SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Svensson Elin M. 1985 ) "

Search: WFRF:(Svensson Elin M. 1985 )

  • Result 1-25 of 48
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Singh, K. P., et al. (author)
  • Clinical standards for the management of adverse effects during treatment for TB
  • 2023
  • In: The International Journal of Tuberculosis and Lung Disease. - : International Union Against Tuberculosis and Lung Disease. - 1027-3719 .- 1815-7920. ; 27:7, s. 506-519
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Adverse effects (AE) to TB treatment cause morbidity, mortality and treatment interruption. The aim of these clinical standards is to encourage best practise for the diagnosis and management of AE.METHODS: 65/81 invited experts participated in a Delphi process using a 5-point Likert scale to score draft standards.RESULTS: We identified eight clinical standards. Each person commencing treatment for TB should: Standard 1, be counselled regarding AE before and during treatment; Standard 2, be evaluated for factors that might increase AE risk with regular review to actively identify and manage these; Standard 3, when AE occur, carefully assessed and possible allergic or hypersensitiv-ity reactions considered; Standard 4, receive appropriate care to minimise morbidity and mortality associated with AE; Standard 5, be restarted on TB drugs after a serious AE according to a standardised protocol that includes active drug safety monitoring. In addition: Standard 6, healthcare workers should be trained on AE including how to counsel people undertaking TB treatment, as well as active AE monitoring and management; Standard 7, there should be active AE monitoring and reporting for all new TB drugs and regimens; and Standard 8, knowledge gaps identified from active AE monitoring should be systematically addressed through clinical research.CONCLUSION: These standards provide a person -centred, consensus-based approach to minimise the impact of AE TB treatment.
  •  
2.
  • Alffenaar, J. W. C., et al. (author)
  • Clinical standards for the dosing and management of TB drugs
  • 2022
  • In: The International Journal of Tuberculosis and Lung Disease. - Paris, France : International Union Against Tuberculosis and Lung Disease. - 1027-3719 .- 1815-7920. ; 26:6, s. 483-
  • Journal article (other academic/artistic)abstract
    • Background: Optimal drug dosing is important to ensure adequate response to treatment, prevent development of drug resistance and reduce drug toxicity. The aim of these clinical standards is to provide guidance on 'best practice' for dosing and management of TB drugs.Methods: A panel of 57 global experts in the fields of microbiology, pharmacology and TB care were identified; 51 participated in a Delphi process. A 5-point Likert scale was used to score draft standards. The final document represents the broad consensus and was approved by all participants.Results: Six clinical standards were defined: Standard 1, defining the most appropriate initial dose for TB treatment; Standard 2, identifying patients who may be at risk of sub-optimal drug exposure; Standard 3, identifying patients at risk of developing drug-related toxicity and how best to manage this risk; Standard 4, identifying patients who can benefit from therapeutic drug monitoring (TDM); Standard 5, highlighting education and counselling that should be provided to people initiating TB treatment; and Standard 6, providing essential education for healthcare professionals. In addition, consensus research priorities were identified.Conclusion: This is the first consensus-based Clinical Standards for the dosing and management of TB drugs to guide clinicians and programme managers in planning and implementation of locally appropriate measures for optimal person-centred treatment to improve patient care.
  •  
3.
  • Dierig, A., et al. (author)
  • A phase IIb, open-label, randomized controlled dose ranging multi-centre trial to evaluate the safety, tolerability, pharmacokinetics and exposure-response relationship of different doses of delpazolid in combination with bedaquiline delamanid moxifloxacin in adult subjects with newly diagnosed, uncomplicated, smear-positive, drug-sensitive pulmonary tuberculosis
  • 2023
  • In: Trials. - : BMC. - 1745-6215. ; 24:1
  • Journal article (peer-reviewed)abstract
    • Background: Linezolid is an effective, but toxic anti-tuberculosis drug that is currently recommended for the treatment of drug-resistant tuberculosis. Improved oxazolidinones should have a better safety profile, while preserving efficacy. Delpazolid is a novel oxazolidinone developed by LegoChem Biosciences Inc. that has been evaluated up to phase 2a clinical trials. Since oxazolidinone toxicity can occur late in treatment, LegoChem Biosciences Inc. and the PanACEA Consortium designed DECODE to be an innovative dose-ranging study with long-term follow-up for determining the exposure-response and exposure-toxicity relationship of delpazolid to support dose selection for later studies. Delpazolid is administered in combination with bedaquiline, delamanid and moxifloxacin.Methods: Seventy-five participants with drug-sensitive, pulmonary tuberculosis will receive bedaquiline, delamanid and moxifloxacin, and will be randomized to delpazolid dosages of 0 mg, 400 mg, 800 mg, 1200 mg once daily, or 800 mg twice daily, for 16 weeks. The primary efficacy endpoint will be the rate of decline of bacterial load on treatment, measured by MGIT liquid culture time to detection from weekly sputum cultures. The primary safety endpoint will be the proportion of oxazolidinone class toxicities; neuropathy, myelosuppression, or tyramine pressor response. Participants who convert to negative liquid media culture by week 8 will stop treatment after the end of their 16-week course and will be observed for relapse until week 52. Participants who do not convert to negative culture will receive continuation phase treatment with rifampicin and isoniazid to complete a six-month treatment course.Discussion: DECODE is an innovative dose-finding trial, designed to support exposure-response modelling for safe and effective dose selection. The trial design allows assessment of occurrence of late toxicities as observed with linezolid, which is necessary in clinical evaluation of novel oxazolidinones. The primary efficacy endpoint is the change in bacterial load, an endpoint conventionally used in shorter dose-finding trials. Long-term follow-up after shortened treatment is possible through a safety rule excluding slow-and non-responders from potentially poorly performing dosages.
  •  
4.
  • Gafar, Fajri, et al. (author)
  • Global estimates and determinants of antituberculosis drug pharmacokinetics in children and adolescents : a systematic review and individual patient data meta-analysis
  • 2023
  • In: European Respiratory Journal. - : European Respiratory Society. - 0903-1936 .- 1399-3003. ; 61:3
  • Research review (peer-reviewed)abstract
    • Background Suboptimal exposure to antituberculosis (anti-TB) drugs has been associated with unfavourable treatment outcomes. We aimed to investigate estimates and determinants of first-line anti-TB drug pharmacokinetics in children and adolescents at a global level.Methods We systematically searched MEDLINE, Embase and Web of Science (1990–2021) for pharmacokinetic studies of first-line anti-TB drugs in children and adolescents. Individual patient data were obtained from authors of eligible studies. Summary estimates of total/extrapolated area under the plasma concentration–time curve from 0 to 24 h post-dose (AUC0–24) and peak plasma concentration (Cmax) were assessed with random-effects models, normalised with current World Health Organization-recommended paediatric doses. Determinants of AUC0–24 and Cmax were assessed with linear mixed-effects models.Results Of 55 eligible studies, individual patient data were available for 39 (71%), including 1628 participants from 12 countries. Geometric means of steady-state AUC0–24 were summarised for isoniazid (18.7 (95% CI 15.5–22.6) h·mg·L−1), rifampicin (34.4 (95% CI 29.4–40.3) h·mg·L−1), pyrazinamide (375.0 (95% CI 339.9–413.7) h·mg·L−1) and ethambutol (8.0 (95% CI 6.4–10.0) h·mg·L−1). Our multivariate models indicated that younger age (especially <2 years) and HIV-positive status were associated with lower AUC0–24 for all first-line anti-TB drugs, while severe malnutrition was associated with lower AUC0–24 for isoniazid and pyrazinamide. N-acetyltransferase 2 rapid acetylators had lower isoniazid AUC0–24 and slow acetylators had higher isoniazid AUC0–24 than intermediate acetylators. Determinants of Cmax were generally similar to those for AUC0–24.Conclusions This study provides the most comprehensive estimates of plasma exposures to first-line anti-TB drugs in children and adolescents. Key determinants of drug exposures were identified. These may be relevant for population-specific dose adjustment or individualised therapeutic drug monitoring.
  •  
5.
  • Litjens, Carlijn H. C., et al. (author)
  • Prediction of Moxifloxacin Concentrations in Tuberculosis Patient Populations by Physiologically Based Pharmacokinetic Modeling
  • 2022
  • In: Journal of clinical pharmacology. - : John Wiley & Sons. - 0091-2700 .- 1552-4604. ; 62:3, s. 385-396
  • Journal article (peer-reviewed)abstract
    • Moxifloxacin has an important role in the treatment of tuberculosis (TB). Unfortunately, coadministration with the cornerstone TB drug rifampicin results in suboptimal plasma exposure. We aimed to gain insight into the moxifloxacin pharmacokinetics and the interaction with rifampicin. Moreover, we provided a mechanistic framework to understand moxifloxacin pharmacokinetics. We developed a physiologically based pharmacokinetic model in Simcyp version 19, with available and newly generated in vitro and in vivo data, to estimate pharmacokinetic parameters of moxifloxacin alone and when administered with rifampicin. By combining these strategies, we illustrate that the role of P-glycoprotein in moxifloxacin transport is limited and implicate MRP2 as transporter of moxifloxacin-glucuronide followed by rapid hydrolysis in the gut. Simulations of multiple dose area under the plasma concentration-time curve (AUC) of moxifloxacin (400 mg once daily) with and without rifampicin (600 mg once daily) were in accordance with clinically observed data (predicted/observed [P/O] ratio of 0.87 and 0.80, respectively). Importantly, increasing the moxifloxacin dose to 600 mg restored the plasma exposure both in actual patients with TB as well as in our simulations. Furthermore, we extrapolated the single dose model to pediatric populations (P/O AUC ratios, 1.04-1.52) and the multiple dose model to children with TB (P/O AUC ratio, 1.51). In conclusion, our combined approach resulted in new insights into moxifloxacin pharmacokinetics and accurate simulations of moxifloxacin exposure with and without rifampicin. Finally, various knowledge gaps were identified, which may be considered as avenues for further physiologically based pharmacokinetic refinement.
  •  
6.
  • Litjens, Carlijn H. C., et al. (author)
  • Physiologically-Based Pharmacokinetic Modelling to Predict the Pharmacokinetics and Pharmacodynamics of Linezolid in Adults and Children with Tuberculous Meningitis
  • 2023
  • In: Antibiotics. - : MDPI. - 2079-6382. ; 12:4
  • Journal article (peer-reviewed)abstract
    • Linezolid is used off-label for treatment of central nervous system infections. However, its pharmacokinetics and target attainment in cranial cerebrospinal fluid (CSF) in tuberculous meningitis patients is unknown. This study aimed to predict linezolid cranial CSF concentrations and assess attainment of pharmacodynamic (PD) thresholds (AUC:MIC of >119) in plasma and cranial CSF of adults and children with tuberculous meningitis. A physiologically based pharmacokinetic (PBPK) model was developed to predict linezolid cranial CSF profiles based on reported plasma concentrations. Simulated steady-state PK curves in plasma and cranial CSF after linezolid doses of 300 mg BID, 600 mg BID, and 1200 mg QD in adults resulted in geometric mean AUC:MIC ratios in plasma of 118, 281, and 262 and mean cranial CSF AUC:MIC ratios of 74, 181, and 166, respectively. In children using similar to 10 mg/kg BID linezolid, AUC:MIC values at steady-state in plasma and cranial CSF were 202 and 135, respectively. Our model predicts that 1200 mg per day in adults, either 600 mg BID or 1200 mg QD, results in reasonable (87%) target attainment in cranial CSF. Target attainment in our simulated paediatric population was moderate (56% in cranial CSF). Our PBPK model can support linezolid dose optimization efforts by simulating target attainment close to the site of TBM disease.
  •  
7.
  • Prins, H. A. B., et al. (author)
  • Exposure and virologic outcomes of dolutegravir combined with ritonavir boosted darunavir in treatment-naive individuals enrolled in the Netherlands Cohort Study on Acute HIV infection (NOVA)
  • 2023
  • In: International Journal of Antimicrobial Agents. - : Elsevier. - 0924-8579 .- 1872-7913. ; 61:1
  • Journal article (peer-reviewed)abstract
    • To the authors' knowledge, there is currently no literature or guidance recommendation regard-ing whether the dose of dolutegravir (DTG) should be increased when co-administered with darunavir/ritonavir (DRV/r) in patients with acute human immunodeficiency virus infection (AHI). This study assessed the pharmacokinetics (PK) of twice-daily (BID) DTG and once-daily (QD) DRV/r, and com-pared this with DTG QD without DRV/r in patients with AHI. Forty-six participants initiated antiretro-viral therapy within < 24 h of enrolment: DTG 50 mg BID, DRV/r 80 0/10 0 mg QD, and two nucleoside reverse transcriptase inhibitors (NRTIs) for 4 weeks (Phase I); and DTG 50 mg QD with two NRTIs there-after (Phase II: reference). Total DTG trough concentration (Ctrough) and area under the concentration-time profile of 0-24 h (AUC0-24h) were predicted using a population PK model. DTG glucuronidation metabolic ratio (MR) and DTG free fraction were determined and compared per treatment phase using geometric mean ratio (GMR) and 90% confidence interval (CI). Participants had a predicted geometric mean steady-state DTG Ctrough of 2.83 [coefficient of variation (CV%) 30.3%] mg/L (Phase I) and 1.28 (CV% 52.4%) mg/L (Phase II), with GMR of 2.20 (90% CI 1.90-2.55). Total exposure during DTG BID increased but did not double [AUC0-24h GMR 1.65 (90% CI 1.50-1.81) h.mg/L]. DTG glucuronidation MR increased by approxi-mately 29% during Phase I. DTG Ctrough was above in-vivo EC90 (0.32 mg/L) during both phases, except in one participant during Phase I. At Week 8, 84% of participants had viral loads <= 40 copies/mL. The drug-drug interaction between DTG (BID) and DRV/r (QD) was due to induced glucuronidation, and is not clinically relevant in patients with AHI.(c) 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )
  •  
8.
  • Svensson, Elin M., 1985-, et al. (author)
  • The Potential for Treatment Shortening With Higher Rifampicin Doses : Relating Drug Exposure to Treatment Response in Patients With Pulmonary Tuberculosis
  • 2018
  • In: Clinical Infectious Diseases. - : OXFORD UNIV PRESS INC. - 1058-4838 .- 1537-6591. ; 67:1, s. 34-41
  • Journal article (peer-reviewed)abstract
    • Background. Tuberculosis remains a huge public health problem and the prolonged treatment duration obstructs effective tuberculosis control. Higher rifampicin doses have been associated with better bactericidal activity, but optimal dosing is uncertain. This analysis aimed to characterize the relationship between rifampicin plasma exposure and treatment response over 6 months in a recent study investigating the potential for treatment shortening with high-dose rifampicin. Methods. Data were analyzed from 336 patients with pulmonary tuberculosis (97 with pharmacokinetic data) treated with rifampicin doses of 10, 20, or 35 mg/kg. The response measure was time to stable sputum culture conversion (TSCC). We derived individual exposure metrics with a previously developed population pharmacokinetic model of rifampicin. TSCC was modeled using a parametric time-to-event approach, and a sequential exposure-response analysis was performed. Results. Higher rifampicin exposures increased the probability of early culture conversion. No maximal limit of the effect was detected within the observed range. The expected proportion of patients with stable culture conversion on liquid medium at week 8 was predicted to increase from 39% (95% confidence interval, 37%-41%) to 55% (49%-61%), with the rifampicin area under the curve increasing from 20 to 175 mg/L.h (representative for 10 and 35 mg/kg, respectively). Other predictors of TSCC were baseline bacterial load, proportion of culture results unavailable, and substitution of ethambutol for either moxifloxacin or SQ109. Conclusions. Increasing rifampicin exposure shortened TSCC, and the effect did not plateau, indicating that doses >35 mg/kg could be yet more effective. Optimizing rifampicin dosage while preventing toxicity is a clinical priority.
  •  
9.
  •  
10.
  • Bukkems, Vera E., et al. (author)
  • A population pharmacokinetics analysis assessing the exposure of raltegravir once-daily 1200 mg in pregnant women living with HIV
  • 2021
  • In: CPT. - : John Wiley & Sons. - 2163-8306. ; 10:2, s. 161-172
  • Journal article (peer-reviewed)abstract
    • Once-daily two 600 mg tablets (1200 mg q.d.) raltegravir offers an easier treatment option compared to the twice-daily regimen of one 400 mg tablet. No pharmacokinetic, efficacy, or safety data of the 1200 mg q.d. regimen have been reported in pregnant women to date as it is challenging to collect these clinical data. This study aimed to develop a population pharmacokinetic (PopPK) model to predict the pharmacokinetic profile of raltegravir 1200 mg q.d. in pregnant women and to discuss the expected pharmacodynamic properties of raltegravir 1200 mg q.d. during pregnancy based on previously reported concentration-effect relationships. Data from 11 pharmacokinetic studies were pooled (n = 221). A two-compartment model with first-order elimination and absorption through three sequential transit compartments best described the data. We assessed that the bio-availability of the 600 mg tablets was 21% higher as the 400 mg tablets, and the bio-availability in pregnant women was 49% lower. Monte-Carlo simulations were performed to predict the pharmacokinetic profile of 1200 mg q.d. in pregnant and nonpregnant women. The primary criteria for efficacy were that the lower bound of the 90% confidence interval (CI) of the concentration before next dose administration (C-trough) geometric mean ratio (GMR) of simulated pregnant/nonpregnant women had to be greater than 0.75. The simulated raltegravir C-trough GMR (90% CI) was 0.51 (0.41-0.63), hence not meeting the primary target for efficacy. Clinical data from two pregnant women using 1200 mg q.d. raltegravir showed a similar C-trough ratio pregnant/nonpregnant. Our pharmacokinetic results support the current recommendation of not using the raltegravir 1200 mg q.d. regimen during pregnancy until more data on the exposure-response relationship becomes available.
  •  
11.
  • Bukkems, V. E., et al. (author)
  • Prediction of Maternal and Fetal Doravirine Exposure by Integrating Physiologically Based Pharmacokinetic Modeling and Human Placenta Perfusion Experiments
  • 2022
  • In: Clinical Pharmacokinetics. - : Springer Nature. - 0312-5963 .- 1179-1926. ; 61:8, s. 1129-1141
  • Journal article (peer-reviewed)abstract
    • Background and Objective Doravirine is currently not recommended for pregnant women living with human immunodeficiency virus because efficacy and safety data are lacking. This study aimed to predict maternal and fetal doravirine exposure by integrating human placenta perfusion experiments with pregnancy physiologically based pharmacokinetic (PBPK) modeling.Methods Ex vivo placenta perfusions were performed in a closed-closed configuration, in both maternal-to-fetal and fetal-to-maternal directions (n = 8). To derive intrinsic placental transfer parameters from perfusion data, we developed a mechanistic placenta model. Next, we developed a maternal and fetal full-body pregnancy PBPK model for doravirine in Simcyp, which was parameterized with the derived intrinsic placental transfer parameters to predict in vivo maternal and fetal doravirine exposure at 26, 32, and 40 weeks of pregnancy. The predicted total geometric mean (GM) trough plasma concentration (C-trough) values were compared with the target (0.23 mg/L) derived from in vivo exposure-response analysis.Results A decrease of 55% in maternal doravirine area under the plasma concentration-time curve (AUC)(0-24h) was predicted in pregnant women at 40 weeks of pregnancy compared with nonpregnant women. At 26, 32, and 40 weeks of pregnancy, predicted maternal total doravirine GM C-trough values were below the predefined efficacy target of 0.23 mg/L. Perfusion experiments showed that doravirine extensively crossed the placenta, and PBPK modeling predicted considerable fetal doravirine exposure.Conclusion Substantially reduced maternal doravirine exposure was predicted during pregnancy, possibly resulting in impaired efficacy. Therapeutic drug and viral load monitoring are advised for pregnant women treated with doravirine. Considerable fetal doravirine exposure was predicted, highlighting the need for clinical fetal safety data.
  •  
12.
  • Cresswell, Fiona, V, et al. (author)
  • High-Dose Oral and Intravenous Rifampicin for the Treatment of Tuberculous Meningitis in Predominantly Human Immunodeficiency Virus (HIV)-Positive Ugandan Adults : A Phase II Open-Label Randomized Controlled Trial
  • 2021
  • In: Clinical Infectious Diseases. - : Oxford University Press. - 1058-4838 .- 1537-6591. ; 73:5, s. 876-884
  • Journal article (peer-reviewed)abstract
    • Background: High-dose rifampicin may improve outcomes of tuberculous meningitis (TBM). Little safety or pharmacokinetic (PK) data exist on high-dose rifampicin in human immunodeficiency virus (HIV) coinfection, and no cerebrospinal fluid (CSF) PK data exist from Africa. We hypothesized that high-dose rifampicin would increase serum and CSF concentrations without excess toxicity. Methods: In this phase II open-label trial, Ugandan adults with suspected TBM were randomized to standard-of-care control (PO-10, rifampicin 10 mg/kg/day), intravenous rifampicin (IV-20, 20 mg/kg/day), or high-dose oral rifampicin (PO-35, 35 mg/kg/day). We performed PK sampling on days 2 and 14. The primary outcomes were total exposure (AUC(0-24)), maximum concentration (C-max), CSF concentration, and grade 3-5 adverse events. Results: We enrolled 61 adults, 92% were living with HIV, median CD4 count was 50 cells/mu L (interquartile range [IQR] 46-56). On day 2, geometric mean plasma AUC(0-24hr) was 42.9.h mg/L with standard-of-care 10 mg/kg dosing, 249.h mg/L for IV-20 and 327.h mg/L for PO-35 (P<.001). In CSF, standard of care achieved undetectable rifampicin concentration in 56% of participants and geometric mean AUC(0-24hr) 0.27 mg/L, compared with 1.74 mg/L (95% confidence interval [CI] 1.2-2.5) for IV-20 and 2.17 mg/L (1.6-2.9) for PO-35 regimens (P<.001). Achieving CSF concentrations above rifampicin minimal inhibitory concentration (MIC) occurred in 11% (2/18) of standard-of-care, 93% (14/15) of IV-20, and 95% (18/19) of PO-35 participants. Higher serum and CSF levels were sustained at day 14. Adverse events did not differ by dose (P=.34). Conclusions: Current international guidelines result in sub-therapeutic CSF rifampicin concentration for 89% of Ugandan TBM patients. High-dose intravenous and oral rifampicin were safe and respectively resulted in exposures similar to 6- and similar to 8-fold higher than standard of care, and CSF levels above the MIC.
  •  
13.
  • de Rouw, Nikki, et al. (author)
  • Rethinking the Application of Pemetrexed for Patients with Renal Impairment : A Pharmacokinetic Analysis
  • 2021
  • In: Clinical Pharmacokinetics. - : ADIS INT LTD. - 0312-5963 .- 1179-1926. ; 60:5, s. 649-654
  • Journal article (peer-reviewed)abstract
    • Background Pemetrexed is used for the treatment for non-small cell lung cancer and mesothelioma. Patients with renal impairment are withheld treatment with this drug as it is unknown what dose is well tolerated in this population. Objective The purpose of our study was to investigate the pharmacokinetics (PK) of pemetrexed in patients with renal impairment. Methods A population PK analysis of pemetrexed was performed using non-linear mixed-effects modelling with phase I data obtained from the manufacturer. Additionally, the impact of renal function on pemetrexed PK was assessed with a simulation study using the developed PK model and a previously developed PK model lacking the phase I data. Results The dataset included 548 paired observations of 47 patients, with a wide range of estimated glomerular filtration rates (eGFR; 14.4-145.6 mL/min). Pemetrexed PK were best described by a three-compartment model with eGFR (calculated using the Chronic Kidney Disease-Epidemiology Collaboration [CKD-EPI] formula) as a linear covariate on renal pemetrexed clearance. Using the developed model, we found that renal clearance accounts for up to 84% (95% confidence interval 69-98%) of total pemetrexed clearance, whereas the manufacturer previously reported a 50% contribution of renal clearance. Conclusion Renal function is more important for the clearance of pemetrexed than previously thought and this should be taken into account in patients with renal impairment. Furthermore, a third compartment may contribute to prolonged exposure to pemetrexed during drug washout.
  •  
14.
  • Diaz, Jessica M. Aguilar, et al. (author)
  • New and Repurposed Drugs for the Treatment of Active Tuberculosis : An Update for Clinicians
  • 2023
  • In: Respiration. - : S. Karger. - 0025-7931 .- 1423-0356. ; 102:2, s. 83-100
  • Research review (peer-reviewed)abstract
    • Although tuberculosis (TB) is preventable and curable, the lengthy treatment (generally 6 months), poor patient adherence, high inter-individual variability in pharmacokinetics (PK), emergence of drug resistance, presence of comorbidities, and adverse drug reactions complicate TB therapy and drive the need for new drugs and/or regimens. Hence, new compounds are being developed, available drugs are repurposed, and the dosing of existing drugs is optimized, resulting in the largest drug development portfolio in TB history. This review highlights a selection of clinically available drug candidates that could be part of future TB regimens, including bedaquiline, delamanid, pretomanid, linezolid, clofazimine, optimized (high dose) rifampicin, rifapentine, and para-aminosalicylic acid. The review covers drug development history, preclinical data, PK, and current clinical development.
  •  
15.
  • Koele, Simon E., et al. (author)
  • Early bactericidal activity studies for pulmonary tuberculosis : A systematic review of methodological aspects
  • 2023
  • In: International Journal of Antimicrobial Agents. - : Elsevier. - 0924-8579 .- 1872-7913. ; 61:5
  • Research review (peer-reviewed)abstract
    • A milestone in the development of novel antituberculosis drugs is the demonstration of early bactericidal activity (EBA) in a phase IIa clinical trial. The significant variability in measurements of bacterial load complicates data analysis in these trials.A systematic review and evaluation of methods for determination of EBA in pulmonary tuberculosis studies was undertaken. Bacterial load quantification biomarkers, reporting intervals, calculation methods, statistical testing, and handling of negative culture results were extracted. In total, 79 studies were identi-fied in which EBA was determined. Colony-forming units on solid culture media and/or time-to-positivity in liquid media were the biomarkers used most often, reported in 72 (91%) and 34 (43%) studies, respec-tively. Twenty-two different reporting intervals were presented, and 12 different calculation methods for EBA were identified. Statistical testing for a significant EBA compared with no change was performed in 54 (68%) studies, and between-group testing was performed in 32 (41%) studies. Negative culture result handling was discussed in 34 (43%) studies.Notable variation was found in the analysis methods and reporting of EBA studies. A standardized and clearly reported analysis method, accounting for different levels of variability in the data, could aid the generalization of study results and facilitate comparison between drugs/regimens.
  •  
16.
  • Litjens, Carlijn H. C., et al. (author)
  • Protein binding of rifampicin is not saturated when using high-dose rifampicin
  • 2019
  • In: Journal of Antimicrobial Chemotherapy. - : OXFORD UNIV PRESS. - 0305-7453 .- 1460-2091. ; 74:4, s. 986-990
  • Journal article (peer-reviewed)abstract
    • Background Higher doses of rifampicin are being investigated as a means to optimize response to this pivotal TB drug. It is unknown whether high-dose rifampicin results in saturation of plasma protein binding and a relative increase in protein-unbound (active) drug concentrations. Objectives To assess the free fraction of rifampicin based on an in vitro experiment and data from a clinical trial on high-dose rifampicin. Methods Protein-unbound rifampicin concentrations were measured in human serum spiked with increasing total concentrations (up to 64mg/L) of rifampicin and in samples obtained by intensive pharmacokinetic sampling of patients who used standard (10mg/kg daily) or high-dose (35mg/kg) rifampicin up to steady-state. The performance of total AUC(0-24) to predict unbound AUC(0-24) was evaluated. Results The in vitro free fraction of rifampicin remained unaltered (approximate to 9%) up to 21mg/L and increased up to 13% at 41mg/L and 17% at 64mg/L rifampicin. The highest (peak) concentration in vivo was 39.1mg/L (high-dose group). The arithmetic mean percentage unbound to total AUC(0-24)in vivo was 13.3% (range=8.1%-24.9%) and 11.1% (range=8.6%-13.6%) for the standard group and the high-dose group, respectively (P=0.214). Prediction of unbound AUC(0-24) based on total AUC(0-24) resulted in a bias of -0.05% and an imprecision of 13.2%. Conclusions Plasma protein binding of rifampicin can become saturated, but exposures after high-dose rifampicin are not high enough to increase the free fraction in TB patients with normal albumin values. Unbound rifampicin exposures can be predicted from total exposures, even in the higher dose range.
  •  
17.
  • Ruth, Mike Marvin, et al. (author)
  • Auranofin Activity Exposes Thioredoxin Reductase as a Viable Drug Target in Mycobacterium abscessus
  • 2019
  • In: Antimicrobial Agents and Chemotherapy. - 0066-4804 .- 1098-6596. ; 63:9
  • Journal article (peer-reviewed)abstract
    • Nontuberculous mycobacteria (NTM) are highly drug-resistant, opportunistic pathogens that can cause pulmonary disease. The outcomes of the currently recommended treatment regimens are poor, especially for Mycobacterium abscessus. New or repurposed drugs are direly needed. Auranofin, a gold-based antirheumatic agent, was investigated for Mycobacterium tuberculosis. Here, we test auranofin against NTM in vitro and ex vivo. We tested the susceptibility of 63 NTM isolates to auranofin using broth microdilution. Next, we assessed synergy between auranofin and antimycobacterial drugs using the checkerboard method and calculated the fractional inhibition concentration index (FICI). Using time-kill kinetics assays (TK), we assessed pharmacodynamics of auranofin alone and in combination with drug combinations showing the lowest FICIs for M. abscessus CIP 104536. A response surface analysis was used to assess synergistic interactions over time in TKs. Primary isolated macrophages were infected with M. abscessus and treated with auranofin. Finally, using KEGG Orthology, we looked for orthologues to auranofins drug target in M. tuberculosis. M. abscessus had the lowest auranofin MIC50 (2 mu g/ml) among the tested NTM. The lowest average FICIs were observed between auranofin and amikacin (0.45) and linezolid (0.50). Auranofin exhibited concentration-dependent killing of M. abscessus, with >1-log killing at concentrations of >2x MIC. Only amikacin was synergistic with auranofin according to Bliss independence. Auranofin could not lower the intracellular bacterial load in macrophages. Auranofin itself may not be feasible for M. abscessus treatment, but these data point toward a promising, unutilized drug target.
  •  
18.
  • Stemkens, Ralf, et al. (author)
  • Drug interaction potential of high-dose rifampicin in patients with pulmonary tuberculosis
  • 2023
  • In: Antimicrobial Agents and Chemotherapy. - : American Society for Microbiology. - 0066-4804 .- 1098-6596. ; 67:10
  • Journal article (peer-reviewed)abstract
    • Accumulating evidence supports the use of higher doses of rifampicin for tuberculosis (TB) treatment. Rifampicin is a potent inducer of metabolic enzymes and drug transporters, resulting in clinically relevant drug interactions. To assess the drug interaction potential of higher doses of rifampicin, we compared the effect of high-dose rifampicin (40 mg/kg daily, RIF40) and standard-dose rifampicin (10 mg/kg daily, RIF10) on the activities of major cytochrome P450 (CYP) enzymes and P-glycoprotein (P-gp). In this open-label, single-arm, two-period, fixed-order phenotyping cocktail study, adult participants with pulmonary TB received RIF10 (days 1–15), followed by RIF40 (days 16–30). A single dose of selective substrates (probe drugs) was administered orally on days 15 and 30: caffeine (CYP1A2), tolbutamide (CYP2C9), omeprazole (CYP2C19), dextromethorphan (CYP2D6), midazolam (CYP3A), and digoxin (P-gp). Intensive pharmacokinetic blood sampling was performed over 24 hours after probe drug intake. In all, 25 participants completed the study. Geometric mean ratios (90% confidence interval) of the total exposure (area under the concentration versus time curve, RIF40 versus RIF10) for each of the probe drugs were as follows: caffeine, 105% (96%–115%); tolbutamide, 80% (74%–86%); omeprazole, 55% (47%–65%); dextromethorphan, 77% (68%–86%); midazolam, 62% (49%–78%), and 117% (105%–130%) for digoxin. In summary, high-dose rifampicin resulted in no additional effect on CYP1A2, mild additional induction of CYP2C9, CYP2C19, CYP2D6, and CYP3A, and marginal inhibition of P-gp. Existing recommendations on managing drug interactions with rifampicin can remain unchanged for the majority of co-administered drugs when using high-dose rifampicin. Clinical Trials registration number NCT04525235.
  •  
19.
  • Susanto, Budi Octasari, et al. (author)
  • Rifampicin can be given as flat-dosing instead of weight-band dosing
  • 2020
  • In: Clinical Infectious Diseases. - : Oxford University Press (OUP). - 1058-4838 .- 1537-6591. ; 71:12, s. 3055-3060
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: The weight-band dosing in tuberculosis treatment regimen has been implemented in clinical practice for decades. Patients will receive different number of fixed dose combination (FDC) tablets according to their weight-band. However, some analysis have shown that weight was not the best covariate to explain variability of rifampicin exposure. Furthermore, the rationale for using weight-band dosing instead of flat-dosing becomes questionable. Therefore, this study aimed to compare the average and the variability of rifampicin exposure after weight-band dosing and flat-dosing.METHODS: Rifampicin exposure were simulated using previously published population pharmacokinetics model at dose 10-40 mg/kg for weight-band dosing and dose 600-2400 mg for flat-dosing. The median AUC0-24h after day 7 and 14 were compared as well as the variability of each dose group between weight-band and flat-dosing.RESULTS: The difference of median AUC0-24h of all dose groups between flat-dosing and weight-band dosing were considered low (< 20%) except for the lowest dose. At the dose of 10 mg/kg (600 mg for flat-dosing), flat-dosing resulted in higher median AUC0-24h compared to the weight-band dosing. A marginal decrease in between-patient variability was predicted for weight-band dosing compared to flat-dosing.CONCLUSIONS: Weight-band dosing yields a small and non-clinically relevant decrease in variability of AUC0-24h.
  •  
20.
  • Waalewijn, Hylke, et al. (author)
  • Adequate exposure of 50 mg dolutegravir in children weighing 20 to 40 kg outside of sub-Sahara Africa
  • 2022
  • In: AIDS. - : Wolters Kluwer. - 0269-9370 .- 1473-5571. ; 36:14, s. 2077-2079
  • Journal article (other academic/artistic)abstract
    • Dolutegravir 50 mg is registered for use in children weighing 20-40 kg. This approval is based on data from an African paediatric cohort, and no pharmacokinetic data was available from children outside of Africa. This study provides further evidence of the effective use of dolutegravir 50 mg in children weighing 20 to 40 kg by showing that concentration data gathered in clinical practice shows adequate concentration levels in Dutch children without a safety signal.
  •  
21.
  • Abdelwahab, Mahmoud Tareq, et al. (author)
  • Clofazimine pharmacokinetics in patients with TB : dosing implications
  • 2020
  • In: Journal of Antimicrobial Chemotherapy. - : OXFORD UNIV PRESS. - 0305-7453 .- 1460-2091. ; 75:11, s. 3269-3277
  • Journal article (peer-reviewed)abstract
    • Background: Clofazimine is in widespread use as a key component of drug-resistant TB regimens, but the recommended dose is not evidence based. Pharmacokinetic data from relevant patient populations are needed to inform dose optimization. Objectives: To determine clofazimine exposure, evaluate covariate effects on variability, and simulate exposures for different dosing strategies in South African TB patients. Patients and methods: Clinical and pharmacokinetic data were obtained from participants with pulmonary TB enrolled in two studies with intensive and sparse sampling for up to 6 months. Plasma concentrations were measured by LC-MS/MS and interpreted with non-Linear mixed-effects modelling. Body size descriptors and other potential covariates were tested on pharmacokinetic parameters. We simulated different dosing regimens to safely shorten time to average daily concentration above a putative target concentration of 0.25 mg/L. Results: We analysed 1570 clofazimine concentrations from 139 participants; 79 (57%) had drug-resistant TB and 54 (39%) were HIV infected. Clofazimine pharmacokinetics were well characterized by a three-compartment model. Clearance was 11.5 L/h and peripheral volume 10500 L for a typical participant. Lower plasma exposures were observed in women during the first few months of treatment, explained by higher body fat fraction. Model-based simulations estimated that a Loading dose of 200 mg daily for 2 weeks would achieve average daily concentrations above a target efficacy concentration 37 days earlier in a typical TB participant. Conclusions: Clofazimine was widely distributed with a Long elimination half-Life. Disposition was strongly influenced by body fat content, with potential dosing implications for women with TB.
  •  
22.
  • Abulfathi, Ahmed Aliyu, et al. (author)
  • Clinical Pharmacokinetics and Pharmacodynamics of Rifampicin in Human Tuberculosis
  • 2019
  • In: Clinical Pharmacokinetics. - : Springer Science and Business Media LLC. - 0312-5963 .- 1179-1926. ; 58:9, s. 1103-1129
  • Research review (peer-reviewed)abstract
    • The introduction of rifampicin (rifampin) into tuberculosis (TB) treatment five decades ago was critical for shortening the treatment duration for patients with pulmonary TB to 6months when combined with pyrazinamide in the first 2months. Resistance or hypersensitivity to rifampicin effectively condemns a patient to prolonged, less effective, more toxic, and expensive regimens. Because of cost and fears of toxicity, rifampicin was introduced at an oral daily dose of 600mg (8-12mg/kg body weight). At this dose, clinical trials in 1970s found cure rates of >= 95% and relapse rates of < 5%. However, recent papers report lower cure rates that might be the consequence of increased emergence of resistance. Several lines of evidence suggest that higher rifampicin doses, if tolerated and safe, could shorten treatment duration even further. We conducted a narrative review of rifampicin pharmacokinetics and pharmacodynamics in adults across a range of doses and highlight variables that influence its pharmacokinetics/pharmacodynamics. Rifampicin exposure has considerable inter- and intra-individual variability that could be reduced by administration during fasting. Several factors including malnutrition, HIV infection, diabetes mellitus, dose size, pharmacogenetic polymorphisms, hepatic cirrhosis, and substandard medicinal products alter rifampicin exposure and/or efficacy. Renal impairment has no influence on rifampicin pharmacokinetics when dosed at 600mg. Rifampicin maximum (peak) concentration (C-max) > 8.2 mu g/mL is an independent predictor of sterilizing activity and therapeutic drug monitoring at 2, 4, and 6h post-dose may aid in optimizing dosing to achieve the recommended rifampicin concentration of >= 8 mu g/mL. A higher rifampicin C-max is required for severe forms TB such as TB meningitis, with C-max >= 22 mu g/mL and area under the concentration-time curve (AUC) from time zero to 6h (AUC(6)) >= 70 mu g.h/mL associated with reduced mortality. More studies are needed to confirm whether doses achieving exposures higher than the current standard dosage could translate into faster sputum conversion, higher cure rates, lower relapse rates, and less mortality. It is encouraging that daily rifampicin doses up to 35mg/kg were found to be safe and well-tolerated over a period of 12weeks. High-dose rifampicin should thus be considered in future studies when constructing potentially shorter regimens. The studies should be adequately powered to determine treatment outcomes and should include surrogate markers of efficacy such as C-max/MIC (minimum inhibitory concentration) and AUC/MIC.
  •  
23.
  •  
24.
  • De Jager, Veronique, et al. (author)
  • Early Bactericidal Activity of Meropenem plus Clavulanate (with or without Rifampin) for Tuberculosis : The COMRADE Randomized, Phase 2A Clinical Trial
  • 2022
  • In: American Journal of Respiratory and Critical Care Medicine. - : American Thoracic Society. - 1073-449X .- 1535-4970. ; 205:10, s. 1228-1235
  • Journal article (peer-reviewed)abstract
    • Rationale: Carbapenems are recommended for treatment of drug-resistant tuberculosis. Optimal dosing remains uncertain.Objectives: To evaluate the 14-day bactericidal activity of meropenem, at different doses, with or without rifampin.Methods: Individuals with drug-sensitive pulmonary tuberculosis were randomized to one of four intravenous meropenem-based arms: 2 g every 8 hours (TID) (arm C), 2 g TID plus rifampin at 20 mg/kg once daily (arm D), 1 g TID (arm E), or 3 g once daily (arm F). All participants received amoxicillin/clavulanate with each meropenem dose. Serial overnight sputum samples were collected from baseline and throughout treatment. Median daily fall in colony-forming unit (CFU) counts per milliliter of sputum (solid culture) (EBA(CFU0-14)) and increase in time to positive culture (TTP) in liquid media were estimated with mixed-effects modeling. Serial blood samples were collected for pharmacokinetic analysis on Day 13.Measurements and Main Results: Sixty participants enrolled. Median EBA(CFU0-14) counts (2.5th-97.5th percentiles) were 0.22 (0.12-0.33), 0.12 (0.057-0.21), 0.059 (0.033-0.097), and 0.053 (0.035-0.081); TTP increased by 0.34 (0.21-0.75), 0.11 (0.052-037), 0.094 (0.034-0.23), and 0.12 (0.04-0.41) (log(10) h), for arms C-F, respectively. Meropenem pharmacokinetics were not affected by rifampin coadministration. Twelve participants withdrew early, many of whom cited gastrointestinal adverse events.Conclusions: Bactericidal activity was greater with the World Health Organization-recommended total daily dose of 6 g daily than with a lower dose of 3 g daily. This difference was only detectable with solid culture. Tolerability of intravenous meropenem, with amoxicillin/clavulanate, though, was poor at all doses, calling into question the utility of this drug in second-line regimens.
  •  
25.
  • Denti, Paolo, et al. (author)
  • Optimizing Dosing and Fixed-Dose Combinations of Rifampicin, Isoniazid, and Pyrazinamide in Pediatric Patients With Tuberculosis : A Prospective Population Pharmacokinetic Study
  • 2022
  • In: Clinical Infectious Diseases. - : OXFORD UNIV PRESS INC. - 1058-4838 .- 1537-6591. ; 75:1, s. 141-151
  • Journal article (peer-reviewed)abstract
    • Background In 2010, the World Health Organization (WHO) revised dosing guidelines for treatment of childhood tuberculosis. Our aim was to investigate first-line antituberculosis drug exposures under these guidelines, explore dose optimization using the current dispersible fixed-dose combination (FDC) tablet of rifampicin/isoniazid/pyrazinamide; 75/50/150 mg, and suggest a new FDC with revised weight bands. Methods Children with drug-susceptible tuberculosis in Malawi and South Africa underwent pharmacokinetic sampling while receiving first-line tuberculosis drugs as single formulations according the 2010 WHO recommended doses. Nonlinear mixed-effects modeling and simulation was used to design the optimal FDC and weight-band dosing strategy for achieving the pharmacokinetic targets based on literature-derived adult AUC(0-24h) for rifampicin (38.7-72.9), isoniazid (11.6-26.3), and pyrazinamide (233-429 mg center dot h/L). Results In total, 180 children (42% female; 13.9% living with human immunodeficiency virus [HIV]; median [range] age 1.9 [0.22-12] years; weight 10.7 [3.20-28.8] kg) were administered 1, 2, 3, or 4 FDC tablets (rifampicin/isoniazid/pyrazinamide 75/50/150 mg) daily for 4-8, 8-12, 12-16, and 16-25 kg weight bands, respectively. Rifampicin exposure (for weight and age) was up to 50% lower than in adults. Increasing the tablet number resulted in adequate rifampicin but relatively high isoniazid and pyrazinamide exposures. Administering 1, 2, 3, or 4 optimized FDC tablets (rifampicin/isoniazid/pyrazinamide 120/35/130 mg) to children < 6, 6-13, 13-20. and 20-25 kg, and 0.5 tablet in < 3-month-olds with immature metabolism, improved exposures to all 3 drugs. Conclusions Current pediatric FDC doses resulted in low rifampicin exposures. Optimal dosing of all drugs cannot be achieved with the current FDCs. We propose a new FDC formulation and revised weight bands. Current pediatric dosing guidelines lead to infant rifampicin exposures much lower than in adults, whereas isoniazid and pyrazinamide exposures are similar. A new fixed-dose combination (FDC) with rifampicin/isoniazid/pyrazinamide 120/35/130 mg and weight bands of < 6, 6-13, 13-20, and 20-25 kg could improve treatment.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 48

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view