SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ravasi T) "

Search: WFRF:(Ravasi T)

  • Result 1-13 of 13
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Forrest, ARR, et al. (author)
  • A promoter-level mammalian expression atlas
  • 2014
  • In: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 507:7493, s. 462-
  • Journal article (peer-reviewed)
  •  
2.
  •  
3.
  • Carninci, P, et al. (author)
  • The transcriptional landscape of the mammalian genome
  • 2005
  • In: Science (New York, N.Y.). - : American Association for the Advancement of Science (AAAS). - 1095-9203 .- 0036-8075. ; 309:5740, s. 1559-1563
  • Journal article (peer-reviewed)abstract
    • This study describes comprehensive polling of transcription start and termination sites and analysis of previously unidentified full-length complementary DNAs derived from the mouse genome. We identify the 5′ and 3′ boundaries of 181,047 transcripts with extensive variation in transcripts arising from alternative promoter usage, splicing, and polyadenylation. There are 16,247 new mouse protein-coding transcripts, including 5154 encoding previously unidentified proteins. Genomic mapping of the transcriptome reveals transcriptional forests, with overlapping transcription on both strands, separated by deserts in which few transcripts are observed. The data provide a comprehensive platform for the comparative analysis of mammalian transcriptional regulation in differentiation and development.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Katayama, S, et al. (author)
  • Antisense transcription in the mammalian transcriptome
  • 2005
  • In: Science (New York, N.Y.). - : American Association for the Advancement of Science (AAAS). - 1095-9203 .- 0036-8075. ; 309:5740, s. 1564-1566
  • Journal article (peer-reviewed)abstract
    • Antisense transcription (transcription from the opposite strand to a protein-coding or sense strand) has been ascribed roles in gene regulation involving degradation of the corresponding sense transcripts (RNA interference), as well as gene silencing at the chromatin level. Global transcriptome analysis provides evidence that a large proportion of the genome can produce transcripts from both strands, and that antisense transcripts commonly link neighboring “genes” in complex loci into chains of linked transcriptional units. Expression profiling reveals frequent concordant regulation of sense/antisense pairs. We present experimental evidence that perturbation of an antisense RNA can alter the expression of sense messenger RNAs, suggesting that antisense transcription contributes to control of transcriptional outputs in mammals.
  •  
10.
  •  
11.
  •  
12.
  • Tan, K., et al. (author)
  • Integrated approaches to uncovering transcription regulatory networks in mammalian cells
  • 2008
  • In: Genomics. - : Elsevier BV. - 0888-7543 .- 1089-8646. ; 91:3, s. 219-231
  • Research review (peer-reviewed)abstract
    • Integrative systems biology has emerged as an exciting research approach in molecular biology and functional genomics that involves the integration of genomics, proteomics, and metabolomics datasets. These endeavors establish a systematic paradigm by which to interrogate, model, and iteratively refine our knowledge of the regulatory events within a cell. Here we review the latest technologies available to collect high-throughput measurements of a cellular state as well as the most successful methods for the integration and interrogation of these measurements. In particular we will focus on methods available to infer transcription regulatory networks in mammals.
  •  
13.
  • Tegnér, Jesper, et al. (author)
  • Systems biology of innate immunity
  • 2006
  • In: Cellular Immunology. - : Elsevier BV. - 0008-8749 .- 1090-2163. ; 244:2, s. 105-109
  • Journal article (peer-reviewed)abstract
    • Systems Biology has emerged as an exciting research approach in molecular biology and functional genomics that involves a systematic use of genomic, proteomic, and metabolomic technologies for the construction of network-based models of biological processes. These endeavors, collectively referred to as systems biology establish a paradigm by which to systematically interrogate, model, and iteratively refine our knowledge of the regulatory events within a cell. Here, we present a new systems approach, integrating DNA and transcript expression information, specifically designed to identify transcriptional networks governing the macrophage immune response to lipopolysaccharide (LPS). Using this approach, we are not only able to infer a global macrophage transcriptional network, but also time-specific sub-networks that are dynamically active across the LPS response. We believe that our system biological approach could be useful for identifying other complex networks mediating immunological responses. © 2007 Elsevier Inc. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-13 of 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view