SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Sipponen Mika H.) "

Search: WFRF:(Sipponen Mika H.)

  • Result 1-25 of 41
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Hadi, Seyed Ehsan, et al. (author)
  • Highly magnetic hybrid foams based on aligned tannic acid-coated iron oxide nanoparticles and TEMPO-oxidized cellulose nanofibers
  • 2023
  • In: RSC Advances. - 2046-2069. ; 13:20, s. 13919-13927
  • Journal article (peer-reviewed)abstract
    • Lightweight iron oxide nanoparticle (IONP)/TEMPO-oxidized cellulose nanofibril (TOCNF) hybrid foams with an anisotropic structure and a high IONP content were produced using magnetic field-enhanced unidirectional ice-templating. Coating the IONP with tannic acid (TA) improved the processability, the mechanical performance, and the thermal stability of the hybrid foams. Increasing the IONP content (and density) increased the Young's modulus and toughness probed in compression, and hybrid foams with the highest IONP content were relatively flexible and could recover 14% axial compression. Application of a magnetic field in the freezing direction resulted in the formation of IONP chains that decorated the foam walls and the foams displayed a higher magnetization saturation, remanence, and coercivity compared to the ice-templated hybrid foams. The hybrid foam with an IONP content of 87% displayed a saturation magnetization of 83.2 emu g−1, which is 95% of the value for bulk magnetite. Highly magnetic hybrid foams are of potential interest for environmental remediation, energy storage, and electromagnetic interference shielding.
  •  
2.
  • A. da Cruz, Márcia G., et al. (author)
  • Electrochemical Depolymerization of Lignin in a Biomass-based Solvent
  • 2022
  • In: ChemSusChem. - : Wiley. - 1864-5631 .- 1864-564X. ; 15:15
  • Journal article (peer-reviewed)abstract
    • Breaking down lignin into smaller units is the key to generate high value-added products. Nevertheless, dissolving this complex plant polyphenol in an environment-friendly way is often a challenge. Levulinic acid, which is formed during the hydrothermal processing of lignocellulosic biomass, has been shown to efficiently dissolve lignin. Herein, levulinic acid was evaluated as a medium for the reductive electrochemical depolymerization of the lignin macromolecule. Copper was chosen as the electrocatalyst due to the economic feasibility and low activity towards the hydrogen evolution reaction. After depolymerization, high-resolution mass spectrometry and nuclear magnetic resonance spectroscopy revealed lignin-derived monomers and dimers. A predominance of aryl ether and phenolic groups was observed. Depolymerized lignin was further evaluated as an anti-corrosion coating, revealing enhancements on the electrochemical stability of the metal. Via a simple depolymerization process of biomass waste in a biomass-based solvent, a straightforward approach to produce high value-added compounds or tailored biobased materials was demonstrated. 
  •  
3.
  • Almenara Perez, Naroa, et al. (author)
  • Lignin–Chitosan Gel Polymer Electrolytes for Stable Zn Electrodeposition
  • 2023
  • In: ACS Sustainable Chemistry and Engineering. - : American Chemical Society (ACS). - 2168-0485. ; 11:6, s. 2283-2294
  • Journal article (peer-reviewed)abstract
    • Electrochemical energy storage technologies offer means to transition toward a decarbonized society and carbon neutrality by 2050. Compared to conventional lithium-ion batteries, aqueous zinc-ion chemistries do not require scarce materials or toxic and flammable organic-based electrolytes to function, making them favorable contenders in the scenario of intensifying climate change and supply chain crisis. However, environmentally benign and bio-based materials are needed to substitute fossil-based battery materials. Accordingly, this work taps into the possibilities of lignin together with chitosan to form gel polymer electrolytes (GPEs) for zinc-ion chemistries. A simple fabrication process enabling free-standing sodium lignosulfonate–chitosan and micellar lignosulfonate–kraft lignin–chitosan GPEs with diameters exceeding 80 mm is developed. The GPEs combine tensile strength with ductility, reaching Young’s moduli of 55 ± 4 to 940 ± 63 MPa and elongations at break of 14.1 ± 0.2 to 43.9 ± 21.1%. Competitive ionic conductivities ranging from 3.8 to 18.6 mS cm–1 and electrochemical stability windows of up to +2.2 V vs Zn2+/Zn were observed. Given the improved interfacial adhesion of the GPEs with metallic Zn promoted by the anionic groups of the lignosulfonate, a stable cycling of the Zn anode is obtained. As a result, GPEs can operate at 5000 μA cm–2 with no short-circuit and Coulombic efficiencies above 99.7%, outperforming conventional separator–liquid electrolyte configurations such as the glass microfiber separator soaked into 2 M ZnSO4 aqueous electrolyte, which short-circuits after 100 μA cm–2. This work demonstrates the potential of underutilized biorefinery side-streams and marine waste as electrolytes in the battery field, opening new alternatives in the sustainable energy storage landscape beyond LIBs.
  •  
4.
  • Budnyak, Tetyana M., et al. (author)
  • Lignin-Inorganic Interfaces : Chemistry and Applications from Adsorbents to Catalysts and Energy Storage Materials
  • 2020
  • In: ChemSusChem. - : Wiley. - 1864-5631 .- 1864-564X. ; 13:17, s. 4344-4355
  • Research review (peer-reviewed)abstract
    • Lignin is one the most fascinating natural polymers due to its complex aromatic‐aliphatic structure. Phenolic hydroxyl and carboxyl groups along with other functional groups provide technical lignins with reactivity and amphiphilic character. Many different lignins have been used as functional agents to facilitate the synthesis and stabilization of inorganic materials. Herein, the use of lignin in the synthesis and chemistry of inorganic materials in selected applications with relevance to sustainable energy and environmental fields is reviewed. In essence, the combination of lignin and inorganic materials creates an interface between soft and hard materials. In many cases it is either this interface or the external lignin surface that provides functionality to the hybrid and composite materials. This Minireview closes with an overview on future directions for this research field that bridges inorganic and lignin materials for a more sustainable future.
  •  
5.
  • Esakkimuthu, Esakkiammal Sudha, et al. (author)
  • Elucidating intermolecular forces to improve compatibility of kraft lignin in poly(lactic acid)
  • 2024
  • In: Frontiers in Chemistry. - 2296-2646. ; 12
  • Journal article (peer-reviewed)abstract
    • Owing to its abundant supply from renewable resources, lignin has emerged as a promising functional filler for the development of sustainable composite materials. However, achieving good interfacial compatibility between lignin and synthetic polymers, particularly poly (lactic acid) (PLA), remains a fundamental challenge. To advance the development of high-performance bio-based composites incorporating lignin and PLA, our study has scrutinized to unravel the nuances of interfacial binding interactions with the lignin and PLA composite system. Molecular level and experimental examinations were employed to decipher fundamental mechanisms governing and demonstrating the interfacial adhesion. We synthesized casted films of lignin/PLA and acetylated lignin/PLA at varying weight percentages of lignin (5%, 10%, and 20%) and comprehensively investigated their physicochemical and mechanical properties. The inclusion of acetylated lignin in the composites resulted in improved mechanical strength and Young’s modulus, while the glass transition temperature and melting point were reduced compared to neat PLA. Systematic variations in these properties revealed distinct compatibility behaviors between unmodified lignin and acetylated lignin when incorporated into PLA. Molecular dynamics (MD) simulation results elucidated that the observed changes in material properties were primarily attributed to the acetylation of lignin. Acetylated lignin exhibited lower Coulombic interaction energy and higher van der Waals forces, indicating a stronger affinity to PLA and a reduced propensity for intermolecular aggregation compared to unmodified lignin. Our findings highlight the critical role of controlling intermolecular interactions and lignin aggregation to develop PLA composites with predictable performance for new applications, such as functional packaging materials.
  •  
6.
  • Esakkimuthu, Esakkiammal Sudha, et al. (author)
  • Multifunctional lignin-poly (lactic acid) biocomposites for packaging applications
  • 2022
  • In: Frontiers in Bioengineering and Biotechnology. - : Frontiers Media SA. - 2296-4185. ; 10
  • Journal article (peer-reviewed)abstract
    • Lignin is the most abundant aromatic biopolymer with many promising features but also shortcomings as a filler in polymer blends. The main objective of this work was to improve the processability and compatibility of lignin with poly (lactic acid) (PLA) through etherification of lignin. Commercial kraft lignin (KL) and oxypropylated kraft lignin (OPKL) were blended with PLA at different weight percentages (1, 5, 10, 20, and 40%) followed by injection molding. Low lignin contents between 1 and 10% generally had a favorable impact on mechanical strength and moduli as well as functional properties of the PLA-based composites. Unmodified lignin with free phenolic hydroxyl groups rendered the composites with antioxidant activity, as measured by radical scavenging and lipid peroxidation tests. Incorporating 5–10% of KL or OPKL improved the thermal stability of the composites within the 300–350°C region. DSC analysis showed that the glass transition temperature values were systematically decreased upon addition of KL and OPKL into PLA polymer. However, low lignin contents of 1 and 5% decreased the cold crystallization temperature of PLA. The composites of KL and OPKL with PLA exhibited good stabilities in the migration test, with values of 17 mg kg−1 and 23 mg kg−1 even at higher lignin content 40%, i.e., well below the limit defined in a European standard (60 mg kg−1). These results suggest oxypropylated lignin as a functional filler in PLA for safe and functional food packaging and antioxidant applications.
  •  
7.
  • Ferruti, Federica, et al. (author)
  • Recombinatorial approach for the formation of surface-functionalised alkaline-stable lignin nanoparticles and adhesives
  • 2023
  • In: Green Chemistry. - : Royal Society of Chemistry (RSC). - 1463-9262 .- 1463-9270. ; 25:2, s. 639-649
  • Journal article (peer-reviewed)abstract
    • Lignin nanoparticles (LNPs) are considered as intriguing green, renewable alternatives to fossil-based nanomaterials. However, the predisposition of LNPs to dissolve under alkaline conditions makes covalent surface functionalisation in the dispersion state difficult and limits applications demanding morphological stability under challenging pH conditions. Mechanistic studies suggest that during the formation of LNPs by nanoprecipitation the higher molecular weight fractions of lignin likely start precipitating first, while the low molecular weight fractions tend to deposit later and thus locate on the outer shell. Capitalising this aggregation pattern, the present work presents a strategy to prepare surface-functionalised LNPs that can find applications as adhesives and alkaline stable LNPs. The entire process is based on a single-step solvent fractionation of lignin using either ethanol or ethyl acetate, subsequent functionalisation of selected fractions with epichlorohydrin, and recombination according to the original mass proportions in line with the so-called zero waste principle. Aqueous colloidal dispersions of lignins were synthesised by nanoprecipitation of epoxidised low molecular weight (MW) fractions combined with the corresponding unmodified high MW ones, and vice versa. Upon thermal treatment, LNPs containing the epoxidised insoluble fraction underwent intraparticle crosslinking, proving dimensional stability at pH 12. Conversely, LNPs including epoxidised solvent-soluble fractions resulted in interparticle crosslinking upon heating, which confirmed the surface localisation of such low MW fractions. The latter system was exploited to develop green LNP-based adhesives for aminated glass with lap shear strength outperforming prior adhesive systems based on lignin particles.
  •  
8.
  •  
9.
  • Lindenbeck, Lucie, et al. (author)
  • MoS2 nanoflower-decorated lignin nanoparticles for superior lubricant properties
  • 2023
  • In: Nanoscale. - : Royal Society of Chemistry (RSC). - 2040-3364 .- 2040-3372. ; :20
  • Journal article (peer-reviewed)abstract
    • Lignin has been, for a long time, treated as a low-value waste product. To change this scenario, high-value applications have been recently pursued, e.g., the preparation of hybrid materials with inorganic components. Although hybrid inorganic-based materials can benefit from the reactive lignin phenolic groups at the interface, often responsible for optimizing specific properties, this is still an underexplored field. Here, we present a novel and green material based on the combination of hydroxymethylated lignin nanoparticles (HLNPs) with molybdenum disulfide (MoS2) nanoflowers grown via a hydrothermal route. By bringing together the lubricant performance of MoS2 and the structural stability of biomass-based nanoparticles, a MoS2-HLNPs hybrid is presented as a bio-derived additive for superior tribological performances. While FT-IR analysis confirmed the structural stability of lignin after the hydrothermal growth of MoS2, TEM and SEM micrographs revealed a homogeneous distribution of MoS2 nanoflowers (average size of 400 nm) on the HLNPs (average size of 100 nm). Regarding the tribological tests, considering a pure oil as reference, only HLNPs as bio-derived additives led to a reduction in the wear volume of 18%. However, the hybrid of MoS2-HLNPs led to a considerably higher reduction (71%), pointing out its superior performance. These results open a new window of opportunity for a versatile and yet underexplored field that can pave the way for a new class of biobased lubricants.
  •  
10.
  • Liu, Jinrong, 1995-, et al. (author)
  • Ag-lignin hybrid nanoparticles for high-performance solar absorption in photothermal antibacterial chitosan films
  • 2023
  • In: iScience. - 2589-0042. ; 26:10
  • Journal article (peer-reviewed)abstract
    • There is an urgent need for antimicrobial films based on sustainable resources and production methods. In this study, we present a bio-based nanocomposite film composed of chitosan (∼60 wt %), lignin nanoparticles (LNPs, ∼40 wt %), a small amount of glutaraldehyde (1.5 wt %), and a trace level of silver nanoparticles (AgNPs, 0.072 wt %). The uniform dispersion with LNPs prevented aggregation of metallic silver, resulting in small (diameter 3.3 nm) AgNPs. The nanocomposite film absorbs 89% of radiation across the entire solar spectrum and exhibits a remarkable photothermally triggered antibacterial effect, which is further enhanced by the dark color of lignin. Under simulated solar light illumination, the nanocomposite films demonstrated a significant reduction in viable Escherichia coli count compared to control scenarios. The potential applications of these nanocomposites extend to sunlight-activated antimicrobial films and coatings, addressing the growing demand for sustainable and effective antimicrobial materials.
  •  
11.
  • Liu, Jinrong, et al. (author)
  • Fully Biobased Photothermal Films and Coatings for Indoor Ultraviolet Radiation and Heat Management
  • 2022
  • In: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 14:10, s. 12693-12702
  • Journal article (peer-reviewed)abstract
    • Sustainable materials are needed to mitigate against the increase in energy consumption resulting from population growth and urbanization. Here, we report fully biobased nanocomposite films and coatings that display efficient photothermal activity and selective absorption of ultraviolet (UV) radiation. The nanocomposites with 20 wt % of lignin nanoparticles (LNPs) embedded in a chitosan matrix displayed an efficient UV blocking of 97% at 400 nm along with solar energy-harvesting properties. The reflectance spectra of the nanocomposite films revealed the importance of well-dispersed nanoparticles in the matrix to achieve efficient UV-blocking properties. Finally, yet importantly, we demonstrate the nanocomposites with 20 wt % LNPs as photothermal glass coatings for passive cooling of indoor temperature by simply tailoring the coating thickness. Under simulated solar irradiation of 100 mW/cm2, the 20 μm coating achieved a 58% decrease in the temperature increment in comparison to the system with uncoated glass. These renewable nanocomposite films and coatings are highly promising sustainable solutions to facilitate indoor thermal management and improve human health and well-being.
  •  
12.
  • Liu, Jinrong, 1995-, et al. (author)
  • High-yield production of lignin photonic crystals with ethanol and water
  • Other publication (other academic/artistic)abstract
    • Structural colors in nature have inspired research into engineered photonic materials starting from renewable resources such as lignin extracted from wood and agricultural residues. A notable obstacle in developing lignin-based photonic crystals lies in the use of hazardous organic solvents, giving rise to safety and environmental concerns. Additionally, low product yields hinder scalable production of lignin photonics. Here, we report a highly efficient method for the fabrication of colloidal lignin particles of predicable size for producing photonic crystals using ethanol and water as the sole solvents. We achieved a 78% mass yield of photonic crystals starting from a crude soda lignin, resulting in vibrant colors spanning the entire visible spectrum. Controlling the particle size can be achieved by varying the dilution rate of a lignin ethanol solution with water, enabling the direct generation of colloidal crystals of preferred colors. The new method paves the way for large-scale development of lignin photonics.
  •  
13.
  • Liu, Jinrong, 1995- (author)
  • Lignin nanoparticles for photonic crystals and photothermal films
  • 2024
  • Doctoral thesis (other academic/artistic)abstract
    • The development of sustainable materials from biobased resources is essential due to environmental concerns posed by fossil-based materials. Lignin is a chemically complex biopolymer that exists in woody tissues of vascular plants. Lignin has many useful properties such as antioxidant activity, thermal stability, UV-absorbance, rigidity and so on. However, an inherent challenge of lignin relates to its complex molecular structures and poor solubility in water and common solvents. One strategy to utilize lignin is to fabricate lignin nanoparticles (LNP) that produce colloidally stable dispersions in water. This thesis aims to develop LNP-based materials which can be used in photonic crystals and photothermal films towards energy-efficient functional materials.The first part of the thesis focused on elucidation of the phenomena occurring during centrifugation-assisted assembly of LNP-photonic crystal (L-PC). L-PC with rainbow coloration or separate colors were produced by controlling the polydispersity index (PDI), particle size (150 to 240 nm), and assembly of LNPs. In a follow-up work, an improved method was developed to increase the yield of L-PCs. The effects of factors such as initial lignin concentration, and dilution time on the particle size and PDI of formed LNPs were studied. Empirical models were established to predict the size of LNPs and successfully used to control the resulting color of L-PCs. Moreover, the nanostructure of L-PCs was investigated. To harness lignin’s ability to absorb solar energy (light wavelength: 250–2500 nm), LNP-based composite films and coatings with photothermal performance were developed in the second part of the thesis. LNP-chitosan films and coatings were prepared and applied to indoor heat management. The LNPs content was adjusted from 10 to 40 wt%. By incorporating LNPs, the mechanical strength and photothermal properties of the films were improved compared to the pure chitosan film. Moreover, LNP-silver-chitosan (CC-Ag@LNP) films were prepared by using LNPs as a reducing agent. Silver ions were reduced on the surface of LNPs with UV-light assistance, and the hybrid nanoparticles were used to prepare films by casting. The CC-Ag@LNP films exhibited improved wet-strength and exhibited antibacterial performance against Escherichia coli (sterilization effect > 99.9%).Overall, this thesis contributes to both the fundamental insight in lignin aggregation to colloidal particles and showcases ways to control their assembly and incorporation into macroscopic materials with added functionality.
  •  
14.
  • Liu, Jinrong, 1995-, et al. (author)
  • Photonic crystals with rainbow colors by centrifugation-assisted assembly of colloidal lignin nanoparticles
  • 2023
  • In: Nature Communications. - 2041-1723. ; 14
  • Journal article (peer-reviewed)abstract
    • Photonic crystals are optical materials that are often fabricated by assembly of particles into periodically arranged structures. However, assembly of lignin nanoparticles has been limited due to lacking methods and incomplete understanding of the interparticle forces and packing mechanisms. Here we show a centrifugation-assisted fabrication of photonic crystals with rainbow structural colors emitted from the structure covering the entire visible spectrum. Our results show that centrifugation is crucial for the formation of lignin photonic crystals, because assembly of lignin nanoparticles without centrifugation assistance leads to the formation of stripe patterns rather than photonic crystals. We further prove that the functions of centrifugation are to classify lignin nanoparticles according to their particle size and produce monodispersed particle layers that display gradient colors from red to violet. The different layers of lignin nanoparticles were assembled in a way that created semi-closed packing structures, which gave rise to coherent scattering. The diameter of the lignin nanoparticles in each color layer is smaller than that predicted by a modified Bragg’s equation. In situ optical microscope images provided additional evidence on the importance of dynamic rearrangement of lignin nanoparticles during their assembly into semi-closed packing structures. The preparation of lignin nanoparticles combined with the methodology for their classification and assembly pave the way for sustainable photonic crystals.
  •  
15.
  • Liu, Liyang, 1990-, et al. (author)
  • Solventless Amination of Lignin and Natural Phenolics using 2-Oxazolidinone
  • 2023
  • In: ChemSusChem. - : Wiley. - 1864-5631 .- 1864-564X. ; 16:15
  • Journal article (peer-reviewed)abstract
    • Reactive amine compounds are critical for a vast array of useful chemicals in society, yet a limited number of them are derived from renewable resources. This study developed an efficient route to obtain aminated building blocks from phenolic resources derived from nature, such as lignin and tannic acid, for enhancing their utility in applications such as epoxy resins, nylons, polyurethanes, and other polymeric materials. The reaction utilized a carbon storage compound, 2-oxazolidinone as a solvent and as a reagent circumventing the need of hazardous chemistry of conventional amination routes such as those involving formaldehyde. Both free acids and hindered phenolics were readily converted into aminoethyl derivatives resulting in aromatics with primary amine functionality. The aminated compounds, with the potential for enhanced reactivity, can pave the way toward more advanced renewable building blocks.
  •  
16.
  • Lizundia, Erlantz, et al. (author)
  • Multifunctional lignin-based nanocomposites and nanohybrids
  • 2021
  • In: Green Chemistry. - : Royal Society of Chemistry (RSC). - 1463-9262 .- 1463-9270. ; 23:18, s. 6698-6760
  • Research review (peer-reviewed)abstract
    • Significant progress in lignins valorization and development of high-performance sustainable materials have been achieved in recent years. Reports related to lignin utilization indicate excellent prospects considering green chemistry, chemical engineering, energy, materials and polymer science, physical chemistry, biochemistry, among others. To fully realize such potential, one of the most promising routes involves lignin uses in nanocomposites and nanohybrid assemblies, where synergistic interactions are highly beneficial. This review first discusses the interfacial assembly of lignins with polysaccharides, proteins and other biopolymers, for instance, in the synthesis of nanocomposites. To give a wide perspective, we consider the subject of hybridization with metal and metal oxide nanoparticles, as well as uses as precursor of carbon materials and the assembly with other biobased nanoparticles, for instance to form nanohybrids. We provide cues to understand the fundamental aspects related to lignins, their self-assembly and supramolecular organization, all of which are critical in nanocomposites and nanohybrids. We highlight the possibilities of lignin in the fields of flame retardancy, food packaging, plant protection, electroactive materials, energy storage and health sciences. The most recent outcomes are evaluated given the importance of lignin extraction, within established and emerging biorefineries. We consider the benefit of lignin compared to synthetic counterparts. Bridging the gap between fundamental and application-driven research, this account offers critical insights as far as the potential of lignin as one of the frontrunners in the uptake of bioeconomy concepts and its application in value-added products.
  •  
17.
  • Moreno, Adrian, et al. (author)
  • Access to tough and transparent nanocomposites via Pickering emulsion polymerization using biocatalytic hybrid lignin nanoparticles as functional surfactants dagger
  • 2021
  • In: Green Chemistry. - : Royal Society of Chemistry (RSC). - 1463-9262 .- 1463-9270. ; 23:8, s. 3001-3014
  • Journal article (peer-reviewed)abstract
    • Weak interfacial binding of lignin within synthetic polymer composites results in unsatisfactory mechanical properties that limit their application prospects. In the present work, polystyrene (PS) and poly(butyl methacrylate) (PBMA) nanocomposites containing lignin nanoparticles (LNPs) are produced by simple melting of polymeric latex dispersions obtained from free radical polymerization of oil-in-water Pickering emulsions stabilized by hybrid LNPs coated with chitosan and glucose oxidase. Owing to the formation of viscous polymer melts, the hybrid LNPs ended up uniformly dispersed within the polymeric matrices, which gave the polymeric nanocomposites markedly improved tensile strength without sacrificing their elasticity in comparison to pure PS and PBMA. Consequently, the composites reinforced with 15 wt% of the hybrid particles showed improvement in toughness by a factor of 3.5 and 15 compared to those of the corresponding pristine PS and PBMA. In addition, the presence of the hybrid particles conferred the nanocomposites with commendable UV-blocking and antioxidant properties which are relevant for protective packaging and coating applications. Overall, our results show a new and green route with excellent material economy (overall mass yield up to 91%) to obtain strong and transparent polymeric nanocomposites reinforced with up to 30 wt% of LNPs, which is expected to attract renewed interest in lignin-polymer composites for a broad range of applications.
  •  
18.
  • Moreno, Adrian, et al. (author)
  • Biocatalytic nanoparticles for the stabilization of degassed single electron transfer-living radical pickering emulsion polymerizations
  • 2020
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1
  • Journal article (peer-reviewed)abstract
    • Synthetic polymers are indispensable in many different applications, but there is a growing need for green processes and natural surfactants for emulsion polymerization. The use of solid particles to stabilize Pickering emulsions is a particularly attractive avenue, but oxygen sensitivity has remained a formidable challenge in controlled polymerization reactions. Here we show that lignin nanoparticles (LNPs) coated with chitosan and glucose oxidase (GOx) enable efficient stabilization of Pickering emulsion and in situ enzymatic degassing of single electron transfer-living radical polymerization (SET-LRP) without extraneous hydrogen peroxide scavengers. The resulting latex dispersions can be purified by aqueous extraction or used to obtain polymer nanocomposites containing uniformly dispersed LNPs. The polymers exhibit high chain-end fidelity that allows for production of a series of well-defined block copolymers as a viable route to more complex architectures.
  •  
19.
  • Moreno, Adrian, et al. (author)
  • Breathable Lignin Nanoparticles as Reversible Gas Swellable Nanoreactors
  • 2023
  • In: Small. - : Wiley. - 1613-6810 .- 1613-6829. ; 19:7
  • Journal article (peer-reviewed)abstract
    • The design of stimuli-responsive lignin nanoparticles (LNPs) for advanced applications has hitherto been limited to the preparation of lignin-grafted polymers in which usually the lignin content is low (<25 wt.%) and its role is debatable. Here, the preparation of O2-responsive LNPs exceeding 75 wt.% in lignin content is shown. Softwood Kraft lignin (SKL) is coprecipitated with a modified SKL fluorinated oleic acid ester (SKL-OlF) to form colloidal stable hybrid LNPs (hy-LNPs). The hy-LNPs with a SKL-OlF content ranging from 10 to 50 wt.% demonstrated a reversible swelling behavior upon O2/N2 bubbling, increasing their size – ≈35% by volume – and changing their morphology from spherical to core-shell. Exposition of hy-LNPs to O2 bubbling promotes a polarity change on lignin-fluorinated oleic chains, and consequently their migration from the inner part to the surface of the particle, which not only increases the particle size but also endows hy-LNPs with enhanced stability under harsh conditions (pH < 2.5) by the hydration barrier effect. Furthermore, it is also demonstrated that these new stimuli-responsive particles as gas tunable nanoreactors for the synthesis of gold nanoparticles. Combining a straightforward preparation with their enhanced stability and responsiveness to O2 gas these new LNPs pave the way for the next generation of smart lignin-based nanomaterials. 
  •  
20.
  • Moreno, Adrian, et al. (author)
  • Catalyst-Free Synthesis of Lignin Vitrimers with Tunable Mechanical Properties : Circular Polymers and Recoverable Adhesives
  • 2021
  • In: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 13:48, s. 57952-57961
  • Journal article (peer-reviewed)abstract
    • Biobased circular materials are alternatives to fossil-based engineering plastics, but simple and material-efficient synthetic routes are needed for industrial scalability. Here, a series of lignin-based vitrimers built on dynamic acetal covalent networks with a gel content exceeding 95% were successfully prepared in a one-pot, thermally activated, and catalyst-free “click” addition of softwood kraft lignin (SKL) to poly(ethylene glycol) divinyl ether (PDV). The variation of the content of lignin from 28 to 50 wt % was used to demonstrate that the mechanical properties of the vitrimers can be widely tuned in a facile way. The lowest lignin content (28 wt %) showed a tensile strength of 3.3 MPa with 35% elongation at break, while the corresponding values were 50.9 MPa and 1.0% for the vitrimer containing 50 wt % of lignin. These lignin-based vitrimers also exhibited excellent performance as recoverable adhesives for different substrates such as aluminum and wood, with a lap shear test strength of 6.0 and 2.6 MPa, respectively. In addition, recyclability of the vitrimer adhesives showed preservation of the adhesion performance exceeding 90%, indicating a promising potential for their use in sustainable circular materials. 
  •  
21.
  • Moreno, Adrian, et al. (author)
  • Lignin-based smart materials : a roadmap to processing and synthesis for current and future applications
  • 2020
  • In: Materials Horizons. - : Royal Society of Chemistry (RSC). - 2051-6347 .- 2051-6355. ; 7:9, s. 2237-2257
  • Research review (peer-reviewed)abstract
    • Biomass-derived materials are green alternatives to synthetic plastics and other fossil-based materials. Lignin, an aromatic plant polymer, is one of the most appealing renewable material precursors for smart materials capable of responding to different stimuli. Here we review lignin-based smart materials, a research field that has seen a rapid growth during the last five years. We describe the main processing and chemical synthesis routes available for the fabrication of lignin-based smart materials, and focus on their use as sensors, biomedical systems, and shape-programmable materials. In addition to benchmarking their performance to the state of the art fossil counterparts, we identify challenges and future opportunities for the development of lignin-based smart materials towards new high-performance applications.
  •  
22.
  • Moreno, Adrian, et al. (author)
  • Unravelling the Hydration Barrier of Lignin Oleate Nanoparticles for Acid- and Base-Catalyzed Functionalization in Dispersion State
  • 2021
  • In: Angewandte Chemie International Edition. - : Wiley. - 1433-7851 .- 1521-3773. ; 60:38, s. 20897-20905
  • Journal article (peer-reviewed)abstract
    • Lignin nanoparticles (LNPs) are promising renewable nanomaterials with applications ranging from biomedicine to water purification. However, the instability of LNPs under acidic and basic conditions severely limits their functionalization for improved performance. Here, we show that controlling the degree of esterification can significantly improve the stability of lignin oleate nanoparticles (OLNPs) in acidic and basic aqueous dispersions. The high stability of OLNPs is attributed to the alkyl chains accumulated in the shell of the particle, which delays protonation/deprotonation of carboxylic acid and phenolic hydroxyl groups. Owing to the enhanced stability, acid- and base-catalyzed functionalization of OLNPs at pH 2.0 and pH 12.0 via oxirane ring-opening reactions were successfully performed. We also demonstrated these new functionalized particles as efficient pH-switchable dye adsorbents and anticorrosive particulate coatings.
  •  
23.
  • Moreno, Adrian, et al. (author)
  • Urushi as a Green Component for Thermally Curable Colloidal Lignin Particles and Hydrophobic Coatings
  • 2023
  • In: ACS Macro Letters. - 2161-1653. ; 12:6, s. 759-766
  • Journal article (peer-reviewed)abstract
    • Colloidal lignin nanoparticles are promising buildingblocks forsustainable functional materials. However, their instability in organicsolvents and aqueous alkali limits their applicability. Current stabilizationmethods require nonrenewable and toxic reagents or tedious workupprocedures. Here we show a method to prepare hybrid nanoparticlesusing only natural components. Urushi, a form of black oriental lacquer,and lignin are coaggregated to form hybrid particles, with Urushiacting as a sustainable component that stabilizes the particles viahydration barrier effect and thermally triggered internal cross-linking.The weight fractions of the two components can be adjusted to achievethe desired level of stabilization. Hybrid particles with Urushi content>25 wt % undergo interparticle cross-linking that produces multifunctionalhydrophobic protective coatings that improve the water resistanceof wood. This approach provides a sustainable and efficient methodfor stabilizing lignin nanoparticles and opens up neoteric possibilitiesfor the development of lignin-based advanced functional materials.
  •  
24.
  •  
25.
  • Morsali, Mohammad, 1992- (author)
  • Site-specific reactions of softwood kraft lignin for biobased vitrimers and reactive colloidal particles
  • 2024
  • Doctoral thesis (other academic/artistic)abstract
    • Lignin, a natural polyphenolic compound of wood, holds promise as a green alternative to fossil resources given the current environmental concerns. However, its complex structure and limited usability have impeded widespread use of lignin in biobased materials. This thesis is focused on employing a series of chemistries and techniques that facilitate lignin utilization in a variety of applications ranging from bulk materials to colloidal particles. Lignin-based vitrimers, developed by a one pot, catalyst-free click addition of poly(ethylene glycol) divinyl ether to softwood kraft lignin and formation of dynamic acetal exchange network showed excellent performance as recoverable adhesives, reaching lab shear strengths of 2.6 MPa and 6.0 MPa for wood and aluminum substrates, respectively. Stabilized lignin nanoparticles synthesized by hydrothermal crosslinking of hydroxymethylated lignin nanoparticles showed an excellent colloidal stability in organic solvents such as ethanol, acetone, dimethylformamide, and tetrahydrofuran, and aqueous media (3 < pH < 12). These stabilized lignin nanoparticles were subjected to direct surface modification in colloidal state to develop aminated pH-responsive particles. Stabilized lignin nanoparticles, preserving redox activity, showed a capacity in reducing silver ions, forming hybrid lignin-silver nanoparticles for applications such as hydrogen peroxide colloidal sensors. Interaction of silver ions and stabilized lignin nanoparticles contributed to the emergence of discrete patterns of silver in lignin nanoparticle embedded hydrogels. The location and distance of the discrete patterns can be modified by altering the particle size and concentration. Furthermore, redox activity of stabilized lignin nanoparticles, hydroxymethylated lignin nanoparticles and unmodified lignin nanoparticles with different particle sizes (90 nm, 150 nm, 640 nm) were studied in charge storage applications in organic poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) electrodes. Non-modified lignin nanoparticles with the diameter of 150 nm showed the best performance overall, with specific capacities of the electrode reaching 42.5 mAh/g at a current density of 1 A/g. These particles were also demonstrated in a Zinc-lignin battery prototype. To further explore and broaden the horizon of lignin applications, propargylated lignin nanoparticles demonstrated light-induced “click” reactions initiated thermally or by Cu (I) or energy-efficient light emitting diodes with 405 nm wavelength. These nanoparticles were further employed to demonstrate the light-triggered reactions with betulin azide in Pickering emulsions, showcasing the versatility of colloidal chemistry of lignin and opportunities for new applications.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 41
Type of publication
journal article (28)
research review (6)
other publication (5)
doctoral thesis (2)
Type of content
peer-reviewed (34)
other academic/artistic (6)
pop. science, debate, etc. (1)
Author/Editor
Sipponen, Mika H. (26)
Slabon, Adam (4)
Gueret, Robin (3)
Huertas-Alonso, Albe ... (3)
Rojas, Orlando J. (3)
Thalakkale Veettil, ... (3)
show more...
Lizundia, Erlantz (3)
Pylypchuk, Ievgen (3)
Hadi, Seyed Ehsan (3)
Budnyk, Serhiy (2)
Chen, Jianhong (2)
Frauscher, Marcella (2)
Hakkarainen, Minna (2)
Balakshin, Mikhail (2)
Budnyak, Tetyana M. (1)
M. Rodrigues, Bruno ... (1)
A. da Cruz, Márcia G ... (1)
Piątek, Jędrzej (1)
Beele, Björn (1)
Lundell, Fredrik (1)
Engquist, Isak (1)
Marlair, Guy (1)
Bergström, Lennart (1)
Serra, Stefano (1)
Plivelic, Tomás S. (1)
Yuan, Jiayin, 1979- (1)
Chang, Jian (1)
Borghei, Maryam (1)
Khan, Ziyauddin (1)
Wang, Luyao (1)
Xu, Chunlin (1)
Andersson, Matilda (1)
Almenara Perez, Naro ... (1)
Zhao, Bin (1)
Berglund, Lars A. (1)
Pranovich, Andrey (1)
Farooq, Muhammad (1)
Schlee, Philipp (1)
Baumberger, Stephani ... (1)
Willhammar, Tom, 198 ... (1)
Nocerino, Elisabetta (1)
Yao, Jenevieve G. (1)
Oliaei, Erfan (1)
Wang, Ling (1)
Renneckar, Scott (1)
Pylypchuk, Ievgen, V (1)
Kriechbaum, Konstant ... (1)
Conceição, Andre L.C ... (1)
Crispin, Reverant (1)
Johansson, Leena-Sis ... (1)
show less...
University
Stockholm University (40)
Royal Institute of Technology (2)
Language
English (41)
Research subject (UKÄ/SCB)
Natural sciences (33)
Engineering and Technology (13)
Agricultural Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view