SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Schulz Joachim) "

Search: WFRF:(Schulz Joachim)

  • Result 1-25 of 79
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Aquila, Andrew, et al. (author)
  • Time-resolved protein nanocrystallography using an X-ray free-electron laser
  • 2012
  • In: Optics Express. - 1094-4087. ; 20:3, s. 2706-2716
  • Journal article (peer-reviewed)abstract
    • We demonstrate the use of an X-ray free electron laser synchronized with an optical pump laser to obtain X-ray diffraction snapshots from the photoactivated states of large membrane protein complexes in the form of nanocrystals flowing in a liquid jet. Light-induced changes of Photosystem I-Ferredoxin co-crystals were observed at time delays of 5 to 10 µs after excitation. The result correlates with the microsecond kinetics of electron transfer from Photosystem I to ferredoxin. The undocking process that follows the electron transfer leads to large rearrangements in the crystals that will terminally lead to the disintegration of the crystals. We describe the experimental setup and obtain the first time-resolved femtosecond serial X-ray crystallography results from an irreversible photo-chemical reaction at the Linac Coherent Light Source. This technique opens the door to time-resolved structural studies of reaction dynamics in biological systems.
  •  
2.
  • Boll, Rebecca, et al. (author)
  • Imaging molecular structure through femtosecond photoelectron diffraction on aligned and oriented gas-phase molecules
  • 2014
  • In: Faraday Discussions. - : Royal Society of Chemistry (RSC). - 1364-5498. ; 171, s. 57-80
  • Journal article (peer-reviewed)abstract
    • This paper gives an account of our progress towards performing femtosecond time-resolved photoelectron diffraction on gas-phase molecules in a pump-probe setup combining optical lasers and an X-ray free-electron laser. We present results of two experiments aimed at measuring photoelectron angular distributions of laser-aligned 1-ethynyl-4-fluorobenzene (C8H5F) and dissociating, laser-aligned 1,4-dibromobenzene (C6H4Br2) molecules and discuss them in the larger context of photoelectron diffraction on gas-phase molecules. We also show how the strong nanosecond laser pulse used for adiabatically laser-aligning the molecules influences the measured electron and ion spectra and angular distributions, and discuss how this may affect the outcome of future time-resolved photoelectron diffraction experiments.
  •  
3.
  • Chapman, Henry N, et al. (author)
  • Femtosecond X-ray protein nanocrystallography.
  • 2011
  • In: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 470:7332, s. 73-7
  • Journal article (peer-reviewed)abstract
    • X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded. It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction 'snapshots' are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source. We prove this concept with nanocrystals of photosystem I, one of the largest membrane protein complexes. More than 3,000,000 diffraction patterns were collected in this study, and a three-dimensional data set was assembled from individual photosystem I nanocrystals (∼200nm to 2μm in size). We mitigate the problem of radiation damage in crystallography by using pulses briefer than the timescale of most damage processes. This offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage.
  •  
4.
  • Ekeberg, Tomas, 1983-, et al. (author)
  • Three-dimensional structure determination with an X-ray laser
  • Other publication (other academic/artistic)abstract
    • Three-dimensional structure determination of a non-crystalline virus has been achieved from a set of randomly oriented continuous diffraction patterns captured with an X-ray laser. Intense, ultra-short X-ray pulses intercepted a beam of single mimivirus particles, producing single particle X-ray diffraction patterns that are assembled into a three-dimensional amplitude distribution based on statistical consistency. Phases are directly retrieved from the assembled Fourier distribution to synthesize a three-dimensional image. The resulting electron density reveals a pseudo-icosahedral asymmetric virion structure with a compartmentalized interior, within which the DNA genome occupies only about a fifth of the volume enclosed by the capsid. Additional electron microscopy data indicate the genome has a chromatin-like fiber structure that has not previously been observed in a virus. 
  •  
5.
  • Gorkhover, Tais, et al. (author)
  • Femtosecond and nanometre visualization of structural dynamics in superheated nanoparticles
  • 2016
  • In: Nature Photonics. - : Springer Science and Business Media LLC. - 1749-4885 .- 1749-4893. ; 10:2, s. 93-97
  • Journal article (peer-reviewed)abstract
    • The ability to observe ultrafast structural changes in nanoscopic samples is essential for understanding non-equilibrium phenomena such as chemical reactions, matter under extreme conditions, ultrafast phase transitions and intense light-matter interactions. Established imaging techniques are limited either in time or spatial resolution and typically require samples to be deposited on a substrate, which interferes with the dynamics. Here, we show that coherent X-ray diffraction images from isolated single samples can be used to visualize femtosecond electron density dynamics. We recorded X-ray snapshot images from a nanoplasma expansion, a prototypical non-equilibrium phenomenon. Single Xe clusters are superheated using an intense optical laser pulse and the structural evolution of the sample is imaged with a single X-ray pulse. We resolved ultrafast surface softening on the nanometre scale at the plasma/vacuum interface within 100 fs of the heating pulse. Our study is the first time-resolved visualization of irreversible femtosecond processes in free, individual nanometre-sized samples.
  •  
6.
  • Johansson, Linda C, 1983, et al. (author)
  • Lipidic phase membrane protein serial femtosecond crystallography.
  • 2012
  • In: Nature methods. - : Springer Science and Business Media LLC. - 1548-7105 .- 1548-7091. ; 9:3, s. 263-265
  • Journal article (peer-reviewed)abstract
    • X-ray free electron laser (X-FEL)-based serial femtosecond crystallography is an emerging method with potential to rapidly advance the challenging field of membrane protein structural biology. Here we recorded interpretable diffraction data from micrometer-sized lipidic sponge phase crystals of the Blastochloris viridis photosynthetic reaction center delivered into an X-FEL beam using a sponge phase micro-jet.
  •  
7.
  • Kassemeyer, Stephan, et al. (author)
  • Femtosecond free-electron laser x-ray diffraction data sets for algorithm development
  • 2012
  • In: Optics Express. - 1094-4087. ; 20:4, s. 4149-4158
  • Journal article (peer-reviewed)abstract
    • We describe femtosecond X-ray diffraction data sets of viruses and nanoparticles collected at the Linac Coherent Light Source. The data establish the first large benchmark data sets for coherent diffraction methods freely available to the public, to bolster the development of algorithms that are essential for developing this novel approach as a useful imaging technique. Applications are 2D reconstructions, orientation classification and finally 3D imaging by assembling 2D patterns into a 3D diffraction volume.
  •  
8.
  • Koopmann, Rudolf, et al. (author)
  • In vivo protein crystallization opens new routes in structural biology
  • 2012
  • In: Nature Methods. - : Springer Science and Business Media LLC. - 1548-7091 .- 1548-7105. ; 9:3, s. 259-262
  • Journal article (peer-reviewed)abstract
    • Protein crystallization in cells has been observed several times in nature. However, owing to their small size these crystals have not yet been used for X-ray crystallographic analysis. We prepared nano-sized in vivo–grown crystals of Trypanosoma brucei enzymes and applied the emerging method of free-electron laser-based serial femtosecond crystallography to record interpretable diffraction data. This combined approach will open new opportunities in structural systems biology.
  •  
9.
  • Kuepper, Jochen, et al. (author)
  • X-Ray Diffraction from Isolated and Strongly Aligned Gas-Phase Molecules with a Free-Electron Laser
  • 2014
  • In: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 112:8, s. 083002-
  • Journal article (peer-reviewed)abstract
    • We report experimental results on x-ray diffraction of quantum-state-selected and strongly aligned ensembles of the prototypical asymmetric rotor molecule 2,5-diiodobenzonitrile using the Linac Coherent Light Source. The experiments demonstrate first steps toward a new approach to diffractive imaging of distinct structures of individual, isolated gas-phase molecules. We confirm several key ingredients of single molecule diffraction experiments: the abilities to detect and count individual scattered x-ray photons in single shot diffraction data, to deliver state-selected, e.g., structural-isomer-selected, ensembles of molecules to the x-ray interaction volume, and to strongly align the scattering molecules. Our approach, using ultrashort x-ray pulses, is suitable to study ultrafast dynamics of isolated molecules.
  •  
10.
  • Loh, N. Duane, et al. (author)
  • Sensing the wavefront of x-ray free-electron lasers using aerosol spheres
  • 2013
  • In: Optics Express. - 1094-4087. ; 21:10, s. 12385-12394
  • Journal article (peer-reviewed)abstract
    • Characterizing intense, focused x-ray free electron laser (FEL) pulses is crucial for their use in diffractive imaging. We describe how the distribution of average phase tilts and intensities on hard x-ray pulses with peak intensities of 1021 W/m(2) can be retrieved from an ensemble of diffraction patterns produced by 70 nm-radius polystyrene spheres, in a manner that mimics wavefront sensors. Besides showing that an adaptive geometric correction may be necessary for diffraction data from randomly injected sample sources, our paper demonstrates the possibility of collecting statistics on structured pulses using only the diffraction patterns they generate and highlights the imperative to study its impact on single-particle diffractive imaging.
  •  
11.
  • Lomb, Lukas, et al. (author)
  • Radiation damage in protein serial femtosecond crystallography using an x-ray free-electron laser
  • 2011
  • In: Physical Review B. Condensed Matter and Materials Physics. - 1098-0121 .- 1550-235X. ; 84:21, s. 214111-1-214111-6
  • Journal article (peer-reviewed)abstract
    • X-ray free-electron lasers deliver intense femtosecond pulses that promise to yield high resolution diffraction data of nanocrystals before the destruction of the sample by radiation damage. Diffraction intensities of lysozyme nanocrystals collected at the Linac Coherent Light Source using 2 keV photons were used for structure determination by molecular replacement and analyzed for radiation damage as a function of pulse length and fluence. Signatures of radiation damage are observed for pulses as short as 70 fs. Parametric scaling used in conventional crystallography does not account for the observed effects.
  •  
12.
  • Park, Hyung Joo, et al. (author)
  • Toward unsupervised single-shot diffractive imaging of heterogeneous particles using X-ray free-electron lasers
  • 2013
  • In: Optics Express. - 1094-4087. ; 21:23, s. 28729-28742
  • Journal article (peer-reviewed)abstract
    • Single shot diffraction imaging experiments via X-ray free-electron lasers can generate as many as hundreds of thousands of diffraction patterns of scattering objects. Recovering the real space contrast of a scattering object from these patterns currently requires a reconstruction process with user guidance in a number of steps, introducing severe bottlenecks in data processing. We present a series of measures that replace user guidance with algorithms that reconstruct contrasts in an unsupervised fashion. We demonstrate the feasibility of automating the reconstruction process by generating hundreds of contrasts obtained from soot particle diffraction experiments.
  •  
13.
  • Seibert, M. Marvin, et al. (author)
  • Single mimivirus particles intercepted and imaged with an X-ray laser
  • 2011
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 470:7332, s. 78-81
  • Journal article (peer-reviewed)abstract
    • X-ray lasers offer new capabilities in understanding the structure of biological systems, complex materials and matter under extreme conditions(1-4). Very short and extremely bright, coherent X-ray pulses can be used to outrun key damage processes and obtain a single diffraction pattern from a large macromolecule, a virus or a cell before the sample explodes and turns into plasma(1). The continuous diffraction pattern of non-crystalline objects permits oversampling and direct phase retrieval(2). Here we show that high-quality diffraction data can be obtained with a single X-ray pulse from a noncrystalline biological sample, a single mimivirus particle, which was injected into the pulsed beam of a hard-X-ray free-electron laser, the Linac Coherent Light Source(5). Calculations indicate that the energy deposited into the virus by the pulse heated the particle to over 100,000 K after the pulse had left the sample. The reconstructed exit wavefront (image) yielded 32-nm full-period resolution in a single exposure and showed no measurable damage. The reconstruction indicates inhomogeneous arrangement of dense material inside the virion. We expect that significantly higher resolutions will be achieved in such experiments with shorter and brighter photon pulses focused to a smaller area. The resolution in such experiments can be further extended for samples available in multiple identical copies.
  •  
14.
  • Yoon, Chun Hong, et al. (author)
  • Unsupervised classification of single-particle X-ray diffraction snapshots by spectral clustering
  • 2011
  • In: Optics Express. - 1094-4087. ; 19:17, s. 16542-16549
  • Journal article (peer-reviewed)abstract
    • Single-particle experiments using X-ray Free Electron Lasers produce more than 10(5) snapshots per hour, consisting of an admixture of blank shots (no particle intercepted), and exposures of one or more particles. Experimental data sets also often contain unintentional contamination with different species. We present an unsupervised method able to sort experimental snapshots without recourse to templates, specific noise models, or user-directed learning. The results show 90% agreement with manual classification.
  •  
15.
  • Abramowski, A., et al. (author)
  • A multiwavelength view of the flaring state of PKS 2155-304 in 2006
  • 2012
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 539, s. A149-
  • Journal article (peer-reviewed)abstract
    • Context. Multiwavelength (MWL) observations of the blazar PKS 2155-304 during two weeks in July and August 2006, the period when two exceptional flares at very high energies (VHE, E greater than or similar to 100 GeV) occurred, provide a detailed picture of the evolution of its emission. The complete data set from this campaign is presented, including observations in VHE gamma-rays (H.E.S. S.), X-rays (RXTE, Chandra, Swift XRT), optical (Swift UVOT, Bronberg, Watcher, ROTSE), and in the radio band (NRT, HartRAO, ATCA). Optical and radio light curves from 2004 to 2008 are compared to the available VHE data from this period, to put the 2006 campaign into the context of the long-term evolution of the source. Aims. The data set offers a close view of the evolution of the source on different time scales and yields new insights into the properties of the emission process. The predictions of synchrotron self-Compton (SSC) scenarios are compared to the MWL data, with the aim of describing the dominant features in the data down to the hour time scale. Methods. The spectral variability in the X-ray and VHE bands is explored and correlations between the integral fluxes at different wavelengths are evaluated. SSC modelling is used to interpret the general trends of the varying spectral energy distribution. Results. The X-ray and VHE gamma-ray emission are correlated during the observed high state of the source, but show no direct connection with longer wavelengths. The long-term flux evolution in the optical and radio bands is found to be correlated and shows that the source reaches a high state at long wavelengths after the occurrence of the VHE flares. Spectral hardening is seen in the Swift XRT data. Conclusions. The nightly averaged high-energy spectra of the non-flaring nights can be reproduced by a stationary one-zone SSC model, with only small variations in the parameters. The spectral and flux evolution in the high-energy band during the night of the second VHE flare is modelled with multi-zone SSC models, which can provide relatively simple interpretations for the hour time-scale evolution of the high-energy emission, even for such a complex data set. For the first time in this type of source, a clear indication is found for a relation between high activity at high energies and a long-term increase in the low frequency fluxes.
  •  
16.
  • Abramowski, A., et al. (author)
  • A new SNR with TeV shell-type morphology : HESS J1731-347
  • 2011
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 531, s. A81-
  • Journal article (peer-reviewed)abstract
    • Aims. The recent discovery of the radio shell-type supernova remnant (SNR), G353.6-0.7, in spatial coincidence with the unidentified TeV source HESS J1731-347 has motivated further observations of the source with the High Energy Stereoscopic System (HESS) Cherenkov telescope array to test a possible association of the gamma-ray emission with the SNR. Methods. With a total of 59 h of observation, representing about four times the initial exposure available in the discovery paper of HESS J1731-347, the gamma-ray morphology is investigated and compared with the radio morphology. An estimate of the distance is derived by comparing the interstellar absorption derived from X-rays and the one obtained from (12)CO and HI observations. Results. The deeper gamma-ray observation of the source has revealed a large shell-type structure with similar position and extension (r similar to 0.25 degrees) as the radio SNR, thus confirming their association. By accounting for the HESS angular resolution and projection effects within a simple shell model, the radial profile is compatible with a thin, spatially unresolved, rim. Together with RX J1713.7-3946, RX J0852.0-4622 and SN 1006, HESS J1731-347 is now the fourth SNR with a significant shell morphology at TeV energies. The derived lower limit on the distance of the SNR of 3.2 kpc is used together with radio and X-ray data to discuss the possible origin of the gamma-ray emission, either via inverse Compton scattering of electrons or the decay of neutral pions resulting from proton-proton interaction.
  •  
17.
  • Abramowski, A., et al. (author)
  • Constraints on the gamma-ray emission from the cluster-scale AGN outburst in the Hydra A galaxy cluster
  • 2012
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 545, s. A103-
  • Journal article (peer-reviewed)abstract
    • Context. In some galaxy clusters, powerful active galactic nuclei (AGN) have blown bubbles with cluster scale extent into the ambient medium. The main pressure support of these bubbles is not known to date, but cosmic rays are a viable possibility. For such a scenario copious gamma-ray emission is expected as a tracer of cosmic rays from these systems. Aims. Hydra A, the closest galaxy cluster hosting a cluster scale AGN outburst, located at a redshift of 0.0538, is investigated for being a gamma-ray emitter with the High Energy Stereoscopic System (H.E.S.S.) array and the Fermi Large Area Telescope (Fermi-LAT). Methods. Data obtained in 20.2 h of dedicated H. E. S. S. observations and 38 months of Fermi-LAT data, gathered by its usual all-sky scanning mode, have been analyzed to search for a gamma-ray signal. Results. No signal has been found in either data set. Upper limits on the gamma-ray flux are derived and are compared to models. These are the first limits on gamma-ray emission ever presented for galaxy clusters hosting cluster scale AGN outbursts. Conclusions. The non-detection of Hydra A in gamma-rays has important implications on the particle populations and physical conditions inside the bubbles in this system. For the case of bubbles mainly supported by hadronic cosmic rays, the most favorable scenario, which involves full mixing between cosmic rays and embedding medium, can be excluded. However, hadronic cosmic rays still remain a viable pressure support agent to sustain the bubbles against the thermal pressure of the ambient medium. The largest population of highly-energetic electrons, which are relevant for inverse-Compton gamma-ray production is found in the youngest inner lobes of Hydra A. The limit on the inverse-Compton gamma-ray flux excludes a magnetic field below half of the equipartition value of 16 mu G in the inner lobes.
  •  
18.
  • Abramowski, A., et al. (author)
  • Discovery of extended VHE gamma-ray emission from the vicinity of the young massive stellar cluster Westerlund 1
  • 2012
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 537, s. A114-
  • Journal article (peer-reviewed)abstract
    • Aims. Results obtained in very-high-energy (VHE; E >= 100 GeV) gamma-ray observations performed with the H.E.S.S. telescope array are used to investigate particle acceleration processes in the vicinity of the young massive stellar cluster Westerlund 1 (Wd 1). Methods. Imaging of Cherenkov light from gamma-ray induced particle cascades in the Earth's atmosphere is used to search for VHE gamma rays from the region around Wd 1. Possible catalogued counterparts are searched for and discussed in terms of morphology and energetics of the H.E.S.S. source. Results. The detection of the degree-scale extended VHE gamma-ray source HESS J1646-458 is reported based on 45 h of H.E.S.S. observations performed between 2004 and 2008. The VHE gamma-ray source is centred on the nominal position of Wd 1 and detected with a total statistical significance of similar to 20 sigma. The emission region clearly extends beyond the H.E.S.S. point-spread function (PSF). The differential energy spectrum follows a power law in energy with an index of Gamma = 2.19 +/- 0.08(stat) +/- 0.20(sys) and a flux normalisation at 1 TeV of Phi(0) = (9.0 +/- 1.4(stat) +/- 1.8(sys)) x 10(-12) TeV-1 cm(-2) s(-1). The integral flux above 0.2 TeV amounts to (5.2 +/- 0.9) x 10(-11) cm(-2) s(-1). Conclusions. Four objects coincident with HESS J1646-458 are discussed in the search of a counterpart, namely the magnetar CXOU J164710.2-455216, the X-ray binary 4U 1642-45, the pulsar PSR J1648-4611 and the massive stellar cluster Wd 1. In a single-source scenario, Wd 1 is favoured as site of VHE particle acceleration. Here, a hadronic parent population would be accelerated within the stellar cluster. Beside this, there is evidence for a multi-source origin, where a scenario involving PSR J1648-4611 could be viable to explain parts of the VHE gamma-ray emission of HESS J1646-458.
  •  
19.
  • Abramowski, A., et al. (author)
  • Discovery of gamma-ray emission from the extragalactic pulsar wind nebula N 157B with HESS
  • 2012
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 545, s. Article ID: L2-
  • Journal article (peer-reviewed)abstract
    • We present the significant detection of the first extragalactic pulsar wind nebula (PWN) detected in gamma rays, N 157B, located in the large Magellanic Cloud (LMC). Pulsars with high spin-down luminosity are found to power energised nebulae that emit gamma rays up to energies of several tens of TeV. N 157B is associated with PSR J0537-6910, which is the pulsar with the highest known spin-down luminosity. The High Energy Stereoscopic System telescope array observed this nebula on a yearly basis from 2004 to 2009 with a dead-time corrected exposure of 46 h. The gamma-ray spectrum between 600 GeV and 12 TeV is well-described by a pure power-law with a photon index of 2.8 +/- 0.2(stat) +/- 0.3(syst) and a normalisation at 1 TeV of (8.2 +/- 0.8(stat) +/- 2.5(syst)) x 10(-13) cm(-2) s(-1) TeV-1. A leptonic multi-wavelength model shows that an energy of about 4 x 10(49) erg is stored in electrons and positrons. The apparent efficiency, which is the ratio of the TeV gamma-ray luminosity to the pulsar's spin-down luminosity, 0.08% +/- 0.01%, is comparable to those of PWNe found in the Milky Way. The detection of a PWN at such a large distance is possible due to the pulsar's favourable spin-down luminosity and a bright infrared photon-field serving as an inverse-Compton-scattering target for accelerated leptons. By applying a calorimetric technique to these observations, the pulsar's birth period is estimated to be shorter than 10 ms.
  •  
20.
  • Abramowski, A., et al. (author)
  • Discovery of hard-spectrum gamma- ray emission from the BL Lacertae object 1ES 0414+009
  • 2012
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 538, s. A103-
  • Journal article (peer-reviewed)abstract
    • Context. 1ES 0414+009 (z = 0.287) is a distant high-frequency- peaked BL Lac object, and has long been considered a likely emitter of very-highenergy (VHE, E > 100 GeV) gamma-rays due to its high X-ray and radio flux. Aims. Observations in the VHE gamma-ray band and across the electromagnetic spectrum can provide insights into the origin of highly energetic particles present in the source and the radiation processes at work. Because of the distance of the source, the gamma-ray spectrum might provide further limits on the level of the extragalactic background light (EBL). Methods. We report observations made between October 2005 and December 2009 with H. E. S. S., an array of four imaging atmospheric Cherenkov telescopes. Observations at high energies (HE, 100 MeV-100 GeV) with the Fermi-LAT instrument in the first 20 months of its operation are also reported. To complete the multi-wavelength picture, archival UV and X-ray observations with the Swift satellite and optical observations with the ATOM telescope are also used. Results. Based on the observations with H.E.S.S., 1ES 0414+009 is detected for the first time in the VHE band. An excess of 224 events is measured, corresponding to a significance of 7.8 sigma. The photon spectrum of the source is well described by a power law, with photon index of Gamma(VHE) = 3.45 +/- 0.25(stat) +/- 0.20(syst). The integral flux above 200 GeV is (1.88 +/- 0.20(stat) +/- 0.38(syst)) x10(-12) cm(-2) s(-1). Observations with the Fermi-LAT in the first 20 months of operation show a flux between 200 MeV and 100 GeV of (2.3 +/- 0.2(stat)) x 10(-9) erg cm(-2) s(-1), and a spectrum well described by a power-law function with a photon index Gamma(HE) = 1.85 +/- 0.18. Swift/XRT observations show an X-ray flux between 2 and 10 keV of (0.8-1) x 10(-11) erg cm(-2) s(-1), and a steep spectrum Gamma(X) = (2.2-2.3). Combining X-ray with optical-UV data, a fit with a log-parabolic function locates the synchrotron peak around 0.1 keV. Conclusions. Although the GeV-TeV observations do not provide better constraints on the EBL than previously obtained, they confirm a low density of the EBL, close to the lower limits from galaxy counts. The absorption-corrected HE and VHE gamma-ray spectra are both hard and have similar spectral indices (approximate to 1.86), indicating no significant change of slope between the HE and VHE gamma-ray bands, and locating the gamma-ray peak in the SED above 1-2 TeV. As for other TeV BL Lac objects with the gamma-ray peak at such high energies and a large separation between the two SED humps, this average broad-band SED represents a challenge for simple one-zone synchrotron self-Compton models, requiring a high Doppler factor and very low B-field.
  •  
21.
  • Abramowski, A., et al. (author)
  • Discovery of TeV gamma-ray emission from PKS 0447-439 and derivation of an upper limit on its redshift
  • 2013
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 552, s. A118-
  • Journal article (peer-reviewed)abstract
    • Very high-energy gamma-ray emission from PKS 0447-439 was detected with the H. E. S. S. Cherenkov telescope array in December 2009. This blazar is one of the brightest extragalactic objects in the Fermi bright source list and has a hard spectrum in the MeV to GeV range. In the TeV range, a photon index of 3.89 +/- 0.37 (stat) +/- 0.22 (sys) and a flux normalisation at 1 TeV, phi(1) (TeV) = (3.5 +/- 1.1(stat) +/- 0.9(sys)) x 10(-13) cm(-2) s(-1) TeV-1 were found. The detection with H. E. S. S. triggered observations in the X-ray band with the Swift and RXTE telescopes. Simultaneous UV and optical data from Swift UVOT and data from the optical telescopes ATOM and ROTSE are also available. The spectrum and light curve measured with H. E. S. S. are presented and compared to the multi-wavelength data at lower energies. A rapid flare is seen in the Swift XRT and RXTE data, together with a flux variation in the UV band, at a time scale of the order of one day. A firm upper limit of z < 0.59 on the redshift of PKS 0447-439 is derived from the combined Fermi-LAT and H. E. S. S. data, given the assumptions that there is no upturn in the intrinsic spectrum above the Fermi-LAT energy range and that absorption on the extragalactic background light (EBL) is not weaker than the lower limit provided by current models. The spectral energy distribution is well described by a simple one-zone synchrotron self-Compton scenario, if the redshift of the source is less than z less than or similar to 0.4.
  •  
22.
  • Abramowski, A., et al. (author)
  • Discovery of the source HESS J1356-645 associated with the young and energetic PSR J1357-6429
  • 2011
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 533, s. A103-
  • Journal article (peer-reviewed)abstract
    • Context. Several newly discovered very-high-energy (VHE; E > 100 GeV) gamma-ray sources in the Galaxy are thought to be associated with energetic pulsars. Among them, middle-aged (greater than or similar to 10(4) yr) systems exhibit large centre-filled VHE nebulae, offset from the pulsar position, which result from the complex relationship between the pulsar wind and the surrounding medium, and reflect the past evolution of the pulsar. Aims. Imaging Atmospheric Cherenkov Telescopes (IACTs) have been successful in revealing extended emission from these sources in the VHE regime. Together with radio and X-ray observations, this observational window allows one to probe the energetics and magnetic field inside these large-scale nebulae. Methods. H.E.S.S., with its large field of view, angular resolution of less than or similar to 0.1 degrees and unprecedented sensitivity, has been used to discover a large population of such VHE sources. In this paper, the H. E. S. S. data from the continuation of the Galactic Plane Survey (-80 degrees < l < 60 degrees, vertical bar b vertical bar < 3 degrees), together with the existing multi-wavelength observations, are used. Results. A new VHE gamma-ray source was discovered at RA (J2000) = 13(h)56(m)00(s), Dec (J2000) = -64 degrees 30'00 '' with a 2' statistical error in each coordinate, namely HESS J1356-645. The source is extended, with an intrinsic Gaussian width of (0.20 +/- 0.02)degrees. Its integrated energy flux between 1 and 10 TeV of 8 x 10(-12) erg cm(-2) s(-1) represents similar to 11% of the Crab Nebula flux in the same energy band. The energy spectrum between 1 and 20 TeV is well described by a power law dN/dE proportional to E-Gamma with photon index Gamma = 2.2 +/- 0.2(stat) +/- 0.2(sys). The inspection of archival radio images at three frequencies and the analysis of X-ray data from ROSAT/PSPC and XMM-Newton/MOS reveal the presence of faint non-thermal diffuse emission coincident with HESS J1356-645. Conclusions. HESS J1356-645 is most likely associated with the young and energetic pulsar PSR J1357-6429 (d = 2.4 kpc, tau(c) = 7.3 kyr and (E) over dot = 3.1 x 10(36) erg s(-1)), located at a projected distance of similar to 5 pc from the centroid of the VHE emission. HESS J1356-645 and its radio and X-ray counterparts would thus represent the nebula resulting from the past history of the PSR J1357-6429 wind. In a simple one-zone model, constraints on the magnetic field strength in the nebula are obtained from the flux of the faint and extended X-ray emission detected with ROSAT and XMM-Newton. Fermi-LAT upper limits in the high-energy ( HE; 0.1-100 GeV) domain are also used to constrain the parent electron spectrum. From the low magnetic field value inferred from this approach (similar to 3-4 mu G), HESS J1356-645 is thought to share many similarities with other known gamma-ray emitting nebulae, such as Vela X, as it exhibits a large-scale nebula seen in radio, X-rays and VHE gamma-rays.
  •  
23.
  • Abramowski, A., et al. (author)
  • Discovery of VHE emission towards the Carina arm region with the HESS telescope array : HESSJ1018-589
  • 2012
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 541, s. A5-
  • Journal article (peer-reviewed)abstract
    • The Carina arm region, containing the supernova remnant SNRG284.3-1.8, the high-energy (HE; E > 100 MeV) binary 1FGL J1018.6-5856 and the energetic pulsar PSRJ1016-5857 and its nebula, has been observed with the H. E. S. S. telescope array. The observational coverage of the region in very-high-energy (VHE; E > 0.1TeV) gamma-rays benefits from deep exposure (40 h) of the neighboring open cluster Westerlund 2. The observations have revealed a new extended region of VHE gamma-ray emission. The new VHE source HESS J1018-589 shows a bright, point-like emission region positionally coincident with SNRG284.3-1.8 and 1FGL J1018.6-5856 and a diffuse extension towards the direction of PSRJ1016-5857. A soft (Gamma = 2.7 +/- 0.5(stat)) photon index, with a differential flux at 1 TeV of N-0 = (4.2 +/- 1.1) x 10(-13) TeV-1 cm(-2) s(-1) is found for the point-like source, whereas the total emission region including the diffuse emission region is well fit by a power-law function with spectral index Gamma = 2.9 +/- 0.4(stat) and differential flux at 1 TeV of N-0 = (6.8 +/- 1.6) x 10(-1)3 TeV-1 cm(-2) s(-1). This H. E. S. S. detection motivated follow-up X-ray observations with the XMM-Newton satellite to investigate the origin of the VHE emission. The analysis of the XMM-Newton data resulted in the discovery of a bright, non-thermal point-like source (XMMU J101855.4-58564) with a photon index of Gamma = 1.65 +/- 0.08 in the center of SNRG284.3-1.8, and a thermal, extended emission region coincident with its bright northern filament. The characteristics of this thermal emission are used to estimate the plasma density in the region as n approximate to 0.5 cm(-3) (2.9 kpc/d)(2). The position of XMMUJ101855.4-58564 is compatible with the position reported by the Fermi-LAT collaboration for the binary system 1FGL J1018.6-5856 and the variable Swift XRT source identified with it. The new X-ray data are used alongside archival multi-wavelength data to investigate the relationship between the VHE gamma-ray emission from HESS J1018-589 and the various potential counterparts in the Carina arm region.
  •  
24.
  • Abramowski, A., et al. (author)
  • HESS discovery of VHE gamma-rays from the quasar PKS 1510-089
  • 2013
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 554, s. A107-
  • Journal article (peer-reviewed)abstract
    • The quasar PKS 1510-089 (z = 0.361) was observed with the H.E.S.S. array of imaging atmospheric Cherenkov telescopes during high states in the optical and GeV bands, to search for very high energy (VHE, defined as E >= 0.1 TeV) emission. VHE gamma-rays were detected with a statistical significance of 9.2 standard deviations in 15.8 h of H. E. S. S. data taken during March and April 2009. A VHE integral flux of I(0.15 TeV < E < 1.0TeV) = (1.0 +/- 0.2(stat) +/- 0.2(sys)) x 10(-11) cm(-2) s(-1) is measured. The best-fit power law to the VHE data has a photon index of G = 5.4 +/- 0.7(stat) +/- 0.3(sys). The GeV and optical light curves show pronounced variability during the period of H.E.S.S. observations. However, there is insufficient evidence to claim statistically significant variability in the VHE data. Because of its relatively high redshift, the VHE flux from PKS 1510-089 should suffer considerable attenuation in the intergalactic space due to the extragalactic background light (EBL). Hence, the measured gamma-ray spectrum is used to derive upper limits on the opacity due to EBL, which are found to be comparable with the previously derived limits from relatively-nearby BL Lac objects. Unlike typical VHE-detected blazars where the broadband spectrum is dominated by nonthermal radiation at all wavelengths, the quasar PKS 1510-089 has a bright thermal component in the optical to UV frequency band. Among all VHE detected blazars, PKS 1510-089 has the most luminous broad line region. The detection of VHE emission from this quasar indicates a low level of gamma - gamma absorption on the internal optical to UV photon field.
  •  
25.
  • Abramowski, A., et al. (author)
  • HESS J1943+213 : a candidate extreme BL Lacertae object
  • 2011
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 529, s. A49-
  • Journal article (peer-reviewed)abstract
    • Context. The H. E. S. S. Cherenkov telescope array has been surveying the Galactic plane for new VHE (>100 GeV) gamma-ray sources. Aims. We report on a newly detected point-like source, HESS J1943+213. This source coincides with an unidentified hard X-ray source IGR J19443+2117, which was proposed to have radio and infrared counterparts. Methods. We combine new H. E. S. S., Fermi/LAT and Nancay Radio Telescope observations with pre-existing non-simultaneous multi-wavelength observations of IGR J19443+2117 and discuss the likely source associations as well as the interpretation as an active galactic nucleus, a gamma-ray binary or a pulsar wind nebula. Results. HESS J1943+213 is detected at the significance level of 7.9 sigma (post-trials) at RA(J2000) = 19(h)43(m)55(s) +/- 1(stat)(s) +/- 1(sys)(s), Dec(J2000) = +21 degrees 18'8 '' +/- 17(stat)'' +/- 20(sys)''. The source has a soft spectrum with photon index Gamma = 3.1 +/- 0.3(stat) +/- 0.2(sys) and a flux above 470 GeV of (1.3 +/- 0.2(stat) +/- 0.3(sys)) x 10(-12) cm(-2) s(-1). There is no Fermi/LAT counterpart down to a flux limit of 6 x 10(-9) cm(-2) s(-1) in the 0.1-100 GeV energy range (95% confidence upper limit calculated for an assumed power-law model with a photon index Gamma = 2.0). The data from radio to VHE gamma-rays do not show any significant variability. Conclusions. The lack of a massive stellar counterpart disfavors the binary hypothesis, while the soft VHE spectrum would be very unusual in case of a pulsar wind nebula. In addition, the distance estimates for Galactic counterparts places them outside of the Milky Way. All available observations favor an interpretation as an extreme, high-frequency peaked BL Lac object with a redshift z > 0.14. This would be the first time a blazar is detected serendipitously from ground-based VHE observations, and the first VHE AGN detected in the Galactic Plane.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 79
Type of publication
journal article (73)
conference paper (5)
other publication (1)
Type of content
peer-reviewed (75)
other academic/artistic (4)
Author/Editor
Lohse, T. (25)
Cerruti, M. (25)
Bulik, T. (25)
Bolmont, J (25)
Tluczykont, M (25)
Bernloehr, K. (25)
show more...
Boisson, C. (25)
Brun, P. (25)
Deil, C. (25)
Domainko, W. (25)
Dyks, J. (25)
Egberts, K. (25)
Fontaine, G. (25)
Giebels, B. (25)
Glicenstein, J. F. (25)
Henri, G. (25)
Hermann, G. (25)
Hofmann, W. (25)
Horns, D. (25)
Jacholkowska, A. (25)
Katarzynski, K. (25)
Khelifi, B. (25)
Kluzniak, W. (25)
Kosack, K. (25)
Lamanna, G. (25)
Moderski, R. (25)
Moulin, E. (25)
de Naurois, M. (25)
Niemiec, J. (25)
Ostrowski, M. (25)
Panter, M. (25)
Petrucci, P. -O (25)
Pita, S. (25)
Puehlhofer, G. (25)
Quirrenbach, A. (25)
Reimer, A. (25)
Reimer, O. (25)
Renaud, M. (25)
Rieger, F. (25)
Rudak, B. (25)
Santangelo, A. (25)
Schlickeiser, R. (25)
Schulz, A. (25)
Schwanke, U. (25)
Sol, H. (25)
Stawarz, L. (25)
Steenkamp, R. (25)
Stegmann, C. (25)
Tavernet, J. -P (25)
Terrier, R. (25)
show less...
University
Uppsala University (36)
Stockholm University (24)
Linnaeus University (24)
Lund University (22)
Royal Institute of Technology (9)
University of Gothenburg (6)
show more...
Chalmers University of Technology (3)
Karolinska Institutet (3)
Swedish University of Agricultural Sciences (3)
Umeå University (1)
Halmstad University (1)
Linköping University (1)
Stockholm School of Economics (1)
Mid Sweden University (1)
Högskolan Dalarna (1)
show less...
Language
English (78)
Undefined language (1)
Research subject (UKÄ/SCB)
Natural sciences (57)
Medical and Health Sciences (12)
Engineering and Technology (4)
Social Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view