SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Province MA) "

Search: WFRF:(Province MA)

  • Result 1-17 of 17
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  • Kilpelainen, TO, et al. (author)
  • Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity
  • 2019
  • In: Nature communications. - London : Springer Science and Business Media LLC. - 2041-1723. ; 10:1, s. 376-
  • Journal article (peer-reviewed)abstract
    • Many genetic loci affect circulating lipid levels, but it remains unknown whether lifestyle factors, such as physical activity, modify these genetic effects. To identify lipid loci interacting with physical activity, we performed genome-wide analyses of circulating HDL cholesterol, LDL cholesterol, and triglyceride levels in up to 120,979 individuals of European, African, Asian, Hispanic, and Brazilian ancestry, with follow-up of suggestive associations in an additional 131,012 individuals. We find four loci, in/near CLASP1, LHX1, SNTA1, and CNTNAP2, that are associated with circulating lipid levels through interaction with physical activity; higher levels of physical activity enhance the HDL cholesterol-increasing effects of the CLASP1, LHX1, and SNTA1 loci and attenuate the LDL cholesterol-increasing effect of the CNTNAP2 locus. The CLASP1, LHX1, and SNTA1 regions harbor genes linked to muscle function and lipid metabolism. Our results elucidate the role of physical activity interactions in the genetic contribution to blood lipid levels.
  •  
4.
  •  
5.
  • Winkler, TW, et al. (author)
  • Differential and shared genetic effects on kidney function between diabetic and non-diabetic individuals
  • 2022
  • In: Communications biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 5:1, s. 580-
  • Journal article (peer-reviewed)abstract
    • Reduced glomerular filtration rate (GFR) can progress to kidney failure. Risk factors include genetics and diabetes mellitus (DM), but little is known about their interaction. We conducted genome-wide association meta-analyses for estimated GFR based on serum creatinine (eGFR), separately for individuals with or without DM (nDM = 178,691, nnoDM = 1,296,113). Our genome-wide searches identified (i) seven eGFR loci with significant DM/noDM-difference, (ii) four additional novel loci with suggestive difference and (iii) 28 further novel loci (including CUBN) by allowing for potential difference. GWAS on eGFR among DM individuals identified 2 known and 27 potentially responsible loci for diabetic kidney disease. Gene prioritization highlighted 18 genes that may inform reno-protective drug development. We highlight the existence of DM-only and noDM-only effects, which can inform about the target group, if respective genes are advanced as drug targets. Largely shared effects suggest that most drug interventions to alter eGFR should be effective in DM and noDM.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  • Billings, LK, et al. (author)
  • Impact of common variation in bone-related genes on type 2 diabetes and related traits
  • 2012
  • In: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 61:8, s. 2176-2186
  • Journal article (peer-reviewed)abstract
    • Exploring genetic pleiotropy can provide clues to a mechanism underlying the observed epidemiological association between type 2 diabetes and heightened fracture risk. We examined genetic variants associated with bone mineral density (BMD) for association with type 2 diabetes and glycemic traits in large well-phenotyped and -genotyped consortia. We undertook follow-up analysis in ∼19,000 individuals and assessed gene expression. We queried single nucleotide polymorphisms (SNPs) associated with BMD at levels of genome-wide significance, variants in linkage disequilibrium (r2 > 0.5), and BMD candidate genes. SNP rs6867040, at the ITGA1 locus, was associated with a 0.0166 mmol/L (0.004) increase in fasting glucose per C allele in the combined analysis. Genetic variants in the ITGA1 locus were associated with its expression in the liver but not in adipose tissue. ITGA1 variants appeared among the top loci associated with type 2 diabetes, fasting insulin, β-cell function by homeostasis model assessment, and 2-h post–oral glucose tolerance test glucose and insulin levels. ITGA1 has demonstrated genetic pleiotropy in prior studies, and its suggested role in liver fibrosis, insulin secretion, and bone healing lends credence to its contribution to both osteoporosis and type 2 diabetes. These findings further underscore the link between skeletal and glucose metabolism and highlight a locus to direct future investigations.
  •  
16.
  • Mahajan, Anubha, et al. (author)
  • Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation
  • 2022
  • In: Nature Genetics. - : Springer Nature. - 1061-4036 .- 1546-1718. ; 54:5, s. 560-572
  • Journal article (peer-reviewed)abstract
    • We assembled an ancestrally diverse collection of genome-wide association studies (GWAS) of type 2 diabetes (T2D) in 180,834 affected individuals and 1,159,055 controls (48.9% non-European descent) through the Diabetes Meta-Analysis of Trans-Ethnic association studies (DIAMANTE) Consortium. Multi-ancestry GWAS meta-analysis identified 237 loci attaining stringent genome-wide significance (P < 5 x 10(-9)), which were delineated to 338 distinct association signals. Fine-mapping of these signals was enhanced by the increased sample size and expanded population diversity of the multi-ancestry meta-analysis, which localized 54.4% of T2D associations to a single variant with >50% posterior probability. This improved fine-mapping enabled systematic assessment of candidate causal genes and molecular mechanisms through which T2D associations are mediated, laying the foundations for functional investigations. Multi-ancestry genetic risk scores enhanced transferability of T2D prediction across diverse populations. Our study provides a step toward more effective clinical translation of T2D GWAS to improve global health for all, irrespective of genetic background. Genome-wide association and fine-mapping analyses in ancestrally diverse populations implicate candidate causal genes and mechanisms underlying type 2 diabetes. Trans-ancestry genetic risk scores enhance transferability across populations.
  •  
17.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-17 of 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view