SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Sonneborn George) "

Search: WFRF:(Sonneborn George)

  • Result 1-15 of 15
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Alp, Dennis, et al. (author)
  • The 30 Year Search for the Compact Object in SN 1987A
  • 2018
  • In: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 864:2
  • Journal article (peer-reviewed)abstract
    • Despite more than 30 years of searching, the compact object in Supernova (SN) 1987A has not yet been detected. We present new limits on the compact object in SN 1987A using millimeter, near-infrared, optical, ultraviolet, and X-ray observations from ALMA, VLT, HST, and Chandra. The limits are approximately 0.1 mJy (0.1 x 10(-26) erg s(-1) cm(-2) Hz(-1)) at 213 GHz, 1 L-circle dot (6 x 10(-29) erg s(-1) cm(-2) Hz(-1)) in the optical if our line of sight is free of ejecta dust, and 10(36) erg s(-1) (2 x 10(-30) erg s(-1) cm(-2) Hz(-1) ) in 2-10 keV X-rays. Our X-ray limits are an order of magnitude less constraining than previous limits because we use a more realistic ejecta absorption model based on three-dimensional neutrino-driven SN explosion models. The allowed bolometric luminosity of the compact object is 22 L-circle dot if our line of sight is free of ejecta dust, or 138L(circle dot) if dust-obscured. Depending on assumptions, these values limit the effective temperature of a neutron star (NS) to <4-8 MK and do not exclude models, which typically are in the range 3-4 MK. For the simplest accretion model, the accretion rate for an efficiency 77 is limited to <10(-11) eta(-1) M-circle dot yr(-1), which excludes most predictions. For pulsar activity modeled by a rotating magnetic dipole in vacuum, the limit on the magnetic field strength (B) for a given spin period (P) is B less than or similar to 10(14) P-2 G s(-2), which firmly excludes pulsars comparable to the Crab. By combining information about radiation reprocessing and geometry, we infer that the compact object is a dust-obscured thermally emitting NS, which may appear as a region of higher-temperature ejecta dust emission.
  •  
2.
  • France, Kevin, et al. (author)
  • HST-COS Observations of Hydrogen, Helium, Carbon, and Nitrogen Emission from the SN 1987A Reverse Shock
  • 2011
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 743:2, s. 186-
  • Journal article (peer-reviewed)abstract
    • We present the most sensitive ultraviolet observations of Supernova 1987A to date. Imaging spectroscopy from the Hubble Space Telescope-Cosmic Origins Spectrograph shows many narrow (Δv ~ 300 km s-1) emission lines from the circumstellar ring, broad (Δv ~ 10-20 × 103 km s-1) emission lines from the reverse shock, and ultraviolet continuum emission. The high signal-to-noise ratio (>40 per resolution element) broad Lyα emission is excited by soft X-ray and EUV heating of mostly neutral gas in the circumstellar ring and outer supernova debris. The ultraviolet continuum at λ > 1350 Å can be explained by H I two-photon (2s 2 S 1/2-1s 2 S 1/2) emission from the same region. We confirm our earlier, tentative detection of N V λ1240 emission from the reverse shock and present the first detections of broad He II λ1640, C IV λ1550, and N IV] λ1486 emission lines from the reverse shock. The helium abundance in the high-velocity material is He/H = 0.14 ± 0.06. The N V/Hα line ratio requires partial ion-electron equilibration (Te /Tp ≈ 0.14-0.35). We find that the N/C abundance ratio in the gas crossing the reverse shock is significantly higher than that in the circumstellar ring, a result that may be attributed to chemical stratification in the outer envelope of the supernova progenitor. The N/C abundance may have been stratified prior to the ring expulsion, or this result may indicate continued CNO processing in the progenitor subsequent to the expulsion of the circumstellar ring. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.
  •  
3.
  • France, Kevin, et al. (author)
  • MAPPING HIGH-VELOCITY H alpha AND Ly alpha EMISSION FROM SUPERNOVA 1987A
  • 2015
  • In: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 801:1
  • Journal article (peer-reviewed)abstract
    • We present new Hubble Space Telescope images of high-velocity H alpha and Ly alpha emission in the outer debris of SN 1987 A. The Ha images are dominated by emission from hydrogen atoms crossing the reverse shock (RS). For the first time we observe emission from the RS surface well above and below the equatorial. ring (ER), suggesting a bipolar or conical structure perpendicular to the ring plane. Using the H alpha imaging, we measure the mass flux of hydrogen atoms crossing the RS front, in the velocity intervals (-7500 < V-obs < -2800 km s(-1)) and (1000 < V-obs < 7500 km s(-1)), (M)(H) over dot = 1.2 x 10(-3) M-circle dot yr(-1). We also present the first Ly alpha imaging of the whole remnant and new Chandra X-ray observations. Comparing the spatial distribution of the Ly alpha and X-ray emission, we observe that the majority of the high-velocity Ly alpha emission originates interior to the ER. The observed Ly alpha/H alpha photon ratio, < R(L alpha/H alpha)> approximate to 17, is significantly higher than the theoretically predicted ratio of approximate to 5 for neutral atoms crossing the RS front. We attribute this excess to Ly alpha emission produced by X-ray heating of the outer debris. The spatial orientation of the Ly alpha and X-ray emission suggests that X-ray heating of the outer debris is the dominant Ly alpha production mechanism in SN 1987 A at this phase in its evolution.
  •  
4.
  • France, Kevin, et al. (author)
  • MAPPING high-velocity Hα and Lyα emission from supernova 1987A
  • 2015
  • In: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 801:1
  • Journal article (peer-reviewed)abstract
    • We present new Hubble Space Telescope images of high-velocity H alpha and Ly alpha emission in the outer debris of SN 1987 A. The Ha images are dominated by emission from hydrogen atoms crossing the reverse shock (RS). For the first time we observe emission from the RS surface well above and below the equatorial. ring (ER), suggesting a bipolar or conical structure perpendicular to the ring plane. Using the H alpha imaging, we measure the mass flux of hydrogen atoms crossing the RS front, in the velocity intervals (-7500 < V-obs < -2800 km s(-1)) and (1000 < V-obs < 7500 km s(-1)), (M)(H) over dot = 1.2 x 10(-3) M-circle dot yr(-1). We also present the first Ly alpha imaging of the whole remnant and new Chandra X-ray observations. Comparing the spatial distribution of the Ly alpha and X-ray emission, we observe that the majority of the high-velocity Ly alpha emission originates interior to the ER. The observed Ly alpha/H alpha photon ratio, < R(L alpha/H alpha)> approximate to 17, is significantly higher than the theoretically predicted ratio of approximate to 5 for neutral atoms crossing the RS front. We attribute this excess to Ly alpha emission produced by X-ray heating of the outer debris. The spatial orientation of the Ly alpha and X-ray emission suggests that X-ray heating of the outer debris is the dominant Ly alpha production mechanism in SN 1987 A at this phase in its evolution.
  •  
5.
  • France, Kevin, et al. (author)
  • Observing Supernova 1987A with the Refurbished Hubble Space Telescope
  • 2010
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 329:5999, s. 1624-1627
  • Journal article (peer-reviewed)abstract
    • Observations with the Hubble Space Telescope (HST), conducted since 1990, now offer an unprecedented glimpse into fast astrophysical shocks in the young remnant of supernova 1987A. Comparing observations taken in 2010 with the use of the refurbished instruments on HST with data taken in 2004, just before the Space Telescope Imaging Spectrograph failed, we find that the Ly alpha and H alpha lines from shock emission continue to brighten, whereas their maximum velocities continue to decrease. We observe broad, blueshifted Ly alpha, which we attribute to resonant scattering of photons emitted from hot spots on the equatorial ring. We also detect N v lambda lambda 1239, 1243 angstrom line emission, but only to the red of Ly alpha. The profiles of the N v lines differ markedly from that of H alpha, suggesting that the N4+ ions are scattered and accelerated by turbulent electromagnetic fields that isotropize the ions in the collisionless shock.
  •  
6.
  • Fransson, Claes, et al. (author)
  • THE DESTRUCTION OF THE CIRCUMSTELLAR RING OF SN 1987A
  • 2015
  • In: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 806:1
  • Journal article (peer-reviewed)abstract
    • We present imaging and spectroscopic observations with Hubble Space Telescope and Very Large Telescope of the ring of SN 1987A from 1994 to 2014. After an almost exponential increase of the shocked emission from the hotspots up to day similar to 8000 (similar to 2009), both this and the unshocked emission are now fading. From the radial positions of the hotspots we see an acceleration of these up to 500-1000 km s(-1), consistent with the highest spectroscopic shock velocities from the radiative shocks. In the most recent observations (2013 and 2014), we find several new hotspots outside the inner ring, excited by either X-rays from the shocks or by direct shock interaction. All of these observations indicate that the interaction with the supernova ejecta is now gradually dissolving the hotspots. We predict, based on the observed decay, that the inner ring will be destroyed by similar to 2025.
  •  
7.
  • Graves, Genevieve J. M., et al. (author)
  • Limits from the Hubble Space Telescope on a Point Source in SN 1987A
  • 2005
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 629, s. 944-959
  • Journal article (peer-reviewed)abstract
    • We observed supernova 1987A (SN 1987A) with the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope (HST) in 1999 September and again with the Advanced Camera for Surveys (ACS) on the HST in 2003 November. Our spectral observations cover ultraviolet (UV) and optical wavelengths from 1140 to 10266 Å, and our imaging observations cover UV and optical wavelengths from 2900 to 9650 Å. No point source is observed in the remnant. We obtain a limiting flux of Fopt<=1.6×10-14 ergs s-1 cm-2 in the wavelength range 2900-9650 Å for any continuum emitter at the center of the supernova remnant (SNR). This corresponds to an intrinsic luminosity of Lopt<=5×1033 ergs s-1. It is likely that the SNR contains opaque dust that absorbs UV and optical emission, resulting in an attenuation of ~35% due to dust absorption in the SNR. Correcting for this level of dust absorption would increase our upper limit on the luminosity of a continuum source by a factor of 1.54. Taking into account dust absorption in the remnant, we find a limit of Lopt<=8×1033 ergs s-1. We compare this upper bound with empirical evidence from point sources in other supernova remnants and with theoretical models for possible compact sources. We show that any survivor of a possible binary system must be no more luminous than an F6 main-sequence star. Bright young pulsars such as Kes 75 or the Crab pulsar are excluded by optical and X-ray limits on SN 1987A. Other nonplerionic X-ray point sources have luminosities similar to the limits on a point source in SN 1987A; RCW 103 and Cas A are slightly brighter than the limits on SN 1987A, while Pup A is slightly fainter. Of the young pulsars known to be associated with SNRs, those with ages <=5000 yr are all too bright in X-rays to be compatible with the limits on SN 1987A. Examining theoretical models for accretion onto a compact object, we find that spherical accretion onto a neutron star is firmly ruled out and that spherical accretion onto a black hole is possible only if there is a larger amount of dust absorption in the remnant than predicted. In the case of thin-disk accretion, our flux limit requires a small disk, no larger than 1010 cm, with an accretion rate no more than 0.3 times the Eddington accretion rate. Possible ways to hide a surviving compact object include the removal of all surrounding material at early times by a photon-driven wind, a small accretion disk, or very high levels of dust absorption in the remnant. It will not be easy to improve substantially on our optical-UV limit for a point source in SN 1987A, although we can hope that a better understanding of the thermal infrared emission will provide a more complete picture of the possible energy sources at the center of SN 1987A.
  •  
8.
  • Iping, Rosina C., et al. (author)
  • Search for O VI Emission from the Shocked Circumstellar Ring of SN 1987A
  • 2007
  • In: SUPERNOVA 1987A: 20 YEARS AFTER: Supernovae and Gamma-Ray Bursters. - : AIP. - 9780735404489 ; , s. 182-184
  • Conference paper (other academic/artistic)abstract
    • A search for O VI 1032-38 Å emission from the circumstellar shock interaction zones of SN 1987A was made with the FUSE satellite. The shock interaction of supernova ejecta with the dense inner ring began in the mid-1990s. Broad (FWHM ~300 km s−1) emission from optical coronal lines (e.g. [Fe X], [Fe XI], and [Fe XIV]) has emerged and increased exponentially in strength. O VI emission is expected to track the coronal lines and is expected to be the primary cooling transition for the million-degree shocked gas. In the most recent FUSE observation of SN 1987A, June 2004, a weak broad O VI feature may be present. An upper limit on the intrinsic O VI flux is ~1×10−13 erg cm−2 s−1 (corrected for foreground Galactic and LMC extinction). A follow-up observation of planned for mid-2007.
  •  
9.
  • Matsuura, M., et al. (author)
  • A STUBBORNLY LARGE MASS OF COLD DUST IN THE EJECTA OF SUPERNOVA 1987A
  • 2015
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 800:1
  • Journal article (peer-reviewed)abstract
    • We present new Herschel photometric and spectroscopic observations of Supernova 1987A, carried out in 2012. Our dedicated photometric measurements provide new 70 mu m data and improved imaging quality at 100 and 160 mu m compared to previous observations in 2010. Our Herschel spectra show only weak CO line emission, and provide an upper limit for the 63 mu m [O-I] line flux, eliminating the possibility that line contaminations distort the previously estimated dustmass. The far-infrared spectral energy distribution (SED) is well fitted by thermal emission from cold dust. The newly measured 70 mu m flux constrains the dust temperature, limiting it to nearly a single temperature. The far-infrared emission can be fitted by 0.5 +/- 0.1M(circle dot) of amorphous carbon, about a factor of two larger than the current nucleosynthetic mass prediction for carbon. The observation of SiO molecules at early and late phases suggests that silicates may also have formed and we could fit the SED with a combination of 0.3M(circle dot) of amorphous carbon and 0.5M(circle dot) of silicates, totalling 0.8M(circle dot) of dust. Our analysis thus supports the presence of a large dust reservoir in the ejecta of SN 1987A. The inferred dust mass suggests that supernovae can be an important source of dust in the interstellar medium, from local to high-redshift galaxies.
  •  
10.
  • Michael, Eli, et al. (author)
  • Hubble Space Telescope Observations of High-Velocity Lyα and Hα Emission from Supernova Remnant 1987A : The Structure and Development of the Reverse Shock
  • 2003
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 593, s. 809-830
  • Journal article (peer-reviewed)abstract
    • We present two-dimensional line profiles of high-velocity (~+/-12,000 km s-1) Lyα and Hα emission from supernova remnant 1987A obtained with the Space Telescope Imaging Spectrograph between 1997 September and 2001 September (days 3869-5327 after the explosion). This emission comes from hydrogen in the debris that is excited and ionized as it passes through the remnant's reverse shock. We use these profiles to measure the geometry and development of the reverse-shock surface. The observed emission is confined within ~+/-30° about the remnant's equatorial plane. At the equator, the reverse shock has a radius of ~75% of the distance to the equatorial ring. We detect marginal differences (6%+/-3%) between the location of the reverse-shock front in the northeast and southwest parts of the remnant. The radius of the reverse shock surface increases for latitudes above the equator, a geometry consistent with a model in which the supernova debris expands into a bipolar nebula. Assuming that the outer supernova debris has a power-law density distribution, we can infer from the reverse-shock emission light curve an expansion rate (in the northeast part of the remnant) of 3700+/-900kms-1, consistent with the expansion velocities determined from observations in radio (Manchester et al.) and X-ray (Park et al.; Michael et al.) wavelengths. However, our most recent observation (at day 5327) suggests that the rate of increase of mass flux across the northeast sector of the reverse shock has accelerated, perhaps because of deceleration of the reverse shock caused by the arrival of a reflected shock created when the blast wave struck the inner ring. Resonant scattering within the supernova debris causes Lyα photons created at the reverse shock to be directed preferentially outward, resulting in a factor of ~5 difference in the observed brightness of the reverse shock in Lyα between the near and far sides of the remnant. Accounting for this effect, we compare the observed reverse-shock Lyα and Hα fluxes to infer the amount of interstellar extinction by dust as E(B-V)=0.17+/-0.01 mag. We also notice extinction by dust in the equatorial ring with E(B-V)~0.02-0.08 mag, which implies dust-to-gas ratios similar to that of the LMC. Since Hα photons are optically thin to scattering, the observed asymmetry in brightness of Hα from the near and far sides of the remnant represents a real asymmetry in the mass flux through the reverse shock of ~30%. We discuss future observational strategies that will permit us to further investigate the reverse-shock dynamics and resonant scattering of the Lyα line and to constrain better the extinction by dust within and in front of the remnant.
  •  
11.
  • Rosu, Sophie, et al. (author)
  • Hubble Space Telescope Images of SN 1987A: Evolution of the Ejecta and the Equatorial Ring from 2009 to 2022
  • 2024
  • In: Astrophysical Journal. - : Institute of Physics. - 0004-637X .- 1538-4357. ; 966:2
  • Journal article (peer-reviewed)abstract
    • Supernova (SN) 1987A offers a unique opportunity to study how a spatially resolved SN evolves into a young SN remnant. We present and analyze Hubble Space Telescope (HST) imaging observations of SN 1987A obtained in 2022 and compare them with HST observations from 2009 to 2021. These observations allow us to follow the evolution of the equatorial ring (ER), the rapidly expanding ejecta, and emission from the center over a wide range in wavelength from 2000 to 11,000 Å. The ER has continued to fade since it reached its maximum ∼8200 days after the explosion. In contrast, the ejecta brightened until day ∼11,000 before their emission levelled off; the west side brightened more than the east side, which we attribute to the stronger X-ray emission by the ER on that side. The asymmetric ejecta expand homologously in all filters, which are dominated by various emission lines from hydrogen, calcium, and iron. From this overall similarity, we infer the ejecta are chemically well mixed on large scales. The exception is the diffuse morphology observed in the UV filters dominated by emission from the Mg ii resonance lines that get scattered before escaping. The 2022 observations do not show any sign of the compact object that was inferred from highly ionized emission near the remnant’s center observed with JWST. We determine an upper limit on the flux from a compact central source in the [O iii] HST image. The nondetection of this line indicates that the S and Ar lines observed with JWST originate from the O free inner Si-S-Ar-rich zone and/or that the observed [O iii] flux is strongly affected by dust scattering.
  •  
12.
  • Sollerman, Jesper, et al. (author)
  • Observations of the Crab Nebula and Its Pulsar in the Far-Ultraviolet and in the Optical
  • 2000
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 537, s. 861-874
  • Journal article (peer-reviewed)abstract
    • We present far-UV observations of the Crab Nebula and its pulsar made with the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope. Broad, blueshifted absorption arising in the nebula is seen in C IV λ1550, reaching a blueward velocity of ~2500 km s-1. This can be interpreted as evidence for a fast outer shell surrounding the Crab Nebula, and we adopt a spherically symmetric model to constrain the properties of such a shell. From the line profile we find that the density appears to decrease outward in the shell. A likely lower limit to the shell mass is ~0.3 Msolar with an accompanying kinetic energy of ~1.5×1049 ergs. A fast massive shell with 1051 ergs cannot be excluded but is less likely if the density profile is much steeper than ρ(R)~R-4 and the maximum velocity is <~6000 km s-1. The observations cover the region 1140-1720 Å, which is further into the ultraviolet than has previously been obtained for the pulsar. With the time-tag mode of the spectrograph we obtain the pulse profile in this spectral regime. The profile is similar to that previously obtained by us in the near-UV, although the primary peak is marginally narrower. Together with the near-UV data, and new optical data from the Nordic Optical Telescope, our spectrum of the Crab pulsar covers the entire region from 1140 to 9250 Å. Dereddening the spectrum with a standard extinction curve we achieve a flat spectrum for the reddening parameters E(B-V)=0.52, R=3.1. This dereddened spectrum of the Crab pulsar can be fitted by a power law with spectral index αν=0.11+/-0.04. The main uncertainty in determining the spectral index is the amount and characteristics of the interstellar reddening, and we have investigated the dependence of αν on E(B-V) and R. In the extended emission covered by our 25''×0.5" slit in the far-UV, we detect C IV λ1550 and He II λ1640 emission lines from the Crab Nebula. Several interstellar absorption lines are detected along the line of sight to the pulsar. The Lyα absorption indicates a column density of (3.0+/-0.5)×1021 cm-2 of neutral hydrogen, which agrees well with our estimate of E(B-V)=0.52 mag. Other lines show no evidence of severe depletion of metals in atomic gas. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS5-26555.
  •  
13.
  • Sonneborn, George, et al. (author)
  • Limits on O VI Emission from the Shocked Circumstellar Gas of SN 1987A
  • 2009
  • In: AIP Conference Proceedings. - : AIP. - 0094-243X .- 1551-7616. ; 1135:1, s. 37-39
  • Journal article (peer-reviewed)abstract
    • The Far Ultraviolet Spectroscopic Explorer (FUSE) was used to search for emission from the shock interaction of the ejecta of SN 1987A with its circumstellar material. FUSE observations of SN 1987A between 2000 and 2007 did not detect broad O VI emission. However, O VI emission was detected in 2000-2001 with a narrow line width (FWHM<35 km s-1) and a heliocentric radial velocity of +280 km s-1. This places the emitting gas at rest relative to the supernova and is interpreted as emission from unshocked circumstellar gas. This narrow emission had disappeared in 2007 (and possibly earlier) as a result of the advancing shock overtaking the H II region that was flash ionized by the supernova explosion in 1987.
  •  
14.
  • Wang, Xiaofeng, et al. (author)
  • Evidence for type ia supernova diversity from ultraviolet observations with the hubble space telescope
  • 2012
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 749:2, s. 126-
  • Journal article (peer-reviewed)abstract
    • We present ultraviolet (UV) spectroscopy and photometry of four Type Ia supernovae (SNe 2004dt, 2004ef, 2005M, and 2005cf) obtained with the UV prism of the Advanced Camera for Surveys on the Hubble Space Telescope. This data set provides unique spectral time series down to 2000 angstrom. Significant diversity is seen in the near-maximum-light spectra (similar to 2000-3500 angstrom) for this small sample. The corresponding photometric data, together with archival data from Swift Ultraviolet/Optical Telescope observations, provide further evidence of increased dispersion in the UV emission with respect to the optical. The peak luminositiesmeasured in the uvw1/F250W filter are found to correlate with the B-band light-curve shape parameter Delta m(15)(B), but with much larger scatter relative to the correlation in the broadband B band (e.g., similar to 0.4 mag versus similar to 0.2 mag for those with 0.8 mag < Delta m(15)(B) < 1.7 mag). SN 2004dt is found as an outlier of this correlation (at > 3 sigma), being brighter than normal SNe Ia such as SN 2005cf by similar to 0.9 mag and similar to 2.0 mag in the uvw1/F250W and uvm2/F220W filters, respectively. We show that different progenitor metallicity or line-expansion velocities alone cannot explain such a large discrepancy. Viewing-angle effects, such as due to an asymmetric explosion, may have a significant influence on the flux emitted in the UV region. Detailed modeling is needed to disentangle and quantify the above effects.
  •  
15.
  • Zanardo, Giovanna, et al. (author)
  • SPECTRAL AND MORPHOLOGICAL ANALYSIS OF THE REMNANT OF SUPERNOVA 1987A WITH ALMA AND ATCA
  • 2014
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 796:2
  • Journal article (peer-reviewed)abstract
    • We present a comprehensive spectral and morphological analysis of the remnant of supernova (SN) 1987A with the Australia Telescope Compact Array (ATCA) and the Atacama Large Millimeter/submillimeter Array (ALMA). The non-thermal and thermal components of the radio emission are investigated in images from 94 to 672 GHz (lambda 3.2 mm to 450 mu m), with the assistance of a high-resolution 44 GHz synchrotron template from the ATCA, and a dust template from ALMA observations at 672 GHz. An analysis of the emission distribution over the equatorial ring in images from 44 to 345 GHz highlights a gradual decrease of the east-to-west asymmetry ratio with frequency. We attribute this to the shorter synchrotron lifetime at high frequencies. Across the transition from radio to far infrared, both the synchrotron/dust-subtracted images and the spectral energy distribution (SED) suggest additional emission beside the main synchrotron component (S-nu proportional to nu(-0.73)) and the thermal component originating from dust grains at T similar to 22 K. This excess could be due to free-free flux or emission from grains of colder dust. However, a second flat-spectrum synchrotron component appears to better fit the SED, implying that the emission could be attributed to a pulsar wind nebula (PWN). The residual emission is mainly localized west of the SN site, as the spectral analysis yields -0.4 less than or similar to alpha less than or similar to -0.1 across the western regions, with alpha similar to 0 around the central region. If there is a PWN in the remnant interior, these data suggest that the pulsar may be offset westward from the SN position.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-15 of 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view