SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Shvedova A) "

Search: WFRF:(Shvedova A)

  • Result 1-16 of 16
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Andõn, F. T., et al. (author)
  • Biodegradation of Single-Walled Carbon Nanotubes by Eosinophil Peroxidase
  • 2013
  • In: Small. - : Wiley-VCH Verlagsgesellschaft. - 1613-6810 .- 1613-6829. ; 9:16, s. 2721-2729
  • Journal article (peer-reviewed)abstract
    • Eosinophil peroxidase (EPO) is one of the major oxidant-producing enzymes during inflammatory states in the human lung. The degradation of single-walled carbon nanotubes (SWCNTs) upon incubation with human EPO and H2O 2 is reported. Biodegradation of SWCNTs is higher in the presence of NaBr, but neither EPO alone nor H2O2 alone caused the degradation of nanotubes. Molecular modeling reveals two binding sites for SWCNTs on EPO, one located at the proximal side (same side as the catalytic site) and the other on the distal side of EPO. The oxidized groups on SWCNTs in both cases are stabilized by electrostatic interactions with positively charged residues. Biodegradation of SWCNTs can also be executed in an ex vivo culture system using primary murine eosinophils stimulated to undergo degranulation. Biodegradation is proven by a range of methods including transmission electron microscopy, UV-visible-NIR spectroscopy, Raman spectroscopy, and confocal Raman imaging. Thus, human EPO (in vitro) and ex vivo activated eosinophils mediate biodegradation of SWCNTs: an observation that is relevant to pulmonary responses to these materials. Human eosinophil peroxidase (EPO) is able to degrade SWCNTs in vitro in the presence of H2O2. EPO is one of the major oxidant-generating enzymes present in human lungs during inflammatory states. The biodegradation of SWCNTs is evidenced also in an ex vivo culture system using primary murine eosinophils stimulated to undergo degranulation. These results are relevant to potential respiratory exposure to carbon nanotubes.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Mukherjee, SP, et al. (author)
  • Macrophage sensing of single-walled carbon nanotubes via Toll-like receptors
  • 2018
  • In: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 8:1, s. 1115-
  • Journal article (peer-reviewed)abstract
    • Carbon-based nanomaterials including carbon nanotubes (CNTs) have been shown to trigger inflammation. However, how these materials are ‘sensed’ by immune cells is not known. Here we compared the effects of two carbon-based nanomaterials, single-walled CNTs (SWCNTs) and graphene oxide (GO), on primary human monocyte-derived macrophages. Genome-wide transcriptomics assessment was performed at sub-cytotoxic doses. Pathway analysis of the microarray data revealed pronounced effects on chemokine-encoding genes in macrophages exposed to SWCNTs, but not in response to GO, and these results were validated by multiplex array-based cytokine and chemokine profiling. Conditioned medium from SWCNT-exposed cells acted as a chemoattractant for dendritic cells. Chemokine secretion was reduced upon inhibition of NF-κB, as predicted by upstream regulator analysis of the transcriptomics data, and Toll-like receptors (TLRs) and their adaptor molecule, MyD88 were shown to be important for CCL5 secretion. Moreover, a specific role for TLR2/4 was confirmed by using reporter cell lines. Computational studies to elucidate how SWCNTs may interact with TLR4 in the absence of a protein corona suggested that binding is guided mainly by hydrophobic interactions. Taken together, these results imply that CNTs may be ‘sensed’ as pathogens by immune cells.
  •  
9.
  • Murray, Ashley R., et al. (author)
  • Oxidative Stress and Dermal Toxicity of Iron Oxide Nanoparticles In Vitro
  • 2013
  • In: Cell Biochemistry and Biophysics. - : Springer Science and Business Media LLC. - 1085-9195 .- 1559-0283. ; 67:2, s. 461-476
  • Journal article (peer-reviewed)abstract
    • A number of commercially available metal/metal oxide nanoparticles (NPs) such as superparamagnetic iron oxide (SPION) are utilized by the medical field for a wide variety of applications. These NPs may able to induce dermal toxicity via their physical nature and reactive surface properties. We hypothesize that SPION may be toxic to skin via the ability of particles to be internalized and thereby initiate oxidative stress, inducing redox-sensitive transcription factors affecting/leading to inflammation. Due to the skin's susceptibility to UV radiation, it is also of importance to address the combined effect of UVB and NPs co-exposure. To test this hypothesis, the effects of dextran-coated SPION of different sizes (15-50 nm) and manufacturers (MicroMod, Rostock-Warnemunde, Germany and KTH-Royal Institute of Technology, Stockholm, Sweden) were evaluated in two cell lines: normal human epidermal keratinocytes (HEK) and murine epidermal cells (JB6 P+). HEK cells exposed to 20 nm (KTH and MicroMod) had a decrease in viability, while the 15 and 50 nm particles were not cytotoxic. HEK cells were also capable of internalizing the KTH particles (15 and 20 nm) but not the MicroMod SPION (20 and 50 nm). IL-8 and IL-6 were also elevated in HEK cells following exposure to SPION. Exposure of JB6 P+ cells to all SPIONs evaluated resulted in activation of AP-1. Exposure to SPION alone was not sufficient to induce NF-kappa B activation; however, co-exposure with UVB resulted in significant NF-kappa B induction in cells exposed to 15 and 20 nm KTH SPION and 50 nm MicroMod particles. Pre-exposure of JB6 P+ cells to UVB followed by NPs induced a significant depletion of glutathione, release of cytokines, and cell damage as assessed by release of lactate dehydrogenase. Altogether, these data indicate that co-exposure to UVB and SPIONs was associated with induction of oxidative stress and release of inflammatory mediators. These results verify the need to thoroughly evaluate the adverse effects of UVB when evaluating dermal toxicity of engineered NPs on skin.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-16 of 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view