SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Seikh M.) "

Search: WFRF:(Seikh M.)

  • Result 1-19 of 19
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Abbasi, R., et al. (author)
  • Characterization of the astrophysical diffuse neutrino flux using starting track events in IceCube
  • 2024
  • In: Physical Review D - Particles, Fields, Gravitation and Cosmology. - 2470-0010 .- 2470-0029. ; 110:2
  • Journal article (peer-reviewed)abstract
    • A measurement of the diffuse astrophysical neutrino spectrum is presented using IceCube data collected from 2011-2022 (10.3 years). We developed novel detection techniques to search for events with a contained vertex and exiting track induced by muon neutrinos undergoing a charged-current interaction. Searching for these starting track events allows us to not only more effectively reject atmospheric muons but also atmospheric neutrino backgrounds in the southern sky, opening a new window to the sub-100 TeV astrophysical neutrino sky. The event selection is constructed using a dynamic starting track veto and machine learning algorithms. We use this data to measure the astrophysical diffuse flux as a single power law flux (SPL) with a best-fit spectral index of γ=2.58-0.09+0.10 and per-flavor normalization of φper-flavorAstro=1.68-0.22+0.19×10-18×GeV-1 cm-2 s-1 sr-1 (at 100 TeV). The sensitive energy range for this dataset is 3-550 TeV under the SPL assumption. This data was also used to measure the flux under a broken power law, however we did not find any evidence of a low energy cutoff.
  •  
2.
  • Abbasi, R., et al. (author)
  • Improved modeling of in-ice particle showers for IceCube event reconstruction
  • 2024
  • In: Journal of Instrumentation. - 1748-0221. ; 19:6
  • Journal article (peer-reviewed)abstract
    • The IceCube Neutrino Observatory relies on an array of photomultiplier tubes to detect Cherenkov light produced by charged particles in the South Pole ice. IceCube data analyses depend on an in-depth characterization of the glacial ice, and on novel approaches in event reconstruction that utilize fast approximations of photoelectron yields. Here, a more accurate model is derived for event reconstruction that better captures our current knowledge of ice optical properties. When evaluated on a Monte Carlo simulation set, the median angular resolution for in-ice particle showers improves by over a factor of three compared to a reconstruction based on a simplified model of the ice. The most substantial improvement is obtained when including effects of birefringence due to the polycrystalline structure of the ice. When evaluated on data classified as particle showers in the high-energy starting events sample, a significantly improved description of the events is observed.
  •  
3.
  • Abbasi, R., et al. (author)
  • Citizen science for IceCube: Name that Neutrino
  • 2024
  • In: European Physical Journal Plus. - 2190-5444. ; 139:6
  • Journal article (peer-reviewed)abstract
    • Name that Neutrino is a citizen science project where volunteers aid in classification of events for the IceCube Neutrino Observatory, an immense particle detector at the geographic South Pole. From March 2023 to September 2023, volunteers did classifications of videos produced from simulated data of both neutrino signal and background interactions. Name that Neutrino obtained more than 128,000 classifications by over 1800 registered volunteers that were compared to results obtained by a deep neural network machine-learning algorithm. Possible improvements for both Name that Neutrino and the deep neural network are discussed.
  •  
4.
  • Abbasi, R., et al. (author)
  • Search for 10-1000 GeV Neutrinos from Gamma-Ray Bursts with IceCube
  • 2024
  • In: Astrophysical Journal. - : Institute of Physics (IOP). - 1538-4357 .- 0004-637X. ; 964:2
  • Journal article (peer-reviewed)abstract
    • We present the results of a search for 10-1000 GeV neutrinos from 2268 gamma-ray bursts (GRBs) over 8 yr of IceCube-DeepCore data. This work probes burst physics below the photosphere where electromagnetic radiation cannot escape. Neutrinos of tens of giga electronvolts are predicted in sub-photospheric collision of free-streaming neutrons with bulk-jet protons. In a first analysis, we searched for the most significant neutrino-GRB coincidence using six overlapping time windows centered on the prompt phase of each GRB. In a second analysis, we conducted a search for a group of GRBs, each individually too weak to be detectable, but potentially significant when combined. No evidence of neutrino emission is found for either analysis. The most significant neutrino coincidence is for Fermi-GBM GRB bn 140807500, with a p-value of 0.097 corrected for all trials. The binomial test used to search for a group of GRBs had a p-value of 0.65 after all trial corrections. The binomial test found a group consisting only of GRB bn 140807500 and no additional GRBs. The neutrino limits of this work complement those obtained by IceCube at tera electronvolt to peta electronvolt energies. We compare our findings for the large set of GRBs as well as GRB 221009A to the sub-photospheric neutron-proton collision model and find that GRB 221009A provides the most constraining limit on baryon loading. For a jet Lorentz factor of 300 (800), the baryon loading on GRB 221009A is lower than 3.85 (2.13) at a 90% confidence level.
  •  
5.
  • Abbasi, R., et al. (author)
  • Search for decoherence from quantum gravity with atmospheric neutrinos
  • 2024
  • In: Nature Physics. - 1745-2481 .- 1745-2473. ; 20:6, s. 913-920
  • Journal article (peer-reviewed)abstract
    • Neutrino oscillations at the highest energies and longest baselines can be used to study the structure of spacetime and test the fundamental principles of quantum mechanics. If the metric of spacetime has a quantum mechanical description, its fluctuations at the Planck scale are expected to introduce non-unitary effects that are inconsistent with the standard unitary time evolution of quantum mechanics. Neutrinos interacting with such fluctuations would lose their quantum coherence, deviating from the expected oscillatory flavour composition at long distances and high energies. Here we use atmospheric neutrinos detected by the IceCube South Pole Neutrino Observatory in the energy range of 0.5-10.0 TeV to search for coherence loss in neutrino propagation. We find no evidence of anomalous neutrino decoherence and determine limits on neutrino-quantum gravity interactions. The constraint on the effective decoherence strength parameter within an energy-independent decoherence model improves on previous limits by a factor of 30. For decoherence effects scaling as E2, our limits are advanced by more than six orders of magnitude beyond past measurements compared with the state of the art. Interactions of atmospheric neutrinos with quantum-gravity-induced fluctuations of the metric of spacetime would lead to decoherence. The IceCube Collaboration constrains such interactions with atmospheric neutrinos.
  •  
6.
  • Abbasi, R., et al. (author)
  • Measurement of atmospheric neutrino mixing with improved IceCube DeepCore calibration and data processing
  • 2023
  • In: Physical Review D. - 2470-0010 .- 2470-0029. ; 108:1
  • Journal article (peer-reviewed)abstract
    • We describe a new data sample of IceCube DeepCore and report on the latest measurement of atmospheric neutrino oscillations obtained with data recorded between 2011-2019. The sample includes significant improvements in data calibration, detector simulation, and data processing, and the analysis benefits from a sophisticated treatment of systematic uncertainties, with significantly greater level of detail since our last study. By measuring the relative fluxes of neutrino flavors as a function of their reconstructed energies and arrival directions we constrain the atmospheric neutrino mixing parameters to be sin2θ23=0.51±0.05 and Δm322=2.41±0.07×10-3 eV2, assuming a normal mass ordering. The errors include both statistical and systematic uncertainties. The resulting 40% reduction in the error of both parameters with respect to our previous result makes this the most precise measurement of oscillation parameters using atmospheric neutrinos. Our results are also compatible and complementary to those obtained using neutrino beams from accelerators, which are obtained at lower neutrino energies and are subject to different sources of uncertainties.
  •  
7.
  • Abbasi, R., et al. (author)
  • Search for Continuous and Transient Neutrino Emission Associated with IceCube's Highest-energy Tracks: An 11 yr Analysis
  • 2024
  • In: Astrophysical Journal. - 1538-4357 .- 0004-637X. ; 964:1
  • Journal article (peer-reviewed)abstract
    • IceCube alert events are neutrinos with a moderate-to-high probability of having astrophysical origin. In this study, we analyze 11 yr of IceCube data and investigate 122 alert events and a selection of high-energy tracks detected between 2009 and the end of 2021. This high-energy event selection (alert events + high-energy tracks) has an average probability of >= 0.5 of being of astrophysical origin. We search for additional continuous and transient neutrino emission within the high-energy events' error regions. We find no evidence for significant continuous neutrino emission from any of the alert event directions. The only locally significant neutrino emission is the transient emission associated with the blazar TXS 0506+056, with a local significance of 3 sigma, which confirms previous IceCube studies. When correcting for 122 test positions, the global p-value is 0.156 and compatible with the background hypothesis. We constrain the total continuous flux emitted from all 122 test positions at 100 TeV to be below 1.2 x 10-15 (TeV cm2 s)-1 at 90% confidence assuming an E -2 spectrum. This corresponds to 4.5% of IceCube's astrophysical diffuse flux. Overall, we find no indication that alert events in general are linked to lower-energetic continuous or transient neutrino emission.
  •  
8.
  • Abbasi, R., et al. (author)
  • Search for Galactic Core-collapse Supernovae in a Decade of Data Taken with the IceCube Neutrino Observatory
  • 2024
  • In: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 1538-4357 .- 0004-637X. ; 961:1
  • Journal article (peer-reviewed)abstract
    • The IceCube Neutrino Observatory has been continuously taking data to search for O(0.5–10) s long neutrino bursts since 2007. Even if a Galactic core-collapse supernova is optically obscured or collapses to a black hole instead of exploding, it will be detectable via the O(10) MeV neutrino burst emitted during the collapse. We discuss a search for such events covering the time between 2008 April 17 and 2019 December 31. Considering the average data taking and analysis uptime of 91.7% after all selection cuts, this is equivalent to 10.735 yr of continuous data taking. In order to test the most conservative neutrino production scenario, the selection cuts were optimized for a model based on an 8.8 solar mass progenitor collapsing to an O–Ne–Mg core. Conservative assumptions on the effects of neutrino oscillations in the exploding star were made. The final selection cut was set to ensure that the probability to detect such a supernova within the Milky Way exceeds 99%. No such neutrino burst was found in the data after performing a blind analysis. Hence, a 90% C.L. upper limit on the rate of core-collapse supernovae out to distances of ≈25 kpc was determined to be 0.23 yr−1. For the more distant Magellanic Clouds, only high neutrino luminosity supernovae will be detectable by IceCube, unless external information on the burst time is available. We determined a model-independent limit by parameterizing the dependence on the neutrino luminosity and the energy spectrum.
  •  
9.
  • Aguilar, J. A., et al. (author)
  • Triboelectric backgrounds to radio-based polar ultra-high energy neutrino (UHEN) experiments
  • 2023
  • In: Astroparticle physics. - : Elsevier. - 0927-6505 .- 1873-2852. ; 145
  • Journal article (peer-reviewed)abstract
    • In the hopes of observing the highest-energy neutrinos (E> 1 EeV) populating the Universe, both past (RICE, AURA, ANITA) and current (RNO-G, ARIANNA, ARA and TAROGE-M) polar-sited experiments exploit the impulsive radio emission produced by neutrino interactions. In such experiments, rare single event candidates must be unambiguously identified above backgrounds. Background rejection strategies to date primarily target thermal noise fluctuations and also impulsive radio-frequency signals of anthropogenic origin. In this paper, we consider the possibility that 'fake' neutrino signals may also be generated naturally via the `triboelectric effect' This broadly describes any process in which force applied at a boundary layer results in displacement of surface charge, leading to the production of an electrostatic potential difference AV. Wind blowing over granular surfaces such as snow can induce such a potential difference, with subsequent coronal discharge. Discharges over timescales as short as nanoseconds can then lead to radio-frequency emissions at characteristic MHz-GHz frequencies. Using data from various past (RICE, AURA, SATRA, ANITA) and current (RNO G, ARIANNA and ARA) neutrino experiments, we find evidence for such backgrounds, which are generally characterized by: (a) a threshold wind velocity which likely depends on the experimental trigger criteria and layout; for the experiments considered herein, this value is typically O(10 m/s), (b) frequency spectra generally shifted to the low-end of the frequency regime to which current radio experiments are typically sensitive (100-200 MHz), (c) for the strongest background signals, an apparent preference for discharges from above-surface structures, although the presence of more isotropic, lower amplitude triboelectric discharges cannot be excluded.
  •  
10.
  • Aguilar, J. A., et al. (author)
  • In situ, broadband measurement of the radio frequency attenuation length at Summit Station, Greenland
  • 2022
  • In: Journal of Glaciology. - : Cambridge University Press. - 0022-1430 .- 1727-5652. ; 68:272, s. 1234-1242
  • Journal article (peer-reviewed)abstract
    • Over the last 25 years, radiowave detection of neutrino-generated signals, using cold polar ice as the neutrino target, has emerged as perhaps the most promising technique for detection of extragalactic ultra-high energy neutrinos (corresponding to neutrino energies in excess of 0.01 Joules, or 10(17) electron volts). During the summer of 2021 and in tandem with the initial deployment of the Radio Neutrino Observatory in Greenland (RNO-G), we conducted radioglaciological measurements at Summit Station, Greenland to refine our understanding of the ice target. We report the result of one such measurement, the radio-frequency electric field attenuation length L-alpha. We find an approximately linear dependence of L-alpha on frequency with the best fit of the average field attenuation for the upper 1500 m of ice: < L-alpha > = ((1154 +/- 121) - (0.81 +/- 0.14) (v/MHz)) m for frequencies v is an element of [145 - 3501 MHz.
  •  
11.
  • Noferini, Daria, 1983, et al. (author)
  • Proton Dynamics in Hydrated BaZr0.9M0.1O2.95 (M = Y and Sc) Investigated with Neutron Spin-Echo
  • 2016
  • In: Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 120:26, s. 13963-13969
  • Journal article (peer-reviewed)abstract
    • Hydrated samples of the two proton conducting perovskites BaZr0.9M0.1O2.95 (M = Y and Sc) were investigated using neutron spin echo spectroscopy together with thermal gravimetric measurements, polarized neutron diffraction, and infrared spectroscopy, with the aim to determine how the atomic scale proton dynamics depend on temperature, and type of dopant atom, M. The results show the presence of pronounced localized proton motions for temperatures above ca. 300 K, characterized by relaxation times on the order of picoseconds to nanoseconds and governed by a wide distribution of activation energies due to a heterogeneous distribution of proton sites present, with no strong dependence on the type of dopant atom.
  •  
12.
  • Abdalla, Abdalla M., et al. (author)
  • Synthesis and characterization of Sm1-xZrxFe1-yMgyO3 (x, y = 0.5, 0.7, 0.9) as possible electrolytes for SOFCs
  • 2018
  • In: Key Engineering Materials. - 1013-9826 .- 1662-9795. ; 765 KEM, s. 49-53
  • Conference paper (peer-reviewed)abstract
    • The novel perovskite oxide series of Sm 1-x Zr x Fe 1-y Mg y O 3 (x,y = 0.5, 0.7, 0.9) were synthesized by solid state reaction method. X-ray diffraction (XRD), Rietveld refinement, scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and conductivity analysis were carried out. XRD patterns of sintered materials revealed the shifted Bragg reflection to higher angle for the higher content of Zr and Mg. This is related to the ionic size of the dopant elements. Rietveld refinement showed that all compounds crystallized in cubic space group of Fm-3m. SEM images showed that the grains were well defined with highly dense surfaces makes it potential as an electrolyte material in solid oxide fuel cells (SOFCs) or gases sensors. Impedance spectroscopy at 550-800 °C shows that conductivity is higher at higher temperature. Sm 0.5 Zr 0.5 Fe 0.5 Mg 0.5 O 3 shows the highest conductivity of 5.451 × 10 -3 S cm -1 at 800 °C. It was observed that 50% molar ratio of Mg and Zr doping performed highest conductivity.
  •  
13.
  • Afif, A., et al. (author)
  • Structural study and proton conductivity in BaCe0.7Zr0.25-xYxZn0.05O3 (x=0.05, 0.1, 0.15, 0.2 & 0.25)
  • 2016
  • In: International Journal of Hydrogen Energy. - : Elsevier BV. - 0360-3199. ; 41:27, s. 11823-11831
  • Journal article (peer-reviewed)abstract
    • Solid oxide fuel cell (SOPC) has been considered to generate power represented by conductivity. Zinc doped Barium Cerium Zirconium Yttrium oxide (BCZYZn) has been found to offer high protonic conductivity and high stability as being electrolyte for proton conducting SOFCs. In this study, we report a new series of proton conducting materials, BaCe0.7Zr0.25-xYxZn0.05O3 (x = 0.05, 0.1, 0.15, 0.2 and 0.25). The materials were synthesized by solid state reaction route and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), thermal expansion, particle size and impedance spectroscopy (IS). Rietveld analysis of the XRD data reveal a cubic perovskite structure with Pm-3m space group up to composition x = 0.15. For x = 0.15 and 0.20, the materials have structural phase change to orthorhombic in the Pbnm space group. Scanning electron microscopy images show high density materials. Thermal expansion measurements show that the thermal expansion coefficient is in the range 10.0-11.0 x 10(-6)/degrees C. Impedance spectroscopy shows higher ionic conduction under wet condition compared to dry condition. Y content of 25% (BCZYZn25) exhibits highest conductivity of 1.84 x 10(-2) S/cm in wet Argon. This study indicated that perovskite electrolyte BCZYZn is promising material for the next generation of intermediate temperature solid oxide fuel cells (IT-SOFCs).
  •  
14.
  • Hossain, S., et al. (author)
  • Highly dense and chemically stable proton conducting electrolyte sintered at 1200 °C
  • 2018
  • In: International Journal of Hydrogen Energy. - : Elsevier BV. - 0360-3199. ; 43:2, s. 894-907
  • Journal article (peer-reviewed)abstract
    • The BaCe 0.7 Zr 0.1 Y 0.2−x Zn x O 3−δ (x = 0.05, 0.10, 0.15, 0.20) has been synthesized by the conventional solid state reaction method for application in protonic solid oxide fuel cell. The phase purity and lattice parameters of the materials have been studied by the room temperature X-ray diffraction (XRD). Scanning electron microscopy (SEM) has been done for check the morphology and grain growth of the samples. The chemical and mechanical stabilities have been done using thermogravimetric analysis (TGA) in pure CO 2 environment and thermomechanical analysis (TMA) in Argon atmosphere. The XRD of the materials show the orthorhombic crystal symmetry with Pbnm space group. The SEM images of the pellets show that the samples sintered at 1200 °C are highly dense. The XRD after TGA in CO 2 and thermal expansion measurements confirm the stability. The particles of the samples are in micrometer ranges and increasing Zn content decreases the size. The conductivity measurements have been done in 5% H 2 with Ar in dry and wet atmospheres. All the materials show high proton conductivity in the intermediate temperature range (400–700 °C). The maximum proton conductivity was found to be 1.0 × 10 −2 S cm −1 at 700 °C in wet atmosphere for x = 0.10. From our study, 10 wt % of Zn seems to be optimum at the B-site of the perovskite structure. All the properties studied here suggest it can be a promising candidate of electrolyte for IT-SOFCs.
  •  
15.
  • Martinelli, Anna, 1978, et al. (author)
  • A New Solid-State Proton Conductor: The Salt Hydrate Based on Imidazolium and 12-Tungstophosphate
  • 2021
  • In: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 1520-5126 .- 0002-7863. ; 143:34, s. 13895-13907
  • Journal article (peer-reviewed)abstract
    • We report the structure and charge transport properties of a novel solid-state proton conductor obtained by acid-base chemistry via proton transfer from 12-tungstophosphoric acid to imidazole. The resulting material (henceforth named Imid3WP) is a solid salt hydrate that, at room temperature, includes four water molecules per structural unit. To our knowledge, this is the first attempt to tune the properties of a heteropolyacid-based solid-state proton conductor by means of a mixture of water and imidazole, interpolating between water-based and ionic liquid-based proton conductors of high thermal and electrochemical stability. The proton conductivity of Imid3WP·4H2O measured at truly anhydrous conditions reads 0.8 × 10-6 S cm-1 at 322 K, which is higher than the conductivity reported for any other related salt hydrate, despite the lower hydration. In the pseudoanhydrous state, that is, for Imid3WP·2H2O, the proton conductivity is still remarkable and, judging from the low activation energy (Ea = 0.26 eV), attributed to structural diffusion of protons. From complementary X-ray diffraction data, vibrational spectroscopy, and solid-state NMR experiments, the local structure of this salt hydrate was resolved, with imidazolium cations preferably orienting flat on the surface of the tungstophosphate anions, thus achieving a densely packed solid material, and water molecules of hydration that establish extremely strong hydrogen bonds. Computational results confirm these structural details and also evidence that the path of lowest energy for the proton transfer involves primarily imidazole and water molecules, while the proximate Keggin anion contributes with reducing the energy barrier for this particular pathway.
  •  
16.
  • Afif, A., et al. (author)
  • Structural and electrochemical characterization of BaCe0.7Zr0.2Y0.05Zn0.05O3 as an electrolyte for SOFC-H
  • 2016
  • In: IOP Conference Series: Materials Science and Engineering. - 1757-8981 .- 1757-899X. ; 121:1
  • Conference paper (peer-reviewed)abstract
    • As a potential electrolyte for proton-conducting solid oxide fuel cells (SOFC-Hs) and to get better protonic conductivity and stability, zinc doped BCZY material has been found to be promising. In this study, we report a new composition of proton conductors BaCe0.7Zr0.2Y0.05Zn0.05O3 (BCZYZn5) which was investigated using XRD, SEM and conductivity measurements. Rietveld refinement of the XRD data revel a cubic perovskite structure with Pm-3m space group. BaCe0.7Zr0.2Y0.05Zn0.05O3 shows cell parameter a = 4.3452(9) Å. Scanning electron microscopy images shows that the grain sizes are large and compact which gives the sample high density and good protonic conductivity. The total conductivity in wet atmosphere is significantly higher than that of dry condition and the conductivity was found to be 0.276 × 10-3 Scm-1 and 0.204 × 10-3 Scm-1 at 600°C in wet and dry Ar, respectively. This study indicated that perovskite electrolyte BCZYZn5 is a promising material for the next generation intermediate temperature solid oxide fuel cells (IT-SOFCs).
  •  
17.
  • Chernov, S. V., et al. (author)
  • Sr2GaScO5, Sr10Ga6Sc4O25, and SrGa0,75Sc0,25O2,5: a Play in the Octahedra to Tetrahedra Ratio in Oxygen-Deficient Perovskites
  • 2012
  • In: Inorganic Chemistry. - : American Chemical Society (ACS). - 0020-1669 .- 1520-510X. ; 51:2, s. 1094-1103
  • Journal article (peer-reviewed)abstract
    • Three different perovskite-related phases were isolated in the SrGa(1-x)Sc(x)O(2.5) system: Sr(2)GaScO(5), Sr(10)Ga(6)Sc(4)O(25), and SrGa(0.75)Sc(0.25)O(2.5), Sr(2)GaScO(5) (x = 0.5) crystallizes in a brownrnillerite-type structure [space group (S.G.) Icmm, a = 5.91048(5) angstrom, b = 15.1594(1) angstrom, and c = 5.70926(4) angstrom] with complete ordering of Sc(3+) and Ga(3+) over octahedral and tetrahedral positions, respectively. The crystal structure of Sr(10)Ga(6)Sc(4)O(25) (x = 0.4) was determined by the Monte Carlo method and refined using a combination of X-ray, neutron, and electron diffraction data [S.G. I4(1)/a, a = 17.517(1) angstrom, c = 32.830(3) angstrom]. It represents a novel type of ordering of the B cations and oxygen vacancies in perovskites. The crystal structure of Sr(10)Ga(6)Sc(4)O(25) can be described as a stacking of eight perovskite layers along the c axis ...[-(Sc/Ga)O(1.6)-SrO(0.8)-(Sc/Ga)O(1.8)-SrO(0.8)-](2 center dot center dot center dot) Similar to Sr(2)GaScO(5), this structure features a complete ordering of the Sc(3+) and Ga(3+) cations over octahedral and tetrahedral positions, respectively, within each layer. A specific feature of the crystal structure of Sr(10)Ga(6)Sc(4)O(25) is that one-third of the tetrahedra have one vertex not connected with other Sc/Ga cations. Further partial replacement of Sc(3+) by Ga(3+) leads to the formation of the cubic perovskite phase SrGa(0.75)Sc(0.25)O(2.5) (x = 0.25) with a = 3.9817(4) angstrom. This compound incorporates water molecules in the structure forming SrGa(0.75)Sc(0.25)O(2.5)center dot xH(2)O hydrate, which exhibits a proton conductivity of similar to 2.0 x 10(-6) S/cm at 673 K.
  •  
18.
  • Perrichon, Adrien, 1988, et al. (author)
  • Local structure and vibrational dynamics of proton conducting Ba2In2O5(H2O)x
  • 2019
  • In: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 7:29, s. 17626-17636
  • Journal article (peer-reviewed)abstract
    • We study the local structure and vibrational dynamics of the brownmillerite-based proton conductors Ba2In2O5(H2O)x, with x = 0.30, 0.76, and 0.92, using infrared spectroscopy, inelastic neutron scattering and ab initio molecular dynamics simulations. Ba2In2O5(H2O)x is found to exhibit two main types of proton sites, H(1) and H(2). The H(1) site is characterised by the coexistence of two intra-octahedral hydrogen-bond geometries, whereas the H(2) site is characterised by inter-octahedral hydrogen bonding. While the strength of the hydrogen bonding is similar for the majority of protons in the two proton sites, ≈10% of the H(2) protons forms unusually strong hydrogen bonds due to local proton environments characterised by an unusually short oxygen-oxygen separation distance of ≈2.6 Å. These local proton environments are manifested as two O-H stretch bands in the infrared absorbance spectra, at 255 and 290 meV, respectively. These O-H stretch bands are as well observed in the related class of In-doped perovskite-type oxides, BaInyZr1-yO3-y/2 (0.25 ≤ y ≤ 0.75), suggesting that these perovskites may display brownmillerite-like distortions on a local length scale. In effect, these results point towards a clustering of the In atoms in these perovskite materials. Further, the infrared spectra of Ba2In2O5(H2O)x show a minor evolution as a function of x, because the protons tend to segregate into oxygen-rich hydrogen-rich domains upon dehydration. This points towards a highly anisotropic proton conduction mechanism in partially hydrated phases. This insight motivates efforts to identify ways to avoid phase separation, perhaps by suitable cation substitutions, as a route to accommodate high proton conductivity.
  •  
19.
  • Rahman, Seikh M. H., et al. (author)
  • Proton conductivity of hexagonal and cubic BaTi1-XScxO3-delta (0.1 <= x <= 0.8)
  • 2014
  • In: Dalton Transactions. - : Royal Society of Chemistry (RSC). - 1477-9226 .- 1477-9234. ; 43:40, s. 15055-15064
  • Journal article (peer-reviewed)abstract
    • BaTi1-xScxO3-delta (X = 0.1-0.8) was prepared via solid state reaction. High resolution X-ray powder diffraction was used to characterise the synthesised materials. It was found that low substitution (x = 0.1 and 0.2) of Ti4+ for Sc3+ gives a hexagonal perovskite structure, whereas high substitution (x = 0.5-0.7) results in a cubic perovskite structure. Thermogravimetric analysis revealed significant levels of protons in both as-prepared and hydrated samples. Electrical conductivity was measured by AC impedance methods under oxygen, argon and under dry and humid, both H(2)0 and D2O, conditions for BaTi1-xScXO3-delta,(x = 0.2, 0.6 and 0.7). In the temperature range of 150-600 C-circle, under humid conditions, the conductivity is significantly higher than that under the dry conditions. The increase in conductivity is especially prominent for the cubic phases, indicating that protons are the dominant charge carriers. The proton conductivity of hexagonal BaTi0.8,Sc0.2O3-delta is approx. two orders of magnitude lower than that of the more heavily substituted cubic phases. Conductivity is also found to be higher in dry O-2 than in Ar in the whole temperature range of 150-1000 C-circle, characteristic of a significant contribution from p-type charge carriers under oxidising atmospheres. Greater Sc3+ substitution leads to a higher proton concentration and the highest proton conductivity (sigma similar to 2 x 10(-3) S cm(-1) at 600 degrees C) is found for the BaTi(0.3)Sc(07)cO(3-delta) composition.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-19 of 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view