SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Solarz M.) "

Search: WFRF:(Solarz M.)

  • Result 1-25 of 42
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Aartsen, M. G., et al. (author)
  • The IceCube Neutrino Observatory : instrumentation and online systems
  • 2017
  • In: Journal of Instrumentation. - : IOP PUBLISHING LTD. - 1748-0221. ; 12
  • Journal article (peer-reviewed)abstract
    • The IceCube Neutrino Observatory is a cubic-kilometer-scale high-energy neutrino detector built into the ice at the South Pole. Construction of IceCube, the largest neutrino detector built to date, was completed in 2011 and enabled the discovery of high-energy astrophysical neutrinos. We describe here the design, production, and calibration of the IceCube digital optical module (DOM), the cable systems, computing hardware, and our methodology for drilling and deployment. We also describe the online triggering and data filtering systems that select candidate neutrino and cosmic ray events for analysis. Due to a rigorous pre-deployment protocol, 98.4% of the DOMs in the deep ice are operating and collecting data. IceCube routinely achieves a detector uptime of 99% by emphasizing software stability and monitoring. Detector operations have been stable since construction was completed, and the detector is expected to operate at least until the end of the next decade.
  •  
2.
  • Achterberg, A., et al. (author)
  • The search for muon neutrinos from northern hemisphere gamma-ray bursts with AMANDA
  • 2008
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 674:1, s. 357-370
  • Journal article (peer-reviewed)abstract
    • We present the results of the analysis of neutrino observations by the Antarctic Muon and Neutrino Detector Array (AMANDA) correlated with photon observations of more than 400 gamma-ray bursts (GRBs) in the northern hemisphere from 1997 to 2003. During this time period, AMANDA's effective collection area for muon neutrinos was larger than that of any other existing detector. After the application of various selection criteria to our data, we expect similar to 1 neutrino event and <2 background events. Based on our observations of zero events during and immediately prior to the GRBs in the data set, we set the most stringent upper limit on muon neutrino emission correlated with GRBs. Assuming a Waxman-Bahcall spectrum and incorporating all systematic uncertainties, our flux upper limit has a normalization at 1 PeV of E-2 Phi(nu) <= 6.3 x 10(-9) GeV cm(-2) s(-1) sr(-1), with 90% of the events expected within the energy range of similar to 10 TeV to similar to 3 PeV. The impact of this limit on several theoretical models of GRBs is discussed, as well as the future potential for detection of GRBs by next-generation neutrino telescopes. Finally, we briefly describe several modifications to this analysis in order to apply it to other types of transient point sources.
  •  
3.
  • Achterberg, A., et al. (author)
  • Multiyear search for a diffuse flux of muon neutrinos with AMANDA-II
  • 2007
  • In: Physical Review D - Particles, Fields, Gravitation and Cosmology. - 1550-7998. ; 76:4, s. 042008-
  • Journal article (peer-reviewed)abstract
    • A search for TeV-PeV muon neutrinos from unresolved sources was performed on AMANDA-II data collected between 2000 and 2003 with an equivalent live time of 807 days. This diffuse analysis sought to find an extraterrestrial neutrino flux from sources with nonthermal components. The signal is expected to have a harder spectrum than the atmospheric muon and neutrino backgrounds. Since no excess of events was seen in the data over the expected background, an upper limit of E-2 Phi(90%C.L.)< 7.4x10(-8) GeV cm(-2) s(-1) sr(-1) is placed on the diffuse flux of muon neutrinos with a Phi proportional to E-2 spectrum in the energy range 16 TeV to 2.5 PeV. This is currently the most sensitive Phi proportional to E-2 diffuse astrophysical neutrino limit. We also set upper limits for astrophysical and prompt neutrino models, all of which have spectra different from Phi proportional to E-2.
  •  
4.
  •  
5.
  • Ahrens, J., et al. (author)
  • Observation of high energy atmospheric neutrinos with the Antarctic muon and neutrino detector array
  • 2002
  • In: Physical Review D. - : American Physical Society. - 1550-7998 .- 1550-2368. ; 66:1, s. 120051-1200520
  • Journal article (peer-reviewed)abstract
    • The Antarctic muon and neutrino detector array (AMANDA) began collecting data with ten strings in 1997. Results from the first year of operation are presented. Neutrinos coming through the Earth from the Northern Hemisphere are identified by secondary muons moving upward through the array. Cosmic rays in the atmosphere generate a background of downward moving muons, which are about 106 times more abundant than the upward moving muons. Over 130 days of exposure, we observed a total of about 300 neutrino events. In the same period, a background of 1.05 × 109 cosmic ray muon events was recorded. The observed neutrino flux is consistent with atmospheric neutrino predictions. Monte Carlo simulations indicate that 90% of these events lie in the energy range 66 GeV to 3.4 TeV. The observation of atmospheric neutrinos consistent with expectations establishes AMANDA-B10 as a working neutrino telescope.
  •  
6.
  • Ahrens, J., et al. (author)
  • Search for neutrino-induced cascades with the AMANDA detector
  • 2003
  • In: Physical Review D. - : American Physical Society (APS). - 1550-7998 .- 1550-2368. ; 67:1, s. 012003-
  • Journal article (peer-reviewed)abstract
    • We report on a search for electromagnetic and/or hadronic showers (cascades) induced by a diffuse flux of neutrinos with energies between 5 TeV and 300 TeV from extraterrestrial sources. Cascades may be produced by matter interactions of all flavors of neutrinos, and contained cascades have better energy resolution and afford better background rejection than throughgoing νμ-induced muons. Data taken in 1997 with the AMANDA detector were searched for events with a high-energy cascadelike signature. The observed events are consistent with expected backgrounds from atmospheric neutrinos and catastrophic energy losses from atmospheric muons. Effective volumes for all flavors of neutrinos, which allow the calculation of limits for any neutrino flux model, are presented. The limit on cascades from a diffuse flux of νe+ νμ + ντ+ ν̄e + ν̄μ+ ν̄τ is E2(dΦ/dE)<9.8×10-6 GeV cm-2 s-1 sr-1, assuming a neutrino flavor flux ratio of 1:1:1 at the detector. The limit on cascades from a diffuse flux of νe+ν̄e is E2(dΦ/dE)<6. 5×10-6 GeV cm-2 s-1 sr-1, independent of the assumed neutrino flavor flux ratio. © 2003 The American Physical Society.
  •  
7.
  • Andrés, E., et al. (author)
  • Observation of high-energy neutrinos using Čerenkov detectors embedded deep in Antarctic ice
  • 2001
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 410:6827, s. 441-443
  • Journal article (peer-reviewed)abstract
    • Neutrinos are elementary particles that carry no electric charge and have little mass. As they interact only weakly with other particles, they can penetrate enormous amounts of matter, and therefore have the potential to directly convey astrophysical information from the edge of the Universe and from deep inside the most cataclysmic high-energy regions. The neutrino's great penetrating power, however, also makes this particle difficult to detect. Underground detectors have observed low-energy neutrinos from the Sun and a nearby supernova2, as well as neutrinos generated in the Earth's atmosphere. But the very low fluxes of high-energy neutrinos from cosmic sources can be observed only by much larger, expandable detectors in, for example, deep water3,4 or ice5. Here we report the detection of upwardly propagating atmospheric neutrinos by the ice-based Antarctic muon and neutrino detector array (AMANDA). These results establish a technology with which to build a kilometre-scale neutrino observatory necessary for astrophysical observations1.
  •  
8.
  • Andrés, E., et al. (author)
  • Recent results from AMANDA
  • 2001
  • In: International Journal of Modern Physics A. - 0217-751X .- 1793-656X. ; 16:1C, s. 1013-1015
  • Journal article (peer-reviewed)abstract
    • We present results based on data taken in 1997 with the 302-PMT Antarctic Muon and Neutrino Detector Array-B10 ("AMANDA-B10") array. Atmospheric neutrinos created in the northern hemisphere are observed indirectly through their charged current interactions which produce relativistic, Cherenkov-light-emitting upgoing muons in the South Pole ice cap. The reconstructed angular distribution of these events is in good agreement with expectation and demonstrates the viability of this ice-based device as a neutrino telescope.
  •  
9.
  • Andres, E., et al. (author)
  • Selected recent results from AMANDA
  • 2001
  • In: ICHEP 2000. Proceedings of the 30th International Conference on High Energy Physics. - : World Scientific. ; , s. 965-968
  • Conference paper (peer-reviewed)abstract
    • We present a selection of results based on data taken in 1997 with the 302-PMT Antarctic Muon and Neutrino Detector Array-B10 ("AMANDA-B10") array. Atmospheric neutrinos created in the northern hemisphere are observed indirectly through their charged current interactions which produce relativistic, Cherenkov-light-emitting upgoing muons in the South Pole ice cap. The reconstructed angular distribution of these events is in good agreement with expectation and demonstrates the viability of this ice-based device as a neutrino telescope. Studies of nearly vertical upgoing muons limit the available parameter space for WIMP dark matter under the assumption that WIMPS are trapped in the earth's gravitational potential well and annihilate with one another near the earth's center.
  •  
10.
  • Kowalski, Marek, et al. (author)
  • Physics results from the AMANDA neutrino detector
  • 2001
  • In: Proceedings of Science. - 1824-8039. ; HEP2001
  • Journal article (peer-reviewed)abstract
    • In the winter season of 2000, the AMANDA (Antarctic Muon And NeutrinoDetector Array) detector was completed to its nal state. We report on major physicsresults obtained from the AMANDA-B10 detector, as well as initial results of the fullAMANDA-II detector.
  •  
11.
  • Ahrens, J., et al. (author)
  • Results from AMANDA
  • 2001
  • In: Proceedings, 9th International Workshop, Venice, Italy, March 6-9, 2001. Vol. 1, 2. ; , s. 569-580
  • Conference paper (peer-reviewed)
  •  
12.
  • Ahrens, J., et al. (author)
  • Search for supernova neutrino bursts with the AMANDA detector
  • 2001
  • In: Astroparticle physics. - : Elsevier. - 0927-6505 .- 1873-2852. ; 16:4, s. 345-359
  • Journal article (peer-reviewed)abstract
    • The core collapse of a massive star in the Milky Way will produce a neutrino burst, intense enough to be detected by existing underground detectors. The AMANDA neutrino telescope located deep in the South Pole ice can detect MeV neutrinos by a collective rate increase in all photo-multipliers on top of dark noise. The main source of light comes from positrons produced in the CC reaction of anti-electron neutrinos on free protons ve + p → e+ + n. This paper describes the first supernova search performed on the full sets of data taken during 1997 and 1998 (215 days of live time) with 302 of the detector's optical modules. No candidate events resulted from this search. The performance of the detector is calculated, yielding a 70% coverage of the galaxy with one background fake per year with 90% efficiency for the detector configuration under study. An upper limit at the 90% c.l. on the rate of stellar collapses in the Milky Way is derived, yielding 4.3 events per year. A trigger algorithm is presented and its performance estimated. Possible improvements of the detector hardware are reviewed.
  •  
13.
  • Andres, E., et al. (author)
  • Results from the AMANDA high energy neutrino detector
  • 2000
  • In: Nuclear physics B, Proceedings supplements. - : Elsevier. - 0920-5632 .- 1873-3832. ; 91:1-3, s. 423-430
  • Journal article (peer-reviewed)abstract
    • This paper briefly summarizes the search for astronomical sources of high-energy neutrinos using the AMANDA-B10 detector. The complete data set from 1997 was analyzed. For Eμ > 10 TeV, the detector exceeds 10,000 m2 in effective area between declinations of 25 and 90 degrees. Neutrinos generated in the atmosphere by cosmic ray interactions were used to verify the overall sensitivity of the detector. The absolute pointing accuracy and angular resolution has been confirmed by the analysis of coincident events between the SPASE air shower array and the AMANDA detector. Preliminary flux limits from point source candidates are presented. For declinations larger than +45 degrees, our results compare favorably to existing limits for sources in the Southern sky. We also present the current status of the searches for high energy neutrino emission from diffusely distributed sources, GRBs, and WIMPs from the center of the earth.
  •  
14.
  • Bai, X., et al. (author)
  • Status of the Neutrino Telescope AMANDA : Monopoles and WIMPS
  • 2001
  • In: Dark Matter in Astro- and Particle Physics. - Berlin, Heidelberg : Springer. - 9783642626081 ; , s. 699-706
  • Conference paper (peer-reviewed)abstract
    • The neutrino telescope AMANDA has been set up at the geographical South Pole as first step to a neutrino telescope of the scale of one cubic kilometer, which is the canonical size for a detector sensitive to neutrinos from Active Galactic Nuclei (AGN), Gamma Ray Bursts (GRB) and Topological Defects (TD). The location and depth in which the detector is installed is given by the requirement to detect neutrinos by the Cherenkov light produced by their reaction products and to keep the background due to atmospheric muons as small as possible. However, a detector optimized for this purpose is also capable to detect the bright Cherenkov light from relativistic Monopoles and neutrino signals from regions with high gravitational potential, where WIMPS are accumulated and possibly annihilate. Both hypothetical particles might contribute to the amount of dark matter. Therefore here a report about the status of the experiment (autumn 2000) and about the status of the search for these particles with the AMANDA B10 sub-detector is given.
  •  
15.
  • Edsjö, Joakim, et al. (author)
  • WIMP searches with AMANDA-B10
  • 2001
  • In: The Identification Of Dark Matter. - : World Scientific. - 9789810246020 ; , s. 499-505
  • Book chapter (other academic/artistic)
  •  
16.
  • Karle, A., et al. (author)
  • Observation of high energy atmospheric neutrinos with AMANDA
  • 2000
  • In: AIP Conference Proceedings. - : American Institute of Physics (AIP). ; , s. 823-827
  • Conference paper (peer-reviewed)abstract
    • In 1997 the Antarctic Muon and Neutrino Detector Array (AMANDA) started operating with 10 strings. In an analysis of data taken during the first year of operation 188 atmospheric neutrino candidates were found. Their zenith angle distribution agrees with expectations based on Monte Carlo simulations. A preliminary upper limit is given on a diffuse flux of high energy neutrinos of astrophysical origin.
  •  
17.
  •  
18.
  • Ahrens, J., et al. (author)
  • Measurement of the cosmic ray composition at the knee with the SPASE-2/AMANDA-B10 detectors
  • 2004
  • In: Astroparticle physics. - : Elsevier. - 0927-6505 .- 1873-2852. ; 21:6, s. 565-581
  • Journal article (peer-reviewed)abstract
    • The mass composition of high-energy cosmic rays at energies above 1015 eV can provide crucial information for the understanding of their origin. Air showers were measured simultaneously with the SPASE-2 air shower array and the AMANDA-B10 Cherenkov telescope at the South Pole. This combination has the advantage to sample almost all high-energy shower muons and is thus a new approach to the determination of the cosmic ray composition. The change in the cosmic ray mass composition was measured versus existing data from direct measurements at low energies. Our data show an increase of the mean log atomic mass 〈lnA〉 by about 0.8 between 500 TeV and 5 PeV. This trend of an increasing mass through the "knee" region is robust against a variety of systematic effects. © 2004 Elsevier B.V. All rights reserved.
  •  
19.
  • Ahrens, J., et al. (author)
  • Search for Extraterrestrial Point Sources of Neutrinos with AMANDA-II
  • 2004
  • In: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 92:7, s. 711021-711025
  • Journal article (peer-reviewed)abstract
    • The results of a search for point sources of high energy neutrinos in the northern hemisphere were presented using AMANDA-II data collected in the year 2000. The results included the flux limits on several active-galactic-nuclei blazars, microquasars, magnetars, and other candidate neutrino sources. A search for excesses above a random background of cosmic ray induced atmospheric neutrinos and misreconstructed downgoing cosmic-rays muons, which revealed no statistically significant neutrino point sources was also presented. It was shown that AMANDA-II had achieved the sensitivity required to probe known TeV γ-ray sources such as the blazar Markarian 501 in its 1997 flaring state at a level where neutrino and γ-ray fluxes were equal.
  •  
20.
  • Ahrens, J., et al. (author)
  • Calibration and survey of AMANDA with the SPASE detectors
  • 2004
  • In: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier. - 0168-9002 .- 1872-9576. ; 522:3, s. 347-359
  • Journal article (peer-reviewed)abstract
    • We report on the analysis of air showers observed in coincidence by the Antarctic Muon and Neutrino detector array (AMANDA-B10) and the South Pole Air Shower Experiment (SPASE-1 and SPASE-2). We discuss the use of coincident events for calibration and survey of the deep AMANDA detector as well as the response of AMANDA to muon bundles. This analysis uses data taken during 1997 when both SPASE-1 and SPASE-2 were in operation to provide a stereo view of AMANDA. © 2003 Elsevier B.V. All rights reserved.
  •  
21.
  • Ahrens, J., et al. (author)
  • Initial results from AMANDA
  • 2001
  • In: 21st Rencontres de Moriond Workshop on Very High-Energy Phenomena in the Universe.
  • Conference paper (peer-reviewed)
  •  
22.
  • Ahrens, J., et al. (author)
  • Limits on diffuse fluxes of high energy extraterrestrial neutrinos with the AMANDA-B10 detector
  • 2003
  • In: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 90:25, s. 2511011-2511015
  • Journal article (peer-reviewed)abstract
    • A report on the limits, which could be placed on diffuse fluxes of high energy extraterrestrial neutrinos, was presented. The incorporation of neutrino oscillations was necessary for interpreting the limits in terms of the flux from a cosmological distributions of sources. The energetic accelerated environments were presented as the sources of high energy extraterrestrial neutrinos.
  •  
23.
  • Ahrens, J., et al. (author)
  • Limits to the muon flux from WIMP annihilation in the center of the Earth with the AMANDA detector
  • 2002
  • In: Physical Review D. - : American Physical Society. - 1550-7998 .- 1550-2368. ; 66:3, s. 032006-
  • Journal article (peer-reviewed)abstract
    • A search for nearly vertical up-going muon-neutrinos from neutralino annihilations in the center of the Earth has been performed with the AMANDA-B10 neutrino detector. The data collected in 130.1 days of live time in 1997, ∼10 9 events, have been analyzed for this search. No excess over the expected atmospheric neutrino background has been observed. An upper limit at 90% confidence level has been obtained on the annihilation rate of neutralinos in the center of the Earth, as well as the corresponding muon flux limit, both as a function of the neutralino mass in the range 100 GeV-5000 GeV. © 2002 The American Physical Society.
  •  
24.
  •  
25.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 42

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view