SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Sundar S) "

Search: WFRF:(Sundar S)

  • Result 1-25 of 61
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Niemi, MEK, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
2.
  • 2021
  • swepub:Mat__t
  •  
3.
  • 2021
  • swepub:Mat__t
  •  
4.
  • Bravo, L, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
5.
  • Tabiri, S, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
6.
  • Glasbey, JC, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
7.
  •  
8.
  • Khatri, C, et al. (author)
  • Outcomes after perioperative SARS-CoV-2 infection in patients with proximal femoral fractures: an international cohort study
  • 2021
  • In: BMJ open. - : BMJ. - 2044-6055. ; 11:11, s. e050830-
  • Journal article (peer-reviewed)abstract
    • Studies have demonstrated high rates of mortality in people with proximal femoral fracture and SARS-CoV-2, but there is limited published data on the factors that influence mortality for clinicians to make informed treatment decisions. This study aims to report the 30-day mortality associated with perioperative infection of patients undergoing surgery for proximal femoral fractures and to examine the factors that influence mortality in a multivariate analysis.SettingProspective, international, multicentre, observational cohort study.ParticipantsPatients undergoing any operation for a proximal femoral fracture from 1 February to 30 April 2020 and with perioperative SARS-CoV-2 infection (either 7 days prior or 30-day postoperative).Primary outcome30-day mortality. Multivariate modelling was performed to identify factors associated with 30-day mortality.ResultsThis study reports included 1063 patients from 174 hospitals in 19 countries. Overall 30-day mortality was 29.4% (313/1063). In an adjusted model, 30-day mortality was associated with male gender (OR 2.29, 95% CI 1.68 to 3.13, p<0.001), age >80 years (OR 1.60, 95% CI 1.1 to 2.31, p=0.013), preoperative diagnosis of dementia (OR 1.57, 95% CI 1.15 to 2.16, p=0.005), kidney disease (OR 1.73, 95% CI 1.18 to 2.55, p=0.005) and congestive heart failure (OR 1.62, 95% CI 1.06 to 2.48, p=0.025). Mortality at 30 days was lower in patients with a preoperative diagnosis of SARS-CoV-2 (OR 0.6, 95% CI 0.6 (0.42 to 0.85), p=0.004). There was no difference in mortality in patients with an increase to delay in surgery (p=0.220) or type of anaesthetic given (p=0.787).ConclusionsPatients undergoing surgery for a proximal femoral fracture with a perioperative infection of SARS-CoV-2 have a high rate of mortality. This study would support the need for providing these patients with individualised medical and anaesthetic care, including medical optimisation before theatre. Careful preoperative counselling is needed for those with a proximal femoral fracture and SARS-CoV-2, especially those in the highest risk groups.Trial registration numberNCT04323644
  •  
9.
  •  
10.
  •  
11.
  • 2019
  • Journal article (peer-reviewed)
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  • Reddy, S. S., et al. (author)
  • Evaluation of microstructural and dry sliding wear characteristics of pulsed Nd:YAG laser surface melted Al-Si alloys
  • 2004
  • In: Proceedings of the International Conference on Advances in Surface Treatment: Research and Applications, ASTRA. ; , s. 568-574
  • Conference paper (peer-reviewed)abstract
    • Aluminium-Silicon alloys are being increasingly considered for manufacture of wear prone components in automobile and aircraft industries owing to their light weight, superior corrosion resistance and high thermal conductivity, besides their amenability to processing methods such as casting. However, poor tribological characteristics have hampered industrial adoption of the above class of alloys. In principle, the tribological properties of these alloys can be improved by refining the microstructure by laser remelting techniques. Recently, Nd:YAG lasers have been used for processing of reflective materials such as Aluminium, as these lasers have better absorptivity compared to the CO2 lasers. The present study investigates the microstructural characteristics and improvements in sliding wear resistance that can result from surface melting of Al-Si alloys using a 400 W pursed Nd:YAG laser. Three different Al-Si alloys with varying Si content 5%, 12.5% and 20% have been investigated in the present study. The microstructures of the transverse cross sections of the treated samples were examined in detail and X-ray diffraction (XRD) studies carried out to ascertain changes in phase constitution. The surface melting and subsequent rapid solidification was found to cause considerable refinement of the microstructure, which in turn increased the hardness in the treated layer compared with that of bulk. The effect of laser beam scan speed on microhardness of the treated samples was evaluated. Dry sliding wear tests were conducted on treated and untreated samples of Al-12Si using a pin-on disc tribometer. The volume wear rates determined in case of the treated and untreated samples are discussed in the paper. The results have also been correlated with the morphological and microstructural characteristics noted in the laser treated specimens. Copyright © 2004 by Society for Advancement of Heat Treatment & Surface Engineering (SAHTSE).
  •  
19.
  •  
20.
  •  
21.
  •  
22.
  • Bandyopadhyay, S., et al. (author)
  • A statistical approach to determine process parameter impact in Nd : YAG laser drilling of IN718 and Ti-6Al-4V sheets
  • 2005
  • In: Optics and lasers in engineering. - 0143-8166 .- 1873-0302. ; 43:2, s. 163-182
  • Journal article (peer-reviewed)abstract
    • The numerous unique advantages afforded by pulsed Nd:YAG laser systems have led to their increasing utility for producing high aspect ratio holes in a wide range of materials. Notwithstanding the growing industrial acceptance of the technique, the increasingly tighter geometrical tolerances and more stringent hole quality requirements of modern industrial components demand that "defects" such as taper, recast, spatter etc., in laser-drilled holes are minimized. Process parameters like pulse energy, pulse repetition rate, pulse duration, focal position, nozzle standoff, type of gas and gas pressure of the assist gas are known to significantly influence hole quality during laser drilling. The present study reports the use of Taguchi design of experiments technique to study the effects of the above process variables on the quality of the drilled holes and ascertain optimum processing conditions. Minimum taper in the drilled hole was considered as the desired target response. The entire study was conducted in three phases:(a) screening experiments, to identify process variables that critically influence taper in laser drilled holes, (b) Optimization experiments, to ascertain the set of parameters that would yield minimum taper and (c) validation trials, to assess the validity of the experimental procedures and results. Results indicate that laser drilling with focal position on the surface of the material being drilled and employing low level values of pulse duration and pulse energy represents the ideal conditions to achieve minimum taper in laser-drilled holes. Thorough assessment of results also reveals that the laser-drilling process, optimized considering taper in the drilled hole as the target response, leads to very significant improvements in respect of other hole quality attributes of interest such as spatter and recast as well. © 2004 Elsevier Ltd. All rights reserved.
  •  
23.
  •  
24.
  •  
25.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 61

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view