SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Swart Sebastiaan) "

Search: WFRF:(Swart Sebastiaan)

  • Result 1-25 of 57
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Arndt, D. S., et al. (author)
  • State of the Climate in 2016
  • 2017
  • In: Bulletin of The American Meteorological Society - (BAMS). - 0003-0007 .- 1520-0477. ; 98:8, s. S1-S280
  • Journal article (peer-reviewed)abstract
    • In 2016, the dominant greenhouse gases released into Earth's atmosphere-carbon dioxide, methane, and nitrous oxide-continued to increase and reach new record highs. The 3.5 +/- 0.1 ppm rise in global annual mean carbon dioxide from 2015 to 2016 was the largest annual increase observed in the 58-year measurement record. The annual global average carbon dioxide concentration at Earth's surface surpassed 400 ppm (402.9 +/- 0.1 ppm) for the first time in the modern atmospheric measurement record and in ice core records dating back as far as 800000 years. One of the strongest El Nino events since at least 1950 dissipated in spring, and a weak La Nina evolved later in the year. Owing at least in part to the combination of El Nino conditions early in the year and a long-term upward trend, Earth's surface observed record warmth for a third consecutive year, albeit by a much slimmer margin than by which that record was set in 2015. Above Earth's surface, the annual lower troposphere temperature was record high according to all datasets analyzed, while the lower stratospheric temperature was record low according to most of the in situ and satellite datasets. Several countries, including Mexico and India, reported record high annual temperatures while many others observed near-record highs. A week-long heat wave at the end of April over the northern and eastern Indian peninsula, with temperatures surpassing 44 degrees C, contributed to a water crisis for 330 million people and to 300 fatalities. In the Arctic the 2016 land surface temperature was 2.0 degrees C above the 1981-2010 average, breaking the previous record of 2007, 2011, and 2015 by 0.8 degrees C, representing a 3.5 degrees C increase since the record began in 1900. The increasing temperatures have led to decreasing Arctic sea ice extent and thickness. On 24 March, the sea ice extent at the end of the growth season saw its lowest maximum in the 37-year satellite record, tying with 2015 at 7.2% below the 1981-2010 average. The September 2016 Arctic sea ice minimum extent tied with 2007 for the second lowest value on record, 33% lower than the 1981-2010 average. Arctic sea ice cover remains relatively young and thin, making it vulnerable to continued extensive melt. The mass of the Greenland Ice Sheet, which has the capacity to contribute similar to 7 m to sea level rise, reached a record low value. The onset of its surface melt was the second earliest, after 2012, in the 37-year satellite record. Sea surface temperature was record high at the global scale, surpassing the previous record of 2015 by about 0.01 degrees C. The global sea surface temperature trend for the 21st century-to-date of +0.162 degrees C decade(-1) is much higher than the longer term 1950-2016 trend of +0.100 degrees C decade(-1). Global annual mean sea level also reached a new record high, marking the sixth consecutive year of increase. Global annual ocean heat content saw a slight drop compared to the record high in 2015. Alpine glacier retreat continued around the globe, and preliminary data indicate that 2016 is the 37th consecutive year of negative annual mass balance. Across the Northern Hemisphere, snow cover for each month from February to June was among its four least extensive in the 47-year satellite record. Continuing a pattern below the surface, record high temperatures at 20-m depth were measured at all permafrost observatories on the North Slope of Alaska and at the Canadian observatory on northernmost Ellesmere Island. In the Antarctic, record low monthly surface pressures were broken at many stations, with the southern annular mode setting record high index values in March and June. Monthly high surface pressure records for August and November were set at several stations. During this period, record low daily and monthly sea ice extents were observed, with the November mean sea ice extent more than 5 standard deviations below the 1981-2010 average. These record low sea ice values contrast sharply with the record high values observed during 2012-14. Over the region, springtime Antarctic stratospheric ozone depletion was less severe relative to the 1991-2006 average, but ozone levels were still low compared to pre-1990 levels. Closer to the equator, 93 named tropical storms were observed during 2016, above the 1981-2010 average of 82, but fewer than the 101 storms recorded in 2015. Three basins-the North Atlantic, and eastern and western North Pacific-experienced above-normal activity in 2016. The Australian basin recorded its least active season since the beginning of the satellite era in 1970. Overall, four tropical cyclones reached the Saffir-Simpson category 5 intensity level. The strong El Nino at the beginning of the year that transitioned to a weak La Nina contributed to enhanced precipitation variability around the world. Wet conditions were observed throughout the year across southern South America, causing repeated heavy flooding in Argentina, Paraguay, and Uruguay. Wetter-than-usual conditions were also observed for eastern Europe and central Asia, alleviating the drought conditions of 2014 and 2015 in southern Russia. In the United States, California had its first wetter-than-average year since 2012, after being plagued by drought for several years. Even so, the area covered by drought in 2016 at the global scale was among the largest in the post-1950 record. For each month, at least 12% of land surfaces experienced severe drought conditions or worse, the longest such stretch in the record. In northeastern Brazil, drought conditions were observed for the fifth consecutive year, making this the longest drought on record in the region. Dry conditions were also observed in western Bolivia and Peru; it was Bolivia's worst drought in the past 25 years. In May, with abnormally warm and dry conditions already prevailing over western Canada for about a year, the human-induced Fort McMurray wildfire burned nearly 590000 hectares and became the costliest disaster in Canadian history, with $3 billion (U.S. dollars) in insured losses.
  •  
3.
  • Arndt, D. S., et al. (author)
  • STATE OF THE CLIMATE IN 2017
  • 2018
  • In: Bulletin of The American Meteorological Society - (BAMS). - : American Meteorological Society. - 0003-0007 .- 1520-0477. ; 99:8, s. S1-S310
  • Research review (peer-reviewed)
  •  
4.
  • Azarian, Clara, et al. (author)
  • Marine heatwaves and global warming impacts on winter waters in the Southern Indian Ocean
  • 2024
  • In: Journal of Marine Systems. - 0924-7963. ; 243
  • Journal article (peer-reviewed)abstract
    • In the Southern Ocean, the term “winter waters” (WWs) refers to a water mass characterized by a subsurface layer of minimum temperature that plays an important ecological role for marine ecosystems, and in particular for top predators. Given that the Southern Ocean is experiencing warming and intense marine heatwaves (MHWs), particularly at subantarctic latitudes, we investigate here how different levels of warming might impact the presence, depth and minimum temperature of WWs in the Indian sector of the Southern Ocean. In particular, we assess how WWs are impacted by surface MHWs using in situ Argo hydrographic observations and biologging data. The results indicate that WWs are substantially reduced, deeper and warmer during the presence of MHWs. Using the most recent climate projections, we find a significant, but scenario-dependent, southward shift of WWs under global warming. Potential impacts of such WW shifts on pelagic ecosystems, at different timescales (from daily to decadal), are discussed.
  •  
5.
  •  
6.
  •  
7.
  • Clayson, C. A., et al. (author)
  • Super sites for advancing understanding of the oceanic and atmospheric boundary layers
  • 2021
  • In: Marine Technology Society Journal. - 0025-3324. ; 55:3, s. 144-145
  • Journal article (peer-reviewed)abstract
    • Air–sea interactions are critical to large-scale weather and climate predictions because of the ocean’s ability to absorb excess atmospheric heat and carbon and regulate exchanges of momentum, water vapor, and other greenhouse gases. These exchanges are controlled by molecular, turbulent, and wave-driven processes in the atmospheric and oceanic boundary layers. Improved understanding and representation of these processes in models are key for increasing Earth system prediction skill, particularly for subseasonal to decadal time scales. Our understanding and ability to model these processes within this coupled system is presently inadequate due in large part to a lack of data: contemporaneous long-term observations from the top of the marine atmospheric boundary layer (MABL) to the base of the oceanic mixing layer. We propose the concept of “Super Sites” to provide multi-year suites of measurements at specific locations to simultaneously characterize physical and biogeochemical processes within the coupled boundary layers at high spatial and temporal resolution. Measurements will be made from floating platforms, buoys, towers, and autonomous vehicles, utilizing both in-situ and remote sensors. The engineering challenges and level of coordination, integration, and interoperability required to develop these coupled ocean–atmosphere Super Sites place them in an “Ocean Shot” class. © 2021, Marine Technology Society Inc.. All rights reserved.
  •  
8.
  • Cronin, Meghan F., et al. (author)
  • Air-sea fluxes with a focus on heat and momentum
  • 2019
  • In: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745. ; 6
  • Journal article (peer-reviewed)abstract
    • © 2019 Cronin, Gentemann, Edson, Ueki, Bourassa, Brown, Clayson, Fairall, Farrar, Gille, Gulev, Josey, Kato, Katsumata, Kent, Krug, Minnett, Parfitt, Pinker, Stackhouse, Swart, Tomita, Vandemark, Weller, Yoneyama, Yu and Zhang. Turbulent and radiative exchanges of heat between the ocean and atmosphere (hereafter heat fluxes), ocean surface wind stress, and state variables used to estimate them, are Essential Ocean Variables (EOVs) and Essential Climate Variables (ECVs) influencing weather and climate. This paper describes an observational strategy for producing 3-hourly, 25-km (and an aspirational goal of hourly at 10-km) heat flux and wind stress fields over the global, ice-free ocean with breakthrough 1-day random uncertainty of 15 W m-2 and a bias of less than 5 W m-2. At present this accuracy target is met only at OceanSITES reference station moorings and research vessels (RVs) that follow best practices. To meet these targets globally, in the next decade, satellite-based observations must be optimized for boundary layer measurements of air temperature, humidity, sea surface temperature, and ocean wind stress. In order to tune and validate these satellite measurements, a complementary global in situ flux array, built around an expanded OceanSITES network of time series reference station moorings, is also needed. The array would include 500 - 1000 measurement platforms, including autonomous surface vehicles, moored and drifting buoys, RVs, the existing OceanSITES network of 22 flux sites, and new OceanSITES expanded in 19 key regions. This array would be globally distributed, with 1 - 3 measurement platforms in each nominal 10° by 10° boxes. These improved moisture and temperature profiles and surface data, if assimilated into Numerical Weather Prediction (NWP) models, would lead to better representation of cloud formation processes, improving state variables and surface radiative and turbulent fluxes from these models. The in situ flux array provides globally distributed measurements and metrics for satellite algorithm development, product validation, and for improving satellite-based, NWP and blended flux products. In addition, some of these flux platforms will also measure direct turbulent fluxes, which can be used to improve algorithms for computation of air-sea exchange of heat and momentum in flux products and models. With these improved air-sea fluxes, the ocean's influence on the atmosphere will be better quantified and lead to improved long-term weather forecasts, seasonal-interannual-decadal climate predictions, and regional climate projections.
  •  
9.
  • Cronin, M. F., et al. (author)
  • Developing an Observing Air-Sea Interactions Strategy (OASIS) for the global ocean
  • 2022
  • In: Ices Journal of Marine Science. - : Oxford University Press (OUP). - 1054-3139 .- 1095-9289. ; 80:2, s. 367-73
  • Journal article (peer-reviewed)abstract
    • The Observing Air-Sea Interactions Strategy (OASIS) is a new United Nations Decade of Ocean Science for Sustainable Development programme working to develop a practical, integrated approach for observing air-sea interactions globally for improved Earth system (including ecosystem) forecasts, CO2 uptake assessments called for by the Paris Agreement, and invaluable surface ocean information for decision makers. Our "Theory of Change" relies upon leveraged multi-disciplinary activities, partnerships, and capacity strengthening. Recommendations from >40 OceanObs'19 community papers and a series of workshops have been consolidated into three interlinked Grand Ideas for creating #1: a globally distributed network of mobile air-sea observing platforms built around an expanded array of long-term time-series stations; #2: a satellite network, with high spatial and temporal resolution, optimized for measuring air-sea fluxes; and #3: improved representation of air-sea coupling in a hierarchy of Earth system models. OASIS activities are organized across five Theme Teams: (1) Observing Network Design & Model Improvement; (2) Partnership & Capacity Strengthening; (3) UN Decade OASIS Actions; (4) Best Practices & Interoperability Experiments; and (5) Findable-Accessible-Interoperable-Reusable (FAIR) models, data, and OASIS products. Stakeholders, including researchers, are actively recruited to participate in Theme Teams to help promote a predicted, safe, clean, healthy, resilient, and productive ocean.
  •  
10.
  • de Vos, Marc, et al. (author)
  • Evaluating numerical and free-drift forecasts of sea ice drift during a Southern Ocean research expedition: An operational perspective
  • 2022
  • In: Journal of operational oceanography. Publisher: The Institute of Marine Engineering, Science & Technology. - 1755-876X .- 1755-8778. ; 15:3, s. 187-203
  • Journal article (peer-reviewed)abstract
    • Antarctic sea ice is prevalently seen as a major player in the climate system, but it is also an important factor in polar maritime safety. Remote sensing and forecasting of Southern Ocean sea ice at time scales suitable for navigation and research planning remain challenging. In this study, numerical sea ice drift forecasts are assessed from the perspective of informing shipping operations. A series of tests is performed to ascertain whether an operational global ocean and sea ice model and a simple free-drift model can provide accurate drift estimates over short lead times. Both approaches are evaluated against ice drift measurements from buoys deployed during two research cruises in the Southern Ocean marginal ice zone during winter and spring. The numerical forecast model was able to forecast sea ice trajectories over 24 h with an average position error of 16.6 km during winter and 9.2 km during spring. The simpler free-drift model, using empirically optimised wind scaling, returned an average position error of 15.9 and 9.3 km during winter and spring respectively. Model skill for both the dynamical and free-drift models is lower in winter than in spring. Free-drift model skill appears linked with sea ice consolidation, which may assist in determining when and where this approach is fit for purpose. Lingering uncertainties regarding the rheological representation of sea ice in the dynamical model and the quality of the wind and ocean forcing remain, potentially affecting model skill over tactical navigation time frames.
  •  
11.
  • D'Ovidio, Francesco, et al. (author)
  • Frontiers in fine-scale in situ studies: Opportunities during the SWOT fast sampling phase
  • 2019
  • In: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745. ; 6
  • Research review (peer-reviewed)abstract
    • © 2019 Frontiers Media S. A. Conceived as a major new tool for climate studies, the Surface Water and Ocean Topography (SWOT) satellite mission will launch in late 2021 and will retrieve the dynamics of the oceans upper layer at an unprecedented resolution of a few kilometers. During the calibration and validation (CalVal) phase in 2022, the satellite will be in a 1- day-repeat fast sampling orbit with enhanced temporal resolution, sacrificing the spatial coverage. This is an ideal opportunity - unique for many years to come - to coordinate in situ experiments during the same period for a focused study of fine scale dynamics and their broader roles in the Earth system. Key questions to be addressed include the role of fine scales on the ocean energy budget, the connection between their surface and internal dynamics, their impact on plankton diversity, and their biophysical dynamics at the ice margin.
  •  
12.
  • Du Plessis, Marcel, et al. (author)
  • Southern Ocean Seasonal Restratification Delayed by Submesoscale Wind–Front Interactions
  • 2019
  • In: Journal of Physical Oceanography. - 0022-3670. ; 49:4, s. 1035-53
  • Journal article (peer-reviewed)abstract
    • Ocean stratification and the vertical extent of the mixed layer influence the rate at which the ocean and atmosphere exchange properties. This process has direct impacts for anthropogenic heat and carbon uptake in the Southern Ocean. Submesoscale instabilities that evolve over space (1–10 km) and time (from hours to days) scales directly influence mixed layer variability and are ubiquitous in the Southern Ocean. Mixed layer eddies contribute to mixed layer restratification, while down-front winds, enhanced by strong synoptic storms, can erode stratification by a cross-frontal Ekman buoyancy flux. This study investigates the role of these submesoscale processes on the subseasonal and interannual variability of the mixed layer stratification using four years of high-resolution glider data in the Southern Ocean. An increase of stratification from winter to summer occurs due to a seasonal warming of the mixed layer. However, we observe transient decreases in stratification lasting from days to weeks, which can arrest the seasonal restratification by up to two months after surface heat flux becomes positive. This leads to interannual differences in the timing of seasonal restratification by up to 36 days. Parameterizing the Ekman buoyancy flux in a one-dimensional mixed layer model reduces the magnitude of stratification compared to when the model is run using heat and freshwater fluxes alone. Importantly, the reduced stratification occurs during the spring restratification period, thereby holding important implications for mixed layer dynamics in climate models as well as physical–biological coupling in the Southern Ocean.
  •  
13.
  • du Plessis, M., et al. (author)
  • Submesoscale processes promote seasonal restratification in the Subantarctic Ocean
  • 2017
  • In: Journal of Geophysical Research-Oceans. - : American Geophysical Union (AGU). - 2169-9275 .- 2169-9291. ; 122:4, s. 2960-2975
  • Journal article (peer-reviewed)abstract
    • Traditionally, the mechanism driving the seasonal restratification of the Southern Ocean mixed layer (ML) is thought to be the onset of springtime warming. Recent developments in numerical modeling and North Atlantic observations have shown that submesoscale ML eddies (MLE) can drive a restratifying flux to shoal the deep winter ML prior to solar heating at high latitudes. The impact of submesoscale processes on the intraseasonal variability of the Subantarctic ML is still relatively unknown. We compare 5 months of glider data in the Subantarctic Zone to simulations of a 1-D mixing model to show that the magnitude of restratification of the ML cannot be explained by heat, freshwater, and momentum fluxes alone. During early spring, we estimate that periodic increases in the vertical buoyancy flux by MLEs caused small increases in stratification, despite predominantly down-front winds that promote the destruction of stratification. The timing of seasonal restratification was consistent between 1-D model estimates and the observations. However, during up-front winds, the strength of springtime stratification increased over twofold compared to the 1-D model, with a rapid shoaling of the MLD from >200 m to <100 m within a few days. The ML stratification is further modified under a negative Ekman buoyancy flux during down-front winds, resulting in the destruction of ML stratification and deepening of the MLD. These results propose the importance of submesoscale buoyancy fluxes enhancing seasonal restratification and mixing of the Subantarctic ML.
  •  
14.
  • du Plessis, Marcel, 1990, et al. (author)
  • The Daily-Resolved Southern Ocean Mixed Layer: Regional Contrasts Assessed Using Glider Observations
  • 2022
  • In: Journal of Geophysical Research-Oceans. - : American Geophysical Union (AGU). - 2169-9275 .- 2169-9291. ; 127:4
  • Journal article (peer-reviewed)abstract
    • Water mass transformation in the Southern Ocean is vital for driving the large-scale overturning circulation, which transports heat from the surface to the ocean interior. Using profiling gliders, this study investigates the role of summertime buoyancy forcing and wind-driven processes on the intraseasonal (1-10 days) mixed layer thermohaline variability in three Southern Ocean regions southwest of Africa important for water mass transformation-the Subantarctic Zone (SAZ), Polar Frontal Zone (PFZ), and Marginal Ice Zone (MIZ). At intraseasonal time scales, heat flux was shown as the main driver of buoyancy gain in all regions. In the SAZ and MIZ, shallow mixed layers and strong stratification enhanced mixed layer buoyancy gain by trapping incoming heat, while buoyancy loss resulted primarily from the entrainment of cold, salty water from below. In the PFZ, rapid mixing linked to Southern Ocean storms set persistently deep mixed layers and suppressed mixed layer intraseasonal thermohaline variability. In the polar regions, lateral stirring of meltwater from seasonal sea-ice melt dominated daily mixed layer salinity variability. We propose that these meltwater fronts are advected to the PFZ during late summer, indicating the potential for seasonal sea-ice freshwater to impact a region where the upwelling limb of overturning circulation reaches the surface. This study reveals a regional dependence of how the mixed layer thermohaline properties respond to small spatiotemporal processes, emphasizing the importance of surface forcing occurring between 1 and 10 days on the mixed layer water mass transformation in the Southern Ocean.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  •  
21.
  • Gille, Sarah, et al. (author)
  • Mixing in the Southern Ocean
  • 2021
  • In: Ocean Mixing, Drivers, Mechanisms and Impacts. - : Elsevier. - 9780128215128 ; , s. 301-27
  • Book chapter (other academic/artistic)
  •  
22.
  • Gregor, L., et al. (author)
  • GliderTools: A Python Toolbox for Processing Underwater Glider Data
  • 2019
  • In: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745. ; 6
  • Journal article (peer-reviewed)abstract
    • Underwater gliders have become widely used in the last decade. This has led to a proliferation of data and the concomitant development of tools to process the data. These tools are focused primarily on converting the data from its raw form to more accessible formats and often rely on proprietary programing languages. This has left a gap in the processing of glider data for academics, who often need to perform secondary quality control (QC), calibrate, correct, interpolate and visualize data. Here, we present GliderTools, an open-source Python package that addresses these needs of the glider user community. The tool is designed to change the focus from the processing to the data. GliderTools does not aim to replace existing software that converts raw data and performs automatic first-order QC. In this paper, we present a set of tools, that includes secondary cleaning and calibration, calibration procedures for bottle samples, fluorescence quenching correction, photosynthetically available radiation (PAR) corrections and data interpolation in the vertical and horizontal dimensions. Many of these processes have been described in several other studies, but do not exist in a collated package designed for underwater glider data. Importantly, we provide potential users with guidelines on how these tools are used so that they can be easily and rapidly accessible to a wide range of users that span the student to the experienced researcher. We recognize that this package may not be all-encompassing for every user and we thus welcome community contributions and promote GliderTools as a community-driven project for scientists.
  •  
23.
  •  
24.
  • Krug, M., et al. (author)
  • Submesoscale cyclones in the Agulhas current
  • 2017
  • In: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 44:1, s. 346-354
  • Journal article (peer-reviewed)abstract
    • ©2016. American Geophysical Union. All Rights Reserved.Gliders were deployed for the first time in the Agulhas Current region to investigate processes of interactions between western boundary currents and shelf waters. Continuous observations from the gliders in water depths of 100–1000 m and over a period of 1 month provide the first high-resolution observations of the Agulhas Current's inshore front. The observations collected in a nonmeandering Agulhas Current show the presence of submesoscale cyclonic eddies, generated at the inshore boundary of the Agulhas Current. The submesoscale cyclones are often associated with warm water plumes, which extend from their western edge and exhibit strong northeastward currents. These features are a result of shear instabilities and extract their energy from the mean Agulhas Current jet.
  •  
25.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 57

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view