlinc2 and βlinc3 by overexpression or downregulation in MIN6 and mouse islet cells did not affect insulin secretion but increased β-cell apoptosis. Conclusions: Taken together, the data show that lncRNAs are modulated in a model of obesity-associated type 2 diabetes and that variations in the expression of some of them may contribute to β-cell failure during the development of the disease.
  •  
3.
  • Rung, Johan, et al. (author)
  • Genetic variant near IRS1 is associated with type 2 diabetes, insulin resistance and hyperinsulinemia
  • 2009
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 41:10, s. 89-1110
  • Journal article (peer-reviewed)abstract
    • Genome-wide association studies have identified common variants that only partially explain the genetic risk for type 2 diabetes (T2D). Using genome-wide association data from 1,376 French individuals, we identified 16,360 SNPs nominally associated with T2D and studied these SNPs in an independent sample of 4,977 French individuals. We then selected the 28 best hits for replication in 7,698 Danish subjects and identified 4 SNPs showing strong association with T2D, one of which (rs2943641, P = 9.3 x 10(-12), OR = 1.19) was located adjacent to the insulin receptor substrate 1 gene (IRS1). Unlike previously reported T2D risk loci, which predominantly associate with impaired beta cell function, the C allele of rs2943641 was associated with insulin resistance and hyperinsulinemia in 14,358 French, Danish and Finnish participants from population-based cohorts; this allele was also associated with reduced basal levels of IRS1 protein and decreased insulin induction of IRS1-associated phosphatidylinositol-3-OH kinase activity in human skeletal muscle biopsies.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view